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Abstract—The accurately estimated state is of great importance
for maintaining a stable running condition of power systems.
To maintain the accuracy of the estimated state, bad data
detection (BDD) is utilized by power systems to get rid of
erroneous measurements due to meter failures or outside attacks.
However, false data injection (FDI) attacks, as recently revealed,
can circumvent BDD and insert any bias into the value of
the estimated state. Continuous works on constructing and/or
protecting power systems from such attacks have been done
in recent years. This survey comprehensively overviews three
major aspects: 1) constructing FDI attacks; 2) impacts of FDI
attacks on electricity market; and 3) defending against FDI
attacks. Specifically, we first explore the problem of constructing
FDI attacks, and further show their associated impacts on
electricity market operations, from the adversary’s point of view.
Then, from the perspective of the system operator, we present
countermeasures against FDI attacks. We also outline the future
research directions and potential challenges based on the above
overview, in the context of FDI attacks, impacts, and defense.

Index Terms—Cyber security, electricity market, false data
injection, smart grid, state estimation.

I. INTRODUCTION

THE POWER system is a complex and interconnect-
ed system for delivering electricity from generation to

consumers. The electricity grid is consistently operated and
monitored by SCADA (supervisory control and data acquisi-
tion) system to guarantee a normal running state. Specifically,
state variables of power systems are estimated from meter
measurements; and the system operator will leverage the
estimated state to control the physical space [1]–[3].

With the incorporation of cyber space such as information
and communications technology (ICT), the power system is
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making strides toward smart grid [4]–[8]. However, potential
threats in terms of cyber attacks would be introduced into
the system [9]–[18]. Taking false data injection (FDI) attacks
for example, which can circumvent bad data detection (BDD)
and insert any bias into the value of the estimated state
stealthily [19], [20]. FDI attacks were first named in 2009
by Liu et al. [19]. After that, they are widely recognized to
be new cyber attacks on power system state estimation. Due
to historical reasons, FDI attacks are also known as stealthy
deception attacks, load redistribution (LR) attacks, malicious
data attacks, data integrity attacks, and so on, proposed by
different research groups at different time. Compared with
the traditional physical attacks, FDI attacks can be launched
multiple times without being detected. If FDI attacks are well-
coordinated with physical attacks, line outages initiated by
physical attacks could be masked [16], [17]. Therefore it is of
critical importance to analyze the attack model of adversaries1

such that the corresponding defense can be proposed to secure
power systems from FDI attacks.
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Fig. 1. FDI attacks on state estimation in a power system.

As shown in Fig. 1, the building blocks of a power system
include generation, transmission, distribution, consumers, and
control center, with two-way communications among them.
The power system employs remote terminal units (RTUs),
such as meters, sensors, and actuators, to collect meter mea-
surements through communication networks, including power
injections on buses and power flows on branches. The control
center is equipped with SCADA system, whose functionalities
include bad data detection, state estimation, unit commitment,
economic dispatch, fault or disturbance analysis, power flow
optimization, load forecasting, etc. With meter measurements,

1Throughout the paper, “adversary” and “attacker” are used interchange-
ably.
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the value of state variables representing the operating condition
of power systems are estimated, including phase angles of bus
voltages. Then the control center will leverage the estimated
state to control the power grid. If the adversary has the capa-
bility to manipulate meter measurements coordinately, he/she
could launch FDI attacks to bias the estimated state. Meter
measurements can be manipulated by either compromising
RTUs directly or tampering with the data reported from the
meter to the control center.

The concept of FDI attacks, as a new type of cyber attacks
on state estimation in smart grid, was first developed in
2009 by Liu et al. [19], [20]. After that, continuous works
on constructing and/or defending against such attacks have
been done in recent years. For the purpose of quantifying the
potential threat to a power grid, two classes of security indices
are introduced by Sandberg et al. [21], corresponding to two
different types of FDI attacks, namely sparse attacks and small
magnitude attacks, respectively. One of such security metrics is
used by Teixeira et al. [22] to show limitations of linear attack
policies on the nonlinear AC power flow model. Besides, they
further propose a generalized approach to construct deception
attacks on state estimation in smart grid, with specific target
constraints [23]. More references on constructing FDI attacks
can be found in [24]–[28].

Dán et al. [29] consider clusters of meters at the same
attack cost for the adversary to compromise, and propose
greedy algorithms for perfect and partial countermeasures
against FDI attacks. The concept of LR attacks was first
introduced in 2011 by Yuan et al. [30], [31] as a special class
of FDI attacks. Kosut et al. [32]–[35] investigate two different
regimes of FDI attacks on state estimation in smart grid, and
investigate how FDI attacks will interfere electricity market
operations, because the biased state estimation result will be
used for economic dispatch. Xie et al. [36], [37] show that
the adversary can launch FDI attacks for continuous financial
arbitrage. e.g., virtual bidding at selected pairs of buses. Jia
et al. [38], [39] consider making profit for the generator at a
specific bus by launching FDI attacks on the real-time market.
Besides, they further investigate three different scenarios:
the adversary may have full, partial or zero knowledge of
real-time measurements [40]. Bi et al. [41] show that by
fabricating a fake transmission congestion pattern, FDI attacks
can manipulate real-time electricity price at any target bus.
More references on how FDI attacks will impact electricity
market can be found in [42], [43].

Bobba et al. [44] explore how to detect FDI attacks: One
way is to secure basic measurements which are selected
strategically, while the other way is to verify state variables
independently which are selected strategically. Kim et al. [45]
investigate constructing FDI attacks on the power grid based
on linearized measurement models, and propose strategic
countermeasures against such attacks, by either immunizing
a small number of meter measurements or deploying phasor
measurement units (PMUs). Giani et al. [46], [47] consider
unobservable data integrity attacks on power systems, and
also present corresponding defense approaches by means of
PMUs. More references on both constructing FDI attacks and
defending against them can be found in [48]–[51].

