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Defending Against False Data Injection
Attacks on Power System State Estimation
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Abstract—This paper investigates the problem of defending
against false data injection (FDI) attacks on power system state
estimation. Although many research works have been previously
reported on addressing the same problem, yet most of them
made a very strong assumption that some meter measurements
can be absolutely protected. To address the problem practically,
a reasonable approach is to assume whether or not a meter
measurement could be compromised by an adversary does
depend on the defense budget deployed by the defender on the
meter. From this perspective, our contributions focus on design-
ing the least-budget defense strategy to protect power systems
against FDI attacks. In addition, we also extend to investigate
choosing which meters to be protected and determining how
much defense budget to be deployed on each of these meters.
We further formulate the meter selection problem as a mixed
integer nonlinear programming problem, which can be efficiently
tackled by Benders’ Decomposition. Finally, extensive simulations
are conducted on IEEE test power systems to demonstrate the
advantages of the proposed approach in terms of computing time
and solution quality, especially for large-scale power systems.

Index Terms—Cyber attack, false data injection, power system,
state estimation.

I. INTRODUCTION

THE POWER system is a large, sophisticated and intercon-
nected infrastructure that delivers electricity from power

plants to end users. Current power systems are continuously
monitored and controlled by EMS/SCADA (energy manage-
ment system/supervisory control and data acquisition) systems
to maintain the operating condition in a normal and secure
state. Precisely, power system state estimation is to estimate
state variables based on meter measurements; and then the
estimated state will be used to control electrical grids [1]–[3].

As electricity infrastructures are gradually transformed to-
wards smart grids with integration of information and com-
munications technology (ICT) and cyber components, power
systems become more open to and cyberly accessible from
outside networks, such as Internet-based office networks and
smart meters with two-way communication between supplier
and consumer [4]–[6]. Despite the advances, this integration
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also leads to new vulnerabilities of cyber security, which
has been reported as one of the main threats to the reliable
operation of power systems [7]–[11]. Concretely, with new
entry points being introduced into power systems, potential
complex and cooperative cyber attacks are also brought in. For
example, recent research shows that the carefully synthesized
false data injection (FDI) attacks could bypass bad data de-
tection (BDD) in today’s EMS/SCADA systems and introduce
arbitrary errors to power system state estimation without being
detected [12]. By injecting biased state estimates, FDI attacks
could manipulate electricity price in power market to arbitrage
financial profit, or worse still, mislead system operator and
result in harmful commands to cause regional blackout [13].

Up to now, many studies have come up with several coun-
termeasures to defend against FDI attacks. For example, some
existing works proposed to secure some meter measurements
and/or some state variables to make FDI attacks unable to
stealthily launch [14]–[16]. Other works investigated how FDI
attacks could impact electricity market operations by manipu-
lating real-time locational marginal price [17]–[19]. However,
none of them has considered the behavior of the attacker
and the interaction between the defender and attacker. In
addition, the assumption that some meter measurements can be
absolutely protected would be too strong for real applications.
A more practical assumption is that whether or not a meter
measurement could be compromised by an adversary dose
depend on the defense budget deployed by the defender on the
meter. Following this research line, in this paper, we formulate
the behavior of a rational attacker, and investigate how the
defender and attacker with different objectives could compete
and interact with each other. In particular, we intend to provide
insightful guidance on how to deploy the least defense budget
to guarantee that the attacker cannot modify any set of state
variables. Our main contributions focus on the least-budget
defense strategy design and the efficient solution to the meter
selection problem, which can be summarized as follows:

1) We formulate the behavior of a rational attacker, inves-
tigate the interaction between the defender and attacker,
and then design the least-budget defense strategy to make
power systems immune to FDI attacks.

2) We formulate the meter selection problem as a mixed
integer nonlinear programming (MINLP) problem, and
efficiently solve it using Benders’ Decomposition, achiev-
ing satisfactory performance in terms of computing time
and solution quality, especially for the large-scale power
systems.
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The remainder of this paper is organized as follows. The
preliminaries and related works are presented in Section II,
and the system model is built in Section III. In Section IV, we
formulate the least-budget defense problem, whose solution is
provided in Section V. In Section VI, we extend to investigate
the meter selection problem with efficient solution. Simulation
results are given in Section VII, and concluding remarks are
drawn in Section VIII with future work.

II. PRELIMINARIES AND RELATED WORKS

Some important notations used in this paper are summarized
in TABLE I. In the rest of this work, we also use the following
mathematical notations from linear algebra: AT denotes the
transpose of A; A−1 denotes the inverse of A; rank (A)
denotes the rank of A; I denotes the identity (unit) matrix;
1 denotes the all-ones vector; 0 denotes the all-zeros vector;
and ‖x‖2 denotes the L2 (Euclidean) norm of x.