Bi et al. [52] propose countermeasures against FDI attacks
by protecting critical state variables. After characterizing the
problem into a Steiner tree in graph theory, graphical meth-
ods are leveraged to select the minimum number of meter
measurements [53]. In addition, they further propose a mixed
protection strategy, in case that either fails to obtain the
defense objective [54], [55]. Göl and Abur [56], [57] identify
the vulnerability of state estimation against cyber attacks and
provide two PMU-based countermeasures, by either converting
critical measurements to redundant ones or eliminating the
leveraging effect of leverage measurements. More references
on defending against FDI attacks can be found in [58]–[66].

In summary, the topic of FDI attacks has drawn considerable
attention in the field of smart grid cyber security during past
few years. As there exist considerable contributions on this
research issue, a comprehensive survey is in urgent need to
address the challenges. Up to now, only three surveys on FDI
attacks are found in [67]–[69]. However, they only review a
few literatures, and do not touch much technical depth on FDI
attacks. Besides, how FDI attacks impact electricity market
has not been thoroughly analyzed either. Therefore, in this
paper, we intend to survey all literatures to our best knowledge,
disclose the mathematical details on FDI attacks and defense,
and further investigate their associated impacts on electricity
market operations. To sum up, the main contributions of this
paper are:

1) This paper intends to provide a comprehensive survey to
date on all FDI literatures to the best knowledge.

2) Besides, this paper summarizes the detailed mathematical
and theoretical depths on FDI attacks and defense.

3) Further more, this paper thoroughly surveys the impact
of FDI attacks on electricity market for the first time.

4) Finally, this paper classifies existing literatures on FDI at-
tacks, impacts, and defense into sophisticated categories.

The rest of this survey is organized as follows. From the
adversary’s point of view, we explore and understand how to
construct FDI attacks in Section II. In Section III, we further
show and demonstrate the impacts of FDI attacks on electricity
market. In Section IV, from the perspective of the system
operator, we present and analyze defense and countermeasures
against FDI attacks. From the above overview, potential ex-
tension opportunities are outlined in Section V. In Section VI,
we draw concluding remarks.

II. CONSTRUCTING FDI ATTACKS

This section will explore and understand the problem of
constructing FDI attacks from the perspective of the adversary.

A. FDI Attacks

We focus on a steady-state and lossless power transmission
system with n + 12 buses and a set M = {1, 2, · · · ,m} of
meters. The state of a power system is usually composed of
bus voltage magnitudes and phase angles. The meter data of
a power system typically includes active and reactive parts

2An arbitrary bus is chosen as the slack (reference) bus whose phase angle
is set as zero.
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of bus power injection and branch power flow measurements.
Based on the AC power flow model, the relationship between
the meter data z and the system state x is [3, Ch. 2]:

z = h (x) + e, (1)

where h (x) is the nonlinear measurement function of x and
e is the additive noise with covariance matrix R. For large
power systems, state estimation using the nonlinear AC power
flow model would be computationally expensive and even not
always converge to an optimal solution in many cases. Thus,
power system engineers sometimes use a linearized DC power
flow model to approximate the AC model. The DC model is
less accurate, but simpler and more robust than the AC model.
Besides, the DC model is often used in real-time operations
such as the computation of real-time local marginal price. In
the DC model, the system state can reduce to just bus phase
angles, and the meter data can reduce to only the active part of
bus power injection and branch power flow measurements. The
nonlinear measurement function h (x) is linearized around
the operating point. In the DC model, state estimation is
to estimate the value of state variables x ∈ Rn×1 from
meter measurements z ∈ Rm×1, in face of independent and
uncertain measurement noises (errors) e ∈ Rm×1, assumed to
follow distributions with zero mean and diagonal covariance
matrix R. The n state variables are the n bus phase angles
x = θ, and the m meter measurements are the observed
active power injections (power generation minus load) on
buses and the observed active power flows on branches. Based
on the DC power flow model, the relationship between meter
measurements z and state variables x is [3, Ch. 2]:

z = Hx+ e, (2)

where H ∈ Rm×n is the measurement Jacobian matrix.
The state estimation problem is to find an estimate x̂ of

state variables x that is the best fit of meter measurements
z. Based on the AC power flow model (1) and the weighted
least-squares (WLS) criterion, the state estimation problem is
to find an estimate x̂ that minimizes the WLS error:

x̂ = arg min
x

[z − h (x)]
ᵀ
W [z − h (x)] , (3)

where the weight matrix W , R−1 (i.e., a diagonal matrix
whose entries are reciprocals of the variances of measurement
errors e). In practice, the AC state estimation is nonlinear and
implemented iteratively [70, Ch. 10]. For example, the Gauss-
Newton iteration or Newton-Raphson iteration can be used
until the solution converges. The process is time consuming
and does not guarantee convergence to the global optimal
value. Based on the DC power flow model (2) and the WLS
criterion, the state estimation problem is to find an estimate x̂
that minimizes the WLS error:

x̂ = arg min
x

(z −Hx)
ᵀ
W (z −Hx) . (4)

The DC state estimation is linear with a closed-form solution
[70, Ch. 3]:

x̂ = (HᵀWH)
−1
HᵀWz , Ez, (5)

where
E , (HᵀWH)

−1
HᵀW , (6)

is the DC state estimator, also referred to as the “pseudo-
inverse” of H since EH = I . Besides the WLS criterion,
some other statistical estimation criteria, such as the maximum
likelihood criterion and the minimum variance criterion, are
also commonly used in the DC state estimation [71, Ch.
12]. These criteria will result in the identical optimal state
estimator E, if measurement errors are assumed to follow
the normal distribution with zero mean [19]. If H is of
full column rank or equivalently HᵀWH is non-singular,
the unique state estimation x̂ can be derived. To obtain a
unique state estimation, at least n meter measurements are
required, since rank (E) = rank (H) = n < m typically
holds. We refer to the minimum set of meter measurements
needed to obtain a unique state estimation as the essential/basic
meter measurements. The other (m− n) redundant meter
measurements can be leveraged by the control center to deal
with the random measurement noises.