TABLE I
SUMMARY OF NOTATIONS

Symbola Definition Unitb

i, m, M index, number, set of meter measurements n/a
j, n, N index, number, set of state variables n/a
zi ith meter measurement per unit
xj jth state variable per unit
ei ith measurement error (noise) per unit
H measurement Jacobian matrix n/a
H∗ reconstructed H matrix n/a
θj bus j voltage angle rad
Fij branch (i, j) active power flow MW
Pj bus j active power injection MW
bij susceptance of transmission line (i, j) f
r measurement residual vector n/a
a attack vector on meter measurements n/a
c false data injection vector on state variables n/a
bi defense budget to protect meter measurement zi per unit
ki attack cost to compromise meter measurement zi per unit
r (j) attack cost to modify state variable xj per unit
B defender’s limited budget per unit
R attacker’s limited resource per unit

fi (·) attack cost function n/a
ψi binary variable to protect meter measurement zi n/a

aThe bold symbol x denotes the vector of x, and the hat symbol x̂ denotes
the estimate of x.

bThe unit of a quantity may be omitted in the rest of the paper if it is
specified here.

A. Power System State Estimation

Consider a steady-state power system with n + 11 buses
and m meters. The state estimation problem is to estimate
state variables x = [x1, x2, . . . , xn]

T based on meter mea-
surements z = [z1, z2, . . . , zm]

T , under independent random
measurement errors (noises) e = [e1, e2, . . . , em]

T , assumed
to be following Gaussian distribution with zero mean and
diagonal covariance matrix Σ (i.e., e ∼ N (0,Σ)). The n

1We choose an arbitrary bus as the reference (slack) bus with zero voltage
angle (i.e., θ = 0). The column corresponding to this bus will not be included
in the measurement Jacobian matrix.

state variables are n bus voltage angles, the m meter mea-
surements are branch active power flows and bus active power
injections (generation minus load). The meter measurements
z are related to the state variables x as: z = h (x) + e,
where h (x) = [h1 (x) , h2 (x) , . . . , hm (x)]

T and hi (x) is a
nonlinear function of x. In DC (linearized) power flow model
[20], the linear approximation to the nonlinear relationship is
expressed as

z =Hx+ e, (1)

where H = [hij ]m×n is the measurement Jacobian matrix
(which is of full column rank when m > n, as is the typical
case), defined as

H =
∂h (x)

∂xT

∣∣∣∣
x=0

=

[
∂hi (x)

∂xj

∣∣∣∣
xj=0

]
m×n

.

Take the partially measured 5-bus power system in Fig. 1
as an example. If bus 1 is chosen as the reference bus (i.e.,
θ1 = 0), then the state variables are x = [θ2, θ3, θ4, θ5]

T , and
the meter measurements are z = [F12, F24, F35, F45, P3, P4]

T

(partially measured) [16, Fig. 1]. Based on the DC power flow
model, the measurement Jacobian matrix is

H =


b12 0 0 0
−b24 0 b24 0
0 −b35 0 b35
0 0 −b45 b45
b23 −b23 − b35 0 b35
b24 0 −b24 − b45 b45

 ,

where bij denotes the susceptance of transmission line (i, j).
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Fig. 1. An example of a partially measured 5-bus power system.

The state estimation problem is to find an estimate x̂ of
state variables x that is the best fit of the meter measurements
z according to Eq. (1) (which is an over-determined linear
system). The measurement residual is: r = z − ẑ = z −Hx̂
(i.e., the difference between the observed measurements z
and the estimated measurements ẑ). The weighted least-
squares (WLS) criterion problem is to find an estimate
x̂ that minimizes the performance index J (x̂), defined as
minx̂ J (x̂) , (z −Hx̂)T W (z −Hx̂), where the weight
matrix W , Σ−1 (i.e., a diagonal matrix whose entries
are reciprocals of the variances of measurement errors e).
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Then J (x̂) is differentiated to obtain the first-order optimal
condition [21, Ch. 3]:

x̂ =
(
HTWH

)−1
HTWz , Ez, (2)

where E is known as the “pseudo-inverse” of H since
EH = I . Besides WLS criterion, some other statistical
estimation criteria, such as maximum likelihood criterion and
minimum variance criterion, are commonly used in state
estimation [22, Ch. 12]. When the measurement errors are
assumed to be normally distributed with zero mean, these
criteria lead to the identical optimal state estimator E [12].
Since rank (E) = rank (H) = n < m, at least n meters
are needed to derive a unique state estimation. The minimum
set of measurements required to estimate n state variables is
referred to as basic/essential measurements. The other m− n
redundant measurements provide redundancy to resist random
noises for bad data detection.

B. False Data Injection Attacks

Errors could be introduced into the meter measurements
due to various reasons, such as meter failures and malicious
attacks. The current power systems use the following tech-
nique for bad data detection (BDD) to protect state estimation
[21, Ch. 8]: calculate the measurement residual r and compare
its L2 (Euclidean) norm ‖r‖2 (gross errors or bias) against a
prescribed threshold τ to detect bad measurements (outliers).
Specifically, the existence of bad measurements is assumed if
‖r‖2 > τ , otherwise z is considered as normal measurements.

Assume that the independent random measurement errors
follow normal distribution with zero mean. It can be math-
ematically derived that ‖r‖22 follows χ2

m−n distribution, i.e.,
chi-square distribution with m− n degrees of freedom (since
state estimation is constrained by n independent equations).
According to [21, Ch. 8], τ is determined by a hypothesis
test with a significance level (false alarm probability) α, i.e.,
Pr
{
‖r‖22 ≥ τ2

}
= α. This means that ‖r‖2 > τ identifies

bad measurements with a false alarm probability α.
Let za denote the malicious measurements that contain ma-

licious data a, i.e., za = z+ a, where a = [a1, a2, . . . , am]
T

is referred to as an attack vector. In general, a is likely to be
identified by BDD if it is un-structured. However, it has been
found in [12] that some well-structured attack vectors, e.g.,
a =Hc, where c = [c1, c2, . . . , cn]

T is an arbitrary non-zero
vector, can systematically bypass BDD.

Theorem 1 [12]: Suppose the original measurements z can
pass BDD. The malicious measurements za can also pass it
if the attack vector

a =Hc. (3)

The attacks with the attack vector a = Hc are referred to
as false data injection (FDI) attacks (also known as “unobserv-
able” attacks since the system operator cannot distinguish x̂a

from x̂). In such a case, the system operator would mistake x̂a

for the valid estimate of state variables x, and thus arbitrary
errors c can be injected into state estimation x̂ without being
detected. By modifying state variables, FDI attacks could
manipulate electricity price in power market to make financial

profit, or worse still, could mislead the system operator and
result in harmful control commands to cause regional blackout.

C. Related Works

A common countermeasure to defend against FDI attacks on
power system state estimation can be achieved by either secur-
ing a number of meter measurements physically or monitoring
a number of state variables directly by phasor measurement
units (PMUs). For example, Bobba et al. [14] proposed to
detect FDI attacks by protecting a strategically selected set
of meter measurements and state variables. When there is
no verifiable state variable, it is necessary and sufficient to
secure a set of basic measurements to detect attacks. Kim et
al. [15] proposed a fast greedy algorithm to select a subset of
meter measurements to protect against FDI attacks. They also
developed another greedy algorithm to facilitate the strategic
placement of secure PMUs for defense. Jia et al. [19] studied
the impacts of malicious data attacks on real-time price of
electrical market operations. They analyzed the chance that
the adversary can make profit by intelligently manipulating
values of meter measurements.

In summary, the aforementioned works proposed to secure
some meter measurements and/or some state variables to
make FDI attacks unable to be stealthily launched. They have
assumed that some meter measurements can be absolutely
protected, i.e., the adversary cannot compromise them no
matter how powerful he is. This assumption would be too
strong for real applications. A more practical approach is to
assume that whether or not a meter measurement could be
compromised by an adversary depends on the defense budget
deployed by the defender on the meter. From this perspective,
our contributions focus on designing the least-budget defense
strategy to guarantee that the adversary cannot modify any
set of state variables. Furthermore, we extend to investigate
choosing which meters for protecting and determining how
much defense budget to be deployed on each of these meters,
such that the power system can be immune to FDI attacks.
In this context, our work will provide insightful guidance on
protecting power systems from cyber attacks in real practice.

III. SYSTEM MODEL

A. Attack Model

To launch FDI attacks without being detected, the attacker
needs to compromise a set of meter measurements simultane-
ously. Take the 5-bus power system in Fig. 1 as an example.
If the attacker wants to modify the state variable x1, he needs
to compromise the set [z1, z2, z5, z6] of meter measurements
at the same time to bypass BDD. This is because that for c =
[c1, 0, 0, 0]

T , a = Hc = [b12c1,−b24c1, 0, 0, b23c1, b24c1]T .
This scenario corresponds to the constrained case of targeted
FDI attacks as that in [12]. Obviously if the attacker wants
to modify more state variables, he needs to compromise
more meter measurements. Note that in this paper, we de-
fine an “attack” as introducing “arbitrary” errors, rather than
“specific” errors, into state variables. Although leveraging
possible cancellations in the H matrix by inserting specific
errors into multiple state variables may construct potentially
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less expensive attacks, single state variable attacks associated
with arbitrary errors can give the adversary full freedom to
achieve his attack goal. Under such case, it is easier for the
adversary to launch a constrained targeted FDI attacks than an
unconstrained one.

Assume that a rational attacker will choose the easiest target
of state variable (with the least cost) to attack. A successful
attack is to modify (introduce arbitrary errors into)2 at least one
state variable without being detected. The attacker’s objective
is to launch an attack with the least cost. His capabilities
include:

1) the knowledge of the power network topology and con-
figuration of the power system, i.e., the H matrix.

2) the ability to access any set of meter measurements
simultaneously, which may or may not be compromised
depending on the defender’s protection budget.

B. Defense Model

Consider a power system with a set N = {1, 2, . . . , n}
of state variables and a set M = {1, 2, . . . ,m} of meter
measurements. A common countermeasure to defend against
FDI attacks is to physically secure meter measurements by,
for instance, guards, video monitoring, tamper-proof com-
munication systems, etc. The defender needs to decide the
allocation of the defense budget for the protection of m meter
measurements. Let b = [b1, b2, . . . , bm]

T denote the defender’s
budget allocation vector, where bi is the allocated budget for
protecting the meter measurement zi. For example, if bi = 0,
there is no defense deployed on zi.