The estimated state variables x̂ can be used to estimate
meter measurements by

ẑ = Hx̂ = H (HᵀWH)
−1
HᵀWz ,Kz, (7)

where K ,HE is the so-called “hat matrix”.
Caused by meter failures or malicious attacks, errors could

be introduced into meter measurements. The current power
systems use the residual-based detector for BDD to protect
state estimation [70, Ch. 8]. The measurement residual is
the difference between the observed measurements z and the
estimated measurements ẑ, i.e.,

r = z − ẑ = (I −K) z. (8)

The largest normalized residual (LNR) test is to compare the
L2 norm ‖r‖2 (gross errors or bias) with a predetermined
threshold τ to identify bad measurements (outliers). Precisely,
if ‖r‖2 > τ , then bad measurements are assumed to exist,
otherwise z is taken as normal measurements. The indepen-
dent random measurement errors are assumed to follow the
normal distribution with zero mean. Then, though mathemati-
cal derivation, ‖r‖22 follows the chi-square distribution with
(m− n) degrees of freedom, i.e., χ2

m−n (recall that state
estimation is only determined by n independent equations).
According to [70, Ch. 8], τ is predetermined by a hypothesis
test Pr

{
‖r‖22 ≥ τ2

}
= α with a significance level (false

alarm probability) α. In other words, ‖r‖2 > τ detects bad
measurements with a false alarm probability α.

Let za = z+a, where a ∈ Rm×1 denotes the attack vector
(malicious data injected into meter measurements). In other
words, za is the bad measurements with the malicious data a.
The biased measurement residual of za is

ra = za − ẑa = (z + a)−K (z + a) (9)
= (z − ẑ) + (I −K)a = r + (I −K)a.

In general, if the malicious data a is unstructured, the attack
vector is likely to be detected by BDD. However, some well-
structured attack vectors, as revealed in [19], could circumvent
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BDD without being detected. For example,

a = Hc, (10)

where c ∈ Rn×1 is an arbitrary non-zero vector. The reason
is as follows. Let x̂a denote the estimate of x using za, i.e.,

x̂a = Eza = E (z + a) = Ez +EHc = x̂+ c. (11)

Then, the L2 norm of the measurement za residual is

‖ra‖2 = ‖za −Hx̂a‖2 = ‖(z + a)−H (x̂+ c)‖2 (12)
= ‖(z −Hx̂) + (a−Hc)‖2 = ‖z −Hx̂‖2 = ‖r‖2 .

That is, the derived measurement residual is the same as that
without malicious data a. Thus, za will not be detected as
long as the original measurements z can pass BDD.

FDI attacks are referred to as those with the attack vector
a = Hc. Since FDI attacks target data integrity, they are
different from traditional cyber attacks that target data avail-
ability or confidentiality, such as denial-of-service, jamming,
flooding, and eavesdropping attacks. Besides, FDI attacks can
circumvent BDD such that the injection measurements will not
be detected. Thus, they are different from other types of at-
tacks on injection measurements where the unstructured attack
vector is likely to be detected by BDD. Since the control center
cannot distinguish x̂a from x̂, FDI attacks are also referred to
as “unobservable” attacks. Under such attacks, the biased x̂a

is mistaken by the system operator as the valid value of the
estimated state. That is, the adversary could circumvent BDD
and inject any bias c into state estimation x̂. To successfully
launch FDI attacks, the attacker requires access to the H
matrix that is configured by the power network topology and
transmission line susceptance. Besides, the adversary needs
the capability to manipulate meter measurements, by either
compromising the device itself or tampering with the data
reported from the meter to the control center.

FDI attacks on the DC state estimation can be similarly
extended to the AC state estimation. If the attack vector a is
well-structured as

a = h (x̂+ c)− h (x̂) , (13)

then, the L2 norm of the measurement za residual is

‖ra‖2 = ‖za − h (x̂a)‖2 = ‖(z + a)− h (x̂+ c)‖2
= ‖z − h (x̂)‖2 = ‖r‖2 .

(14)

Thus, za could circumvent BDD without being detected.

B. Constructing FDI Attacks

The concept of FDI attacks was first developed in 2009
by Liu et al. [19], [20]. The authors investigate two practical
conditions: One is that the adversary is restrained to compro-
mise certain meters, while the other is that the attack budget is
limited. In both scenarios, it is demonstrate that the adversary
can figure out FDI attack vectors in an efficient way. This
research indicates that in face of the potential FDI attacks, the
existing protection of smart grid need to be revisited.