Under the defender’s strategy b, the attack cost ki for an
attacker to successfully compromise the meter measurement
zi is assumed to be a function of the deployed budget bi:

ki = fi (bi) ∀i ∈M. (4)

When bi increases, the corresponding ki should also rise, i.e., it
will be more difficult to compromise zi. Accordingly, the cost
function fi (·) should be formulated as a monotonic function,
and k = [k1, k2, . . . , km]

T denotes the attacker’s attack cost
vector.

IV. PROBLEM FORMULATION

A. Attack Formulation

For ease of illustration, we construct an H∗ matrix from
the H matrix. The reconstruction rule is defined as follows:

h∗ij =

{
0, if hij = 0
1, otherwise

∀i ∈M,∀j ∈ N . (5)

Taking the 5-bus power system in Fig. 1 as an example,

H∗ =


1 0 0 0
1 0 1 0
0 1 0 1
0 0 1 1
1 1 0 1
1 0 1 1

 .

2Throughout the following text, the terms “modify” and “attack” will be
interchangeably used, with the same meaning of introducing arbitrary errors
into state variables without being detected.

And the jth column of H∗ is denoted by h∗j ∈ Rm×1. For
instance, h∗1 = [1, 1, 0, 0, 1, 1]

T .
With the H∗ matrix, the attack cost for an attacker to suc-

cessfully modify the state variable xj without being detected
can be expressed as

r (j) = h∗Tj k =

m∑
i=1

h∗ijki ∀j ∈ N . (6)

For the 5-bus power system in Fig. 1, r (1) = k1 + k2 +
k5 + k6. That is to say, if the attacker wants to modify the
state variable x1, the total attack cost is the sum of costs to
compromise the meter measurements z1, z2, z5 and z6. A
reasonable assumption is that a rational attacker will choose
the easiest target of state variable (with the least cost) to attack.
Thus, the attacker’s strategy can be formulated as

min
j∈N

r (j) (7)

s.t. (4)− (6).

B. Defense Formulation

The interaction between the defender and attacker can be
viewed as a two-player zero-sum (strictly competitive) game.
The defender plays first, by deploying the protection strategy
b; while the attacker plays next, by launching an attack on the
easiest target xj (with the least cost) without being detected.
It is reasonable to assume that the defender does not know
the attacker’s strategy beforehand, but the attacker may have
zero, partial or full knowledge of the defender’s strategy.
In real situation, the attacker will try his best to acquire
such information. With more information being collected, the
risk (probability) of launching a successful attack goes up.
According to risk management theory, for any strategy played
by the defender, the easiest target (with the least attack cost)
under the strategy always exists [23]. This is the worst-case
situation, which corresponds to that the attacker fully knows
the defender’s strategy. That is, given b, the worst case can
be achieved by solving (7). The worst-case solution provides
a benchmark for risk assessment.

With more information, the attacker can only increase the
risk (probability) of launching a successful attack, but cannot
further cut down the least attack cost. Thus, the defender’s
best (versatile) strategy against any attacker’s strategy is to
raise up the least attack cost as much as possible, under the
constraint of the total defense budget B. We have a Primal
Problem:

max
b≥0

min
j∈N

r (j) (8)

s.t.


m∑
i=1

bi ≤ B

(4)− (6).

V. SOLUTION

The maximin problem (8) of the defender is to maximize the
attack cost of the attacker for the worst-case scenario. Previous
attempts to solve the maximin problem mostly focused on a
special case — the saddle point solution, which is relatively
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easier to be characterized, but requests the following condition
to hold [23]:

max
b≥0

min
j∈N

r (j) = min
j∈N

max
b≥0

r (j) . (9)

However, the saddle point condition (9) requires two players
to satisfy some strict restrictions such as simultaneousness.
In real situation, such a condition cannot always hold. To
tackle the problem, we transform the primal problem into an
equivalent one, regardless of whether (9) holds or not.

A. Transformation

Assume that the adversary has the limited attack resource
R due to the limited attack duration (within the system main-
tenance period). The defender intends to deploy the defense
budget as low as possible while guaranteeing that the attacker
cannot modify any set of state variables (i.e., even the least
attack cost needed is still greater than the attacker’s limited
resource R). In this context, the primal problem (8) can be
transformed into an Equivalent Problem:

min
b≥0

m∑
i=1

bi (10)

s.t.

{
min
j∈N

r (j) ≥ R (10a)

(4)− (6).

Through the equivalent transformation, the minimization op-
eration on the variable j has been moved from the objective
function (8) into the constraint (10a), which becomes easier
to tackle. The detailed transformation process is elaborated in
Appendix A to show the equivalence between (10) and (8).

For the problem (10), the constraint (10a) can be rewritten
into the equivalent form of: r (j) ≥ R ∀j ∈ N . Note that
if denote r = [r (1) , r (2) , . . . , r (n)]

T and R = R × 1,
the constraint (10a) is equivalent to: r ≥ R. Recall the
constraint (4), where fi (bi) is a linear or nonlinear function
of bi. Regardless of which type of function it is, the linear
approximation to the cost function (4) is: k = f · b, where f
is the cost function Jacobian vector defined as

f =

[
∂fi (bi)

∂bi

∣∣∣∣
bi=0

]
m×1

.

Besides, recall the constraint (6), and thus we have: r =
[h∗1,h

∗
2, . . . ,h

∗
n]

T
k =H∗Tk =H∗T (f · b).

From the above, the problem (10) can be rewritten into the
equivalent form of a linear programming (LP) problem:

min
b≥0

1T b (11)

s.t. H∗T (f · b) ≥ R.

The problem can be efficiently solved with the computational
complexity generally bounded by a polynomial function of the
size of the problem m.

B. Simplest Case

Take the 5-bus power system in Fig. 1 as an example. For
ease of illustration, consider the simplest case where f = R =
1. By means of LP, we may obtain the solution 1 as shown in
TABLE II. The least defense budget needed is 2, which means
that if the defender strategically deploys [.2 .4 .6 .8] on the set
[z2, z3, z5, z6] of meter measurements, it is guaranteed that the
attacker cannot modify any set of state variables.

TABLE II
COMPARISON OF NUMERICAL SOLUTIONS

PPPPPP#
Metric Defense Least defense Total attack cost

strategy b budget
∑m

i=1 bi
∑n

j=1 r (j)

Solution 1 [0 .2 .4 0 .6 .8] 2 5.4
Solution 2 [0 1 1 0 0 0] 2 4
Solution 3 [0 0 0 0 1 1] 2 6

Although LP can efficiently get a solution for the problem
(11), however, since H∗T is the n×m matrix and n < m is
the typical case, (11) is an under-determined linear system, and
theoretically has infinitely many solutions. For example, the
solution 2 shown in TABLE II is also a solution. Nevertheless,
from the practical point of view, we may consider that the
solution 1 would be better than the solution 2 since the total
attack cost that the attacker could modify all state variables,
i.e.,

∑n
j=1 r (j), under the former defense strategy is larger.

From the above observation, we may consider additional
practical constraints or objectives to let the solution make more
sense in real-life applications.

C. Multi-Objective Optimization

Inspired by the discussion in the previous subsection, we
consider another objective, namely maximizing the total attack
cost

∑n
j=1 r (j). We need a tuning parameter to balance the

two objectives. And in choosing the tuning parameter we
should consider the former objective of minimizing the total
defense budget as the primary objective. How to theoretically
determine the appropriate tuning parameter is out of scope of
this paper. For engineering applications, the tuning parameter
may be easily determined by samples of trials. Let η ≥ 0
denote the tuning parameter, then the multi-objective optimiza-
tion problem can be formulated as

min
b≥0

m∑
i=1

bi − η ×
n∑

j=1

r (j) (12)

s.t.

{
min
j∈N

r (j) ≥ R

(4)− (6).

Similar to (11), the problem (12) can be rewritten into the
equivalent form of an LP problem:

min
b≥0

1T b− η × 1TH∗T (f · b) (13)

s.t. H∗T (f · b) ≥ R.

With the appropriately determined tuning parameter (η = 0.1,
defined by samples of trials), LP can achieve a more senseful
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solution for the problem (13) for practical applications, which
is the solution 3 as shown in TABLE II. Such a solution has
the maximum total attack cost among all feasible solutions
with the same least defense budget.

VI. EXTENSION TO CASE WITH LIMITED NUMBER OF
PROTECTED METERS

A. Problem Formulation

In this section, we consider an extension to the proposed
problem where the number of protected meters is limited.
Assume that meters are deployed at all buses and branches
(fully measured). Intuitively, the more meters are protected,
the more difficult an FDI attack can be launched without
being detected, and thus the total required defense budget
can be reduced. On the other hand, the high cost of defense
infrastructure is a major hindrance for large-scale deployment.
The extension therefore is essentially to find the best selection
of a limited number of protected meters, which may be of
importance in real-life applications.

Taking the fully measured 5-bus power system in Fig. 2 for
example, the number of meters is 10, and the meter measure-
ments are z = [F12, F23, F24, F35, F45, P1, P2, P3, P4, P5]

T .
Thus, the measurement Jacobian matrix is

H =



b12 0 0 0
−b23 b23 0 0
−b24 0 b24 0
0 −b35 0 b35
0 0 −b45 b45
b12 0 0 0

−b12 − b23 − b24 b23 b24 0
b23 −b23 − b35 0 b35
b24 0 −b24 − b45 b45
0 −b35 −b45 b35 + b45


.

According to (5),

H∗ =



1 0 0 0
1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1
1 0 0 0
1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1


.

Let a binary variable ψi ∈ {0, 1} denote whether to protect
meter measurement zi or not, and ψ = [ψ1, ψ2, . . . , ψm]

T

for the meter selection vector. When ψi = 1, it means that
meter measurement zi is protected; and otherwise no defense
is deployed there. With theH∗ matrix and the meter protection
strategy ψ, (6) is rewritten as

r (j) =

m∑
i=1

h∗ijkiψi ∀j ∈ N . (14)

Given the maximum number of protected meters, denoted
by M , the meter selection problem is to choose which meters
to protect and determine how much defense budget to deploy

1 Branch index

1

4 Meter measurement index

5 Bus index

Branch flow measurement

Bus injection measurement

1

2

3

4

5
1

2

3
3

4
4

5

5

8

9

6

2

7 10

Fig. 2. An example of a fully measured 5-bus power system.

on each of these meters, such that the total required defense
budget is minimized. Thus, the problem (10) is rewritten as

min
ψ∈{0,1},b≥0

m∑
i=1

bi (15)

s.t.



m∑
i=1

ψi ≤M (15a)

min
j∈N

r (j) ≥ R

(4) (5) (14).