The adversary has to manipulate a number of meter mea-
surements simultaneously to stealthily launch FDI attacks.
Obviously the more state variables the adversary intends to

bias, the more meter measurements he/she has to manipulate.
In the first scenario, Liu et al. [19], [20] let K denote the
set of k specific meters (0 < k < m) that the adversary can
compromise. To launch FDI attacks successfully, the adversary
has to construct an attack vector a = Hc restrained by

ai = 0 ∀i /∈ K. (15)

If k is too small, then possibly the attack vector a does not
exist. However, the authors prove that as long as the adversary
can compromise k ≥ m − n + 1 meters, the attack vector a
could always be figured out. In the second scenario, Liu et al.
[19], [20] consider that the attack budget of the adversary is
limited and he/she could manipulate at most k meters. Such an
attack vector is called k-sparse, with up to k nonzero entries.
In both scenarios, the authors provide detailed guidance on
constructing attack vectors, to launch FDI attacks on random
or targeted state variables without being detected. Simulation
results demonstrate that by compromising only four meters,
the adversary can construct a random FDI attack vector, since
the power system matrices H are often sparse. Besides, by
compromising at most 27 meters in the IEEE 300-bus test
case, the adversary can insert any bias into any target state
variable.

Two security indices are proposed by Sandberg et al. [21]
for state estimation in smart grid. These indices quantify
the least effort required to launch stealthy deception attacks
without triggering bad-data alarms. The authors show that
measurement redundancy improves security indices in terms
of large attack vector magnitudes, but the attack vector can be
still relatively sparse.

Since to just compromise one single meter will typically
trigger bad-data alarms, Sandberg et al. [21] investigate how
many, and by how much, other meters need to be cooperatively
compromised to avoid being detected. A meter i that requires
more and severer collusion to be compromised in stealth is
consider more secure, denoted by higher security indices. For
the first security index αi (minimum sparsity), the authors
consider how sparse the attack vector a = Hc could be to
compromise the meter i without triggering alarms:

αi = min
c

‖Hc‖0 (16)

s.t. ai = hic = 1, (17)

where ‖Hc‖0 means the number of nonzero entries, and hi

for the ith row of H . The constraint ai = 1 means that the
attack goal is to inject one unit malicious data into the meter
i’s measurement. Such a security metric is used by Teixeira et
al. [22] to show limitations of linear attack policies on the AC
power flow model. The experiment results indicate that infor-
mation concerning operating conditions and saturation limits is
needed for successful stealthy deception attacks on nonlinear
model. The other security index βi (minimum magnitude)
is introduced for a tradeoff between sparsity and magnitude
of attack vectors. The L1 norm of a denotes the metric of
total malicious data injected into meter measurements z. The
minimal magnitude attack vector a = Hc that compromises
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the meter i in stealth is based on convex optimization:

βi = min
c

‖Hc‖1 (18)

s.t. ai = hic = 1. (19)

The convex optimization framework is easy to extend includ-
ing multiple attack goals and model derivations.

Teixeira et al. [23] propose a generalized approach to
construct deception attacks on state estimation in smart grid,
with specific target constraints. The attack vector a = Hc is
solved by

γi = min
c

‖Hc‖p (20)

s.t. ai = hic = 1, (21)

which corresponds to the “least-effort” attack in p-norm sense.
For example, for the case of p = 0, the adversary constructs
an attack vector with minimal sparsity, i.e., the number of
meters that the attacker needs to manipulate is minimum,
corresponding to the security index αi in [21]. Teixeira et
al. [23] also consider scenarios when the adversary only has
limited knowledge of the power system, e.g., a partial model
or an out-dated (perturbed) model. The authors demonstrate
that the more knowledge of the power system the adversary
has, the more severe stealthy deception attacks he/she could
launch without being detected.

Dán et al. [29] consider clusters of meters at the same attack
cost for the adversary to compromise. Similar to the security
index αi in [21], the minimum cost FDI attack on the meter
i is to solve the problem:

αi = min
c

‖Hc‖0 (22)

s.t.

{
ai = hic = 1

ak = hkc = 0 ∀k ∈ P,
(23)

where P is the set of meters to be protected. The solution can
be calculated if the adversary knows the network topology
graph of the power system.

Kosut et al. [32] investigate two different regimes of FDI
attacks on state estimation in smart grid. The strong attack
regime is that a sufficiently large number of meters are com-
promised to guarantee the power network state is unobservable
to the system operator. For the strong attack regime, the graph
theoretic method is leveraged to determine the smallest set
of meters that the adversary needs to manipulate to make
the power system unobservable. The problem is formulated
by the submodular graph function minimization, which could
be efficiently tackled. The number of meters that the attacker
manipulates in the weak attack regime is smaller than that
in the strong attack regime. The problem is addressed by the
adversary from a decision theoretic point of view [33]–[35].
The tradeoff between reducing the detection probability and
raising the state estimation error is investigated. Based on the
minimum energy leakage, the authors construct a balanced
attack vector for the adversary.

The aforementioned two attack regimes are distinguished
by the number k∗ (security index) of meters that the adversary
need compromise at least to launch an “unobservable” attack.

Equivalently, for certain c,

k∗ = min
a

‖a‖0 (24)

s.t. a = Hc, (25)

where ‖a‖0 means the number of nonzero entries in a (k
in the k-sparse attack vector a). Kosut et al. [32] show
the equivalence between unobservable attacks and network
unobservability. That is, for the k-sparse unobservable attack
vector a, the power network will become unobservable when
the k compromised meters are removed; or the (m− k) × n
submatrix of H will no longer be of full column rank. Based
on the equivalence, unobservable attacks can be constructed
under the AC power flow model, though much harder. Kosut
et al. [32] determine the minimum number k∗ to launch
unobservable attacks though the graph theoretic method. Based
on graph theoretic model, if let V denote the set of buses and
E for the set of transmission lines, then an undirected graph
(V, E) can represent a power system. For a subset of branches
A ⊂ E , let g (A) denote the set of meters on A’s branches
and adjacent buses. In the graph (V, E\A), let h (A) denote
the number of interconnected modules. Let |·| denote the set
cardinality, then the security index k∗ can be calculated by

k∗ = min
A⊂E

[
|g (A)| − h (A) + 2

]
. (26)

For the weak attack regime, the adversary’s optimal attack is
to maximize estimation error while limit detection probability.
The minimum residue energy attack is proposed to approxi-
mate the tradeoff problem.