Note that the only difference between the problems (15) and
(10) is the existence of the additional constraint (15a) showing
that the number of protected meters is limited. Such an
integer constraint, however, makes the problem more difficult
to tackle.

Similar to that of (11), the problem (15) can be rewritten into
the equivalent form of a mixed integer nonlinear programming
(MINLP) problem:

min
ψ∈{0,1},b≥0

1T b (16)

s.t.

{
1Tψ −M ≤ 0 (16a)
R−H∗T (f ·ψ · b) ≤ 0. (16b)

B. Solution by Benders’ Decomposition

The meter selection problem is an MINLP problem, which
is generally difficult to tackle. Since Benders’ decomposition
is an effective method to solve this problem with guaranteed
optimality, we design the algorithm using Benders’ decom-
position [24, Ch. 13]. For MINLP (16), ψ is an integer, b
is continuous. Let ψ∗ and b∗ denote the optimal solution.
Two types of constraints appear in MINLP: (16a) contains
only integer variables; while (16b) contains both integer and
continuous variables. Clearly, find the optimal integer ψ∗ is
the critical part of MINLP. When the integer variables are
determined, MINLP reduces to LP (11), which can be readily
solved as shown in Section V-B. In other words, once ψ∗ is
obtained, b∗ can be easily solved.

Benders’ decomposition is an iterative approach to solve
MINLP and the underlying intuition is described as follows.
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First, MINLP is decomposed into a master problem (MP) and
a subproblem (SP). MP is an integer programming problem,
which aims to obtain the integer variables by considering only
the integer constraints (with lower bound solution LB). When
the integer variables are determined, SP reduces to an LP to
obtain the continuous variables (with upper bound solution
UB). In general cases the integer variables are not optimal,
but they can be improved by adding new integer constraints
into MP, such that the search/feasible space shrinks and the
new integer variables gradually approach the optimum. For
example, when SP has the feasible solution but UB > LB
(i.e., ψ is not optimal), in order to improve ψ, the new LB
should be larger than previous LBs, by adding the feasibility
constraint (17a) into MP. When SP is infeasible, in order
to avoid obtaining this improper ψ again, the infeasibility
constraint (17b) is added into MP. The optimal solution is
converged when |UB − LB| ≤ ε, where ε is error tolerance
(stopping criterion). The iterative approach is summarized in
Algorithm 1, which involves the following definitions.

Algorithm 1: Benders’ decomposition for solving (17)

/* Initialization */
1 Set k ← 1, I1 ← ∅, J 1 ← ∅, UB0 ← +∞;
2 while do
3 Solve MP k by, e.g., branch and bound;
4 if feasible solution then
5 Obtain solution

(
ψk, LBk

)
;

6 else if unbounded solution then
7 Choose arbitrary ψk ∈ {0, 1};
8 Set LBk ← −∞;
9 end if

10 Solve SP
(
ψk
)

by, e.g., dual decomposition;
11 if feasible solution then
12 Obtain solution bk and Lagrangian multiplier λk;
13 Set UBk ← min

{
UBk−1,F

(
bk
)}

;
14 if

∣∣UBk − LBk
∣∣ ≤ ε then /* Converged */

15 return
(
ψk, bk

)
;

16 else/* Add feasible constraint */
17 Set Ik+1 ← Ik ∪ {k}, J k+1 ← J k;
18 end if
19 else if infeasible solution then
20 Solve SPF

(
ψk
)

by, e.g., dual decomposition;
21 Obtain solution bk and Lagrangian multiplier µk;
22 Set UBk ← UBk−1;

/* Add infeasible constraint */
23 Set Ik+1 ← Ik, J k+1 ← J k ∪ {k};
24 end if
25 Set k ← k + 1;
26 end while

Definition 1: objective function F (b) and constraint func-
tions G (ψ), H (ψ, b):

F (b) , 1T b

G (ψ) , 1Tψ −M
H (ψ, b) , R−H∗T (f ·ψ · b) .

Definition 2: master problem MP k:

min
ψ∈{0,1},LB

LB (17)

s.t.


G (ψ) ≤ 0

LB ≥ F
(
bi
)
+
(
λi
)T H (ψ, bi) ∀i ∈ Ik (17a)

0 ≥
(
µj
)T H (ψ, bj) ∀j ∈ J k. (17b)

Definition 3: subproblem SP
(
ψk
)
:

min
b≥0

F (b) (18)

s.t. H
(
ψk, b

)
≤ 0.

Definition 4: subproblem feasibility-check SPF
(
ψk
)
:

min
b≥0,s

1Ts (19)

s.t. Is ≥ H
(
ψk, b

)
.

Taking the fully measured 5-bus power system in Fig. 2 as
an example, by means of Benders’ Decomposition, we can
obtain the solution as shown in TABLE III. It is observed
that, if the number of protected meters is no more than one,
we cannot guarantee that the attacker cannot modify any set of
state variables, regardless of which meter is protected and how
much defense budget is deployed on this meter. This matches
the aforementioned intuition: the more meters are protected,
the less total defense budget is needed. The reason is that, with
an increased number of protected meters, to modify a state
variable requests compromising more protected meters, and
thus the more difficult an FDI attack can be launched without
being detected. When the number of protected meters reaches
four and more, the total required defense budget reaches the
least and keeps unchanged.

TABLE III
COMPARISON OF NUMERICAL SOLUTIONS

PPPPPP#
Metric Meter Defense Least defense

selection ψ strategy b budget
∑m

i=1 bi

M = 1 n/a n/a n/a
M = 2 0000000011 [1 1] 2
M = 3 0000001011 [.5 .5 .5] 1.5
M ≥ 4 0000001111

[
1
3

1
3

1
3

1
3

]
4
3

VII. SIMULATION RESULTS

In this section, we evaluate the proposed defense strategy
against FDI attacks through extensive simulations using IEEE
test power systems, including the IEEE 9-bus, 14-bus, 30-bus,
118-bus, and 300-bus systems. The topology and configuration
of these test power systems (particularly the H∗ matrix) are
extracted from MATPOWER, a MATLAB package for solving
power flow problems [25]. The names of these source files
are case9.m, case14.m, case30.m, case118.m, and
case300.m, respectively. All these power system test cases
are assumed to be fully measured. For each test system, the
state variables are voltage angles of all buses, and the meter
measurements are active power flows of all branches and
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Fig. 3. Least defense budget and total attack cost, number of protected meters, and average defense budget and attack cost of power system test cases.

active power injections of all buses. The statistics of these
power system test cases are summarized in TABLE IV. Due
to space limitation, we omit theH∗ matrix for these test power
systems.

TABLE IV
STATISTICS OF POWER SYSTEM TEST CASES

XXXXXXXXCase
Metric # of branches # of state # of meter

variables measurements

IEEE 9-bus 9 8 18
IEEE 14-bus 20 13 34
IEEE 30-bus 41 29 71

IEEE 118-bus 186 117 304
IEEE 300-bus 411 299 711

In experiments, we simulate FDI attacks on power system
state estimation using the DC power flow model. All the ex-
periments are simulated and computed by MATLAB R2011a
running on a laptop PC with Intel Core i5-3320 CPU @ 2.6
GHz, 4 GB RAM memory, and 32-bit Windows 7 OS. In
particular, the LP problem (11) (13), SP (18), and SPF (19)
are solved by “linprog” function, and MP (17) is solved by
YALMIP [26]. The maximum number of iterations is 300.

Firstly, we simulate on deploying the defense budget as low
as possible while guaranteeing that the attacker cannot modify
any set of state variables, i.e., by computing the LP problem
(11). We also simulate on obtaining the optimal solution that
has the maximum total attack cost among all feasible solutions
with the same least defense budget, i.e., by adjusting the tuning
parameter in the LP problem (13). The least defense budget
and total attack cost, the number of protected meters, and the
average defense budget and attack cost with lower and upper
bounds are shown in Fig. 3, covering simulation results of five
IEEE test power systems. It is observed that, in larger power
systems, the least required defense budget for protecting the
power system from FDI attacks increases. And the number of
protected meters increases as well. Since theoretically there
are infinitely many solutions, the number of protected meters
may vary. Under the least defense budget, the total attack cost
that the attacker could modify all state variables increases as
the number of buses (state variables) increases. The average
attack cost per state variable is greater than 1 per unit (which

is assumed to be the adversary’s limited attack resource),
hence that the attacker cannot modify any state variable. The
average defense budget per protected meter is less than 1
per unit, and this deployment strategy can guarantee that the
total required defense budget is the least. The lower and
upper bounds in these subfigures are obtained by adjusting
the tuning parameter. The appropriate tuning parameter that
maximizes the total attack cost while guaranteeing the least
defense budget can be easily determined by samples of trials.

Secondly, we simulate on choosing which meters to protect
and determining how much defense budget to be deployed
on each of these meters, such that the total required defense
budget is minimized, given the maximum number of protection
meters. We tackle the MINLP problem (16) using Benders’
Decomposition. How the maximum number of protected me-
ters impacts the least defense budget is shown in TABLE V,
covering simulation results of five IEEE test power systems. It
is observed that, if the number of protected meters is too small,
we cannot guarantee that the attacker cannot modify any set of
state variables, regardless of which meters are protected and
how much defense budget is deployed on these meters. The
more meters are protected, the less the total required defense
budget is. The reason is that, when the number of protected
meters increases, it needs to compromise more protected
meters in order to modify a state variable, and thus the more
difficult an FDI attack can be launched without being detected.
When the number of protected meters becomes large enough,
the total required defense budget reaches the least and keeps
unchanged.