III. IMPACTS OF FDI ATTACKS ON ELECTRICITY MARKET

This section will show and demonstrate the impacts of
FDI attacks on electricity market from the perspective of the
adversary.

A. Electricity Market Operations

The deregulated electricity market is operated by the in-
dependent system operators (ISOs), like ISO-New England
and PJM, which are the third-party regulators independent of
power suppliers and users. To determine the market-clearing
electricity price is one of the major responsibilities of ISOs.
Currently, the locational marginal price (LMP) method is
widely adopted by ISOs to calculate day-ahead/real-time price
and manage transmission congestion [72]. A unified Ex Ante
and Ex Post method is primarily used to calculate the real-
time LMP based on the DC lossless optimal power flow (OPF)
model [73]–[75].

1) Ex Ante Dispatch: The Ex Ante LMP and power gen-
eration dispatch instruction are determined by the real-time
dispatch software of ISOs – unit dispatch system (UDS). The
Ex Ante LMP gives generators an incentive to follow the gen-
eration dispatch instruction to avoid transmission congestion.
The Ex Ante dispatch usually takes place 5 minutes prior to
real time, by solving a security constrained economic dispatch
(SCED) problem, since the OPF solution needs to satisfy
transmission security constraint. Ex Ante Dispatch:
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min
s

n∑
j=1

cjsj (27)

s.t.



n∑
j=1

sj =
n∑

j=1
dj (λ)

fmin
l ≤

n∑
j=1

Glj (sj − dj) ≤ fmax
l ∀l ∈ L

(
µmin
l , µmax

l

)
smin
j ≤ sj ≤ smax

j ∀j ∈ N
(
νmin
j , νmax

j

)
,

(28)

where sj is the power generation at bus j, cj is the cor-
responding generation cost, dj is the forecasted load at bus
j, Glj is the shift factor (with respect to the reference bus)
from bus j to branch l, fmin

l and fmax
l are the power flow

limits for transmission line l, smin
j and smax

j are the lower
and upper bounds of the power generation at bus j, and
s = [s1, s2, . . . , sn]

ᵀ. The objective function is to minimize
the aggregated generation cost, and the constraints are supply-
demand balance constraint, transmission constraint, and gener-
ation constraint, respectively. The Lagrangian multipliers (dual
variables) λ, µmin

l , µmax
l , νmin

j , νmax
j are associated with

each constraint, respectively. It has been well known that the
optimal solution must satisfy the Karush-Kuhn-Tucker (KKT)
conditions [76, Sec. 5.5.3]. The Ex Ante LMP is byproduct of
the optimal solution. Based on marginal cost pricing theory,
the Ex Ante LMP is interpreted as shadow prices [73], [74]

LMPEA
j = λ∗ +

∑
l∈L

µmin ∗
l Glj −

∑
l∈L

µmax ∗
l Glj

= cj − νmin ∗
j + νmax ∗

j ,

(29)

where λ∗ is shadow price of power generation at the reference
bus, µmin ∗

l and µmax ∗
l are shadow (congestion) prices associ-

ated with transmission constraint. The power generation dis-
patch command S∗ is assigned to all generators as a reference
to follow. The generator at bus j will receive LMPEA

j × s∗j
revenue.

2) Ex Post Dispatch: Based on state estimation at the end
of each interval, ISO estimates ŝj and d̂j for the power
generation and load at bus j. Further more, ISO computes
the estimated power flow f̂l =

∑n
j=1Glj

(
ŝj − d̂j

)
through

each transmission line l. If the estimated power flow exceeds
the flow limits, then the branch is considered to be congested.
Let Ĉ− and Ĉ+ denote the sets of the estimated negatively and
positively congested branches respectively [37], [41]Ĉ

− ,
{
l : f̂l ≤ fmin

l

}
Ĉ+ ,

{
l : f̂l ≥ fmax

l

}
.

(30)

The Ex Post LMP is produced by the LMP calculator, based
on the estimated system operating condition. The objective is
to provide generators with the enhanced incentive to follow the
power generation dispatch instruction to alleviate transmission
congestion. The estimated system state is used as a starting
point for solving an incremental economic dispatch (IED)

program in a small range around. Ex Post Dispatch:

min
∆s

n∑
j=1

cj ×∆sj (31)

s.t.



n∑
j=1

∆sj = 0 (λ)

n∑
j=1

Glj ×∆sj ≥ 0 ∀l ∈ Ĉ−
(
µmin
l

)
n∑

j=1

Glj ×∆sj ≤ 0 ∀l ∈ Ĉ+ (µmax
l )

∆smin
j ≤ ∆sj ≤ ∆smax

j ∀j ∈ N
(
νmin
j , νmax

j

)
,

(32)

where ∆sj is the incremental power generation at bus j,
∆smin

j and ∆smax
j are the lower and upper bounds for

incremental power generation at bus j (e.g., approximate-
ly 2 MW down and 0.1 MW up [75]), and ∆s =
[∆s1,∆s2, . . . ,∆sn]

ᵀ. Similarly, the Ex Post LMP is inter-
preted as shadow prices [73], [74]

LMPEP
j = λ̂+

∑
l∈Ĉ−

µ̂min
l Glj −

∑
l∈Ĉ+

µ̂max
l Glj

= cj − ν̂min
j + ν̂max

j .