Finally, we evaluate the convergence of the Benders’ De-
composition algorithm to solve the MINLP problem (16).
Since the MINLP problem can also be computed by YALMIP,
we compare the performance of these two approaches. The
convergence of the Benders’ Decomposition algorithm on the
IEEE 300-bus system is shown in Fig. 4. With a total of
1422 integer and continuous variables, the algorithm efficiently
computes the solution in 3 iterations. It is observed that, with
feasibility and infeasibility constraints being added to MP (17),
the lower and upper bounds of the problem quickly converges
to the optimal value. The performance comparison between
Benders’ Decomposition and YALMIP is shown in Fig. 5,
covering the computing time of five IEEE test power systems.
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TABLE V
NUMBER OF PROTECTED METERS IMPACTS LEAST DEFENSE BUDGET

IEEE 9-bus

Maximum # of
M ≤ 2 M ≥ 3protected meters

Least defense n/a 3budget
∑m

i=1 bi

IEEE 14-bus

Maximum # of
M ≤ 3 M ≥ 4protected meters

Least defense n/a 4budget
∑m

i=1 bi

IEEE 30-bus

Maximum # of
M ≤ 9 M ≥ 10protected meters

Least defense n/a 10budget
∑m

i=1 bi

IEEE 118-bus

Maximum # of
M ≤ 30 M ≥ 31protected meters

Least defense n/a 31budget
∑m

i=1 bi

IEEE 300-bus

Maximum # of
M ≤ 86 M = 87 M ≥ 88protected meters

Least defense n/a 87 86.5budget
∑m

i=1 bi

It is obvious that, the computational complexity of YALMIP
increases exponentially with the power system scale, while
that of Benders’ Decomposition keeps almost unchanged with
great scalability. The reason is that this algorithm decouples
integer and continuous variables into independent small-scale
subproblems, which are easier to be tackled than the orig-
inal one. Even for the IEEE 300-bus system, the required
computing time is less than 2 seconds. On the other hand,
as we circle out in the figure, for the IEEE 118-bus system,
YALMIP cannot obtain the feasible solution when M ≤ 32,
and thus the circled computing time is for M ≥ 33. That is,
the proposed Benders’ Decomposition algorithm outperforms
YALMIP in terms of both the computing time and solution
quality, especially for large-scale power systems.
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Fig. 4. Convergency of Benders’ Decomposition on IEEE 300-bus system.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have studied the problem of defending
against FDI attacks on power system state estimation. We
formulated the behavior of a rational attacker, investigated the
interaction between the defender and attacker, and designed
the least-budget defense strategy to protect power systems
against FDI attacks. We then extended to investigate choosing

Fig. 5. Comparison between Benders’ Decomposition and YALMIP.

meters to be protected and determining algorithm for defense
budget to be deployed on each of these meters. The meter
selection problem was formulated as an MINLP problem,
which was efficiently tackled by Benders’ Decomposition. We
performed extensive simulations on IEEE test power systems
to verify the performance of the proposed approach, showing
its satisfactory performance in terms of computing time and
quality of solution, especially for large-scale power systems.

Note that the attack/defense scheme considered in this paper
is built on the measurement residual-based estimator. The
measurement residual will not be affected when FDI attacks
are launched. Some other estimators have been adopted in lit-
eratures, including minimum mean square error (MMSE) and
largest normalized residue (LNR) [17], etc. The attack/defense
scheme may affect the estimation performance in such cases.
The effects of estimation performance when other estimators
are deployed will be studied in our future work.

APPENDIX
TRANSFORM FROM (8) INTO (10)

The problem (8) is difficult to solve in its current form
due to the “maxmin” term in the objective function. This can
be tackled by introducing an auxiliary variable, say R, and
rewriting (8) into the equivalent form of

max
b≥0,R

R

s.t.


R ≤ min

j∈N
r (j)

m∑
i=1

bi ≤ B

(4)− (6).

The above problem is to maximize the variable R under
the constraint of the fixed B, which, from the primal-dual
view, is conceptually equivalent to the following problem of
minimizing the variable B under the constraint of the fixed R:

min
b≥0,B

B

s.t.


B ≥

m∑
i=1

bi

min
j∈N

r (j) ≥ R

(4)− (6).

Obviously, the above problem is equivalent to the one in
(10) if we eliminate the auxiliary variable B. The value
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of R should be chosen to be smaller than that of f̃B
such that the problems (8) and (10) are equivalent, where
f̃ , maxi∈M f̃i and f̃i = [∂fi (bi) /∂bi]|bi=0. The underlying
reason is that according to (10a), (6), and (4), we have R ≤
mini∈N r (j) ≤ r (j) =

∑m
i=1 h

∗
ijfi (bi). Since h∗ij ∈ {0, 1},

we have R ≤
∑m

i=1 h
∗
ijfi (bi) ≤

∑m
i=1 fi (bi). The linear

approximation to the function fi (bi) is f̃ibi; thus we have
R ≤

∑m
i=1 fi (bi) ≈

∑m
i=1 f̃ibi ≤ f̃

∑m
i=1 bi ≤ f̃B. The

accurate value of R can be obtained simply by solving the
problem multiple times and tuning.
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