(33)

To simplify the notations, define µ̂min
l = 0 for ∀l /∈ Ĉ−,

µ̂max
l = 0 for ∀l /∈ Ĉ+, µ̂min =

[
µ̂min

1 , µ̂min
2 , . . . , µ̂min

L

]ᵀ
, and

µ̂max = [µ̂max
1 , µ̂max

2 , . . . , µ̂max
L ]

ᵀ. Then, the Ex Post LMP
can be simplified as

LMPEP
j = λ̂+Gᵀ

j

(
µ̂min − µ̂max

)
, (34)

where Gj is the jth column of the shift factor matrix G. By
complementary slackness, the Ex Post LMP can be viewed as
an increasing step function of ∆ŝj :

LMPEP
j =


cj − ν̂min

j if ∆ŝj = ∆smin
j

cj if ∆smin
j < ∆ŝj < ∆smax

j

cj + ν̂max
j if ∆ŝj = ∆smax

j .

(35)

The generator at bus j will receive LMPEP
j ×∆ŝj revenue.

If each generator exactly follows the instruction of genera-
tion dispatch and the load forecast is accurate, there would be
no congested branches and thus the Ex Ante LMP is identical
to the Ex Post one [72]. Note that the Ex Post LMP is totally
determined by the estimated transmission congestion pattern,
i.e., Ĉ ,

{
Ĉ−, Ĉ+

}
. Therefore, if the adversary has the

ability to fabricate a biased transmission congestion pattern,
he/she could manipulate electricity price at a specific bus, and
further make financial profit from launching attacks. The above
electricity market operations are based on state estimation, and
thus vulnerable to FDI attacks, which cannot be detected by
the system operator.

B. Impacts of FDI Attacks on Electricity Market

The concept of LR attacks was first introduced in 2011 by
Yuan et al. [30], [31], where only load bus power injection and
branch power flow measurements are attackable. The reason
is that the generation subsystems are generally well protected
and generator output measurements can be easily verified
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by direct communications between power plants and the
control center, while load and power flow meters are widely
distributed and more vulnerable to cyber attacks. For easy of
presentation, we rearrange z , (zs; zd; zf ), a , (as;ad;af ),
and H , (Hs;Hd;Hf ), in a certain ordering of rows.
The subscript s denotes the part corresponding to generation
buses, the subscript d denotes the part corresponding to load
buses, and the subscript f denotes the part corresponding
to branches. In addition to a = Hc, LR attacks require
as = 0 since generation bus power injection measurements
cannot be attacked, and 1ᵀad = 0 to guarantee the equality of
power generation and consumption. The effect is actually load
redistribution, i.e., increasing load at some buses and reducing
load at other buses while maintaining the total load unchanged.

The impact of LR attacks on electricity market operations is
quantitatively modelled by the raised operation cost, resulted
from a fake SCED. From the adversary’s perspective, two
different attack objectives based on the damage analysis are
proposed: (i) immediate and (ii) delayed LR attacks. Imme-
diate attacks aim at maximizing the operation cost instantly;
while delayed attacks target at maximizing the operation cost
after the overloaded transmission lines trip. For the immediate
attack objective, the most damaging LR attacks are character-
ized by a maximin bi-level framework between the attacker
and defender, and solve by the KKT-based method.

Xie et al. [36], [37] show that the adversary can launch FDI
attacks for continuous financial arbitrage, e.g., virtual bidding
at chosen buses. In the day-ahead market, the adversary
buys and sells virtual power P at bus j1 and j2 at price
LMPEA

j1
and LMPEA

j2
, respectively. In the real-time market,

after injecting attack vector a to manipulate nodal prices, the
adversary sells and buys virtual power P at bus j1 and j2 at
price LMPEP

j1
and LMPEP

j2
, respectively. From this virtual

bidding, the profit that the adversary could make is(
LMPEP

j1 − LMPEP
j2 + LMPEA

j2 − LMPEA
j1

)
P. (36)

Firstly, in the day-ahead market, LMPEA
j2

> LMPEA
j1

can be easily satisfied. Secondly, if define two sets L1 ,
{l : Glj1 > Glj2} and L2 , {l : Glj2 > Glj1}, to let

LMPEP
j1 − LMPEP

j2 = (Gj1 −Gj2)
T (
µ̂min − µ̂max

)
=
∑
l∈L1

(Glj1 −Glj2)
(
µ̂min
l − µ̂max

l

)
+∑

l∈L2

(Glj2 −Glj1)
(
µ̂max
l − µ̂min

l

)
>0, (37)

heuristically, one sufficient condition is f̂l < fmax
l (i.e.,

µ̂max
l = 0) for ∀l ∈ L1 and f̂l > fmin

l (i.e., µ̂min
l = 0)

for ∀l ∈ L2. Under an attack vector a, the biased power
flow estimation is f̂a = HfEza, where Hf is part of H
corresponding to power flow. The authors define that an attack
vector a is called δ-profitable if{

f̂l ≤ fmax
l − δ ∀l ∈ L1

f̂l ≥ fmin
l + δ ∀l ∈ L2.

(38)

A large value of the margin δ could ensure the sufficient con-
dition holds with large probability. The biased measurement

residual under an attack vector a is ra = r + (I −K)a.
By triangle inequality, ‖ra‖2 ≤ ‖r‖2 + ‖(I −K)a‖2. The
authors also define that an attack vector a is referred to as
ε-feasible when

‖(I −K)a‖2 ≤ ε. (39)

An attack with a smaller ε will more likely bypass BDD. From
the adversary’s perspective, the optimal attacking strategy is
to determine an ε-feasible attack vector a with the maximum
margin δ, or a δ-profitable attack vector a with the minimum
ε. The authors consider two possible scenarios: (i) the subset
of compromised meters is fixed; (ii) the total number of
compromised meters is upper bounded. These scenarios are
formulated as or relaxed to convex optimization problems and
can be efficiently solved.

Jia et al. [38], [39] consider making profit for the generator
at a specific bus by launching FDI attacks on the real-time
market, where the attacker can manipulate electricity price at
a specific bus by fabricating a biased transmission congestion
pattern. The real-time gain of the generator at bus j is
LMPEP

j ×∆ŝj . Under an attack vector a, the biased power
generation estimation is ŝa = HsEza, where Hs is part of
H that corresponds to power generation. The adversary should
balance between reducing the probability of being detected and
increasing the profit. Take the expected profit as the goal:

max
a

[
1− Pd (a)

]
LMPEP

j (HsE)j a, (40)

where (HsE)j is the jth row of HsE, and the detection
probability Pd (a) is a function of a (in the weak attack regime
[32]). The optimal attacking strategy is obtained by optimizing
the quasi-concave objective function.

Jia et al. [40] further consider three different scenarios: the
adversary may have full, partial or zero knowledge of real-
time measurements. Bayesian formulation is adopted in the
analysis. The distribution of the system state is known to the
adversary, treated as the priori knowledge. Based on the full,
partial or zero real-time measurements, the attacker will make
the posteriori estimation of the system state, and then make
the attack decision. Since a state estimate x̂ is corresponding
to a transmission congestion pattern Ĉ, and thus a real-time
price LMPEP

j (Ĉ) at bus j. Let x(Ĉ) denote the region of
system states that make the transmission congestion pattern as
Ĉ. The available set of transmission congestion patterns that
the attack’s detection probability is less than a threshold P̄d,
is denoted by Γ , {Ĉ : ∃a, x̂a ∈ x(Ĉ), Pd (a) ≤ P̄d}. The
desirable transmission congestion pattern is chosen as

Ĉ∗ = arg max
Ĉ∈Γ

LMPEP
j (Ĉ), (41)

and the optimal attacking strategy is the arbitrary one that
makes the transmission congestion pattern as Ĉ∗.

Kosut et al. [32] investigate how FDI attacks have impact on
electricity market operations, since the biased state estimation
result will be used for economic dispatch without being detect-
ed. In the day-ahead market, the generator at bus j will receive
LMPEA

j s∗j revenue. In the real-time market, the generator at
bus j will receive LMPEP

j ×∆ŝj revenue. Note that ∆ŝj is
calculated based on state estimation, and thus may be influ-
enced by the adversary. Under an attack vector a, the biased
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power generation estimation is ŝa = HsEza, where Hs is
part of H corresponding to power generation. The biased real-
time gain of the generator at bus j is LMPEP

j (HsE)j a,
where (HsE)j is the jth row of HsE. In such as way the
adversary can inject the attack vector a to potentially make
financial profit.

Bi et al. [41] show that by fabricating a fake transmission
congestion pattern, FDI attacks can manipulate real-time price
at arbitrary target bus. They further show how to determine an
effective transmission congestion pattern which only biases
the estimated state a little. LR attacks, a special type of FDI
attacks that induce fake estimation of load, are also leveraged
to realize the desirable transmission congestion pattern. Both
resource constrained and unconstrained “neighborhood” LR
(NLR) attacks are derived, which also have impact on future
electricity market.

Suppose that the attack goal is to decrease the electricity
price at bus j. Since the Ex Post LMP LMPEP

j is an
increasing step function of ∆ŝj , an rational adversary should
launch attacks when ∆ŝj = ∆smax

j (i.e., when LMPEP
j =

cj + ν̂max
j ). Thus, an effective transmission congestion pattern,

denoted by
{
Ĉ−a , Ĉ+

a

}
under an attack vector a, should cause

the ISO to yield biased ∆ŝj ∈
[
∆smin

j ,∆smax
j

)
. This is

obtained by Ex Post dispatch under the following constraints:

n∑
j=1

∆sj = −β
n∑

j=1

Glj ×∆sj ≥ −Gljβ ∀l ∈ Ĉ−a
n∑

j=1

Glj ×∆sj ≤ −Gljβ ∀l ∈ Ĉ+
a

∆smin
j ≤ ∆sj ≤ ∆smax

j ∀j ∈ N ,

(42)

where β ∈
[
∆smin

j ,∆smax
j

)
is a tuning coefficient. Intuitively,

obtaining a feasible
{
Ĉ−a , Ĉ+

a

}
requires enumerating all possi-

ble combinations. Bi et al. [41] propose an “add-then-remove”
heuristic algorithm to solve the problem at a low computational
cost. Then the authors realize the desirable transmission con-
gestion pattern through LR attacks. The biased power flow
estimation under LR attacks is f̂a = HfEza, where Hf

is part of H corresponding to power flow. The goal of an
adversary is to realize the desirable transmission congestion
pattern while inserting a little bias into the estimated state,

min
a

‖Ea‖2 (43)

s.t.


a = Hc

f̂l ≤ fmin
l ∀l ∈ Ĉ−a

f̂l ≥ fmax
l ∀l ∈ Ĉ+

a

fmin
l ≤ f̂l ≤ fmax

l ∀l ∈ L\Ĉ+
a \Ĉ−a .

(44)

Furthermore, the authors propose a concept of cost-aware
NLR attacks, where the adversary’s capacity is constrained to
manipulate the power load measurements at the target bus and
those within one hop, and its k-hop power flow measurements.
These formulations are convex optimization problems which
can be easily solved.

IV. DEFENDING AGAINST FDI ATTACKS

From the perspective of the system operator, this section
will present and analyze countermeasures against FDI attacks.

Bobba et al. [44] explore how to detect FDI attacks: One
way is to secure basic measurements which are selected
strategically, while the other way is to verify state variables
independently which are selected strategically. Specifically, the
authors show that protecting basic measurements is sufficient
and necessary for the detection of FDI attacks. The protection
on meter measurements includes both physical and software
methods, for example, guard patrolling, video monitoring,
tamper-proof communication systems, sophisticated authenti-
cation protocols, and asymmetric encryption mechanisms, etc.

To detect FDI attacks in smart grid, a naive approach is
to protect all meter measurements from being manipulated;
which is, however, not cost-effective. Let P denote the set of
p protected meters. Bobba et al. [44] show that it is necessary
but not sufficient to protect at least n meters for the detection
of FDI attacks. The possibility to reduce such burden is to
independently verify values of certain state variables. One way
is through the deployment of PMUs, which can directly mea-
sure the bus voltage phasor (including magnitudes and phase
angles) with GPS timestamp. Note that PMUs may have the
vulnerability since the GPS signal can be spoofed [77]–[81].
The results in [82]–[84] are some existing countermeasures
against GPS spoofing attacks on PMUs in smart grid. Let Q
denote the set of q state variables that can be verified by PMUs.
To launch FDI attacks stealthily, the adversary has to construct
an attack vector a = Hc restrained by{

ai = 0 ∀i ∈ P
cj = 0 ∀j ∈ Q.

(45)

The defender needs to identify the set P of protected meter
measurements, and the set Q of verifiable state variables,
such that the adversary cannot find any possible attack vector.
Ideally, the smallest such sets are desirable. Bobba et al.
[44] first try a straightforward brute-force approach to identify
optimal P and Q, by searching through Cp

mC
q
n combinations

for all possible choices of p and q. This approach is reducible
to the hint set problem which is NP-complete. Bobba et
al. [44] then provide an alternative approach by leveraging
the concept of basic measurements that ensure observability
of a power network [70, Ch. 7]. The conclusion is that
without PMUs, it is sufficient and necessary to protect all
basic measurements for the detection of FDI attacks; while
if there are q PMUs, it is sufficient and necessary to protect a
subset of basic measurements corresponding to the remaining
(n− q) state variables to defend against FDI attacks.

Dán et al. [29] propose greedy algorithms for perfect and
partial countermeasures against FDI attacks. Perfect defense
means no FDI attacks are possible. Due to so many meters in
power systems, to make all devices encrypted overnight is not
possible. Since the defense budget π might not be sufficient for
perfect countermeasures, the control center would consider to
protect a subset P of meters to maximize the increased system
security. The authors consider two possible protection metrics:
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(i) maximizing the minimal attack cost among all meters:

max
P

min
i∈M

αi (46)

s.t. c (P) ≤ π, (47)

where c (P) denotes the cost of protecting the set P of meters;
(ii) maximizing the average attack cost of meters:

max
P

1

m

∑
i∈M

αi (48)

s.t. c (P) ≤ π. (49)

These protection strategies could be heuristically computed by
greedy algorithms.

Kosut et al. [32] consider two regimes of FDI attacks on s-
tate estimation in smart grid, where for the weak attack regime,
the number of meters that the attacker manipulates is smaller
than that in the strong attack regime. The problem is addressed
by the adversary from a decision theoretic point of view [33]–
[35]. For the system operator, a generalized likelihood ratio
test (GLRT) detector is devised with incorporation of historical
data. The Bayesian formulation can take advantage of priori
information to preserve and trace the likely state of the system.
Compared with the J (x̂) detector, numerical simulations show
that the proposed GLRT detector is asymptotically optimal in
terms of detection performance. Kosut et al. [32] also prove
that the GLRT detector is the same as the LNR detector under
the case of only one compromised meter.

Kim et al. [45] propose strategic countermeasures against
FDI attacks on the power grid based on linearized measure-
ment models. They firstly propose a new low-complexity
attacking strategy. Then, a greedy approach is designed to
protect a number of meter measurements for defense. Finally
they also develop the other greedy approach to promote the
PMU deployment to defend against such attacks.

Giani et al. [46], [47] consider unobservable data integrity
attacks on power systems. Firstly an efficient approach is pre-
sented to obtain all sparse attacks where a modest number of
meter measurements are compromised. Known-secure PMUs
are used as countermeasures against such cyber attacks. How
to find the minimum number of necessary PMUs at carefully
chosen buses is finally analyzed for defense.

Bi et al. [52] propose countermeasures against FDI attacks
by protecting critical state variables. To this end, the authors
carefully select a minimum number of meter measurements to
be protected. Both optimal and the complexity-reduced subop-
timal approaches are provided to obtain the defense objective
at the minimum cost. After characterizing such a problem into
a Steiner tree in graph theory, graphical methods are leveraged
to select the minimum number of meter measurements [53].
In addition, by jointly considering the conventional protecting
meter measurements and the covert topological information,
they further propose a mixed protection strategy, in case that
either of them fails to obtain the defense objective [54], [55].

V. FUTURE RESEARCH DIRECTIONS

From the above, we have reviewed extensive literatures on
FDI attacks on state estimation in power systems, and their

impacts and defense. We now categorize the aforementioned
literatures as follows. In Table I, we classify existing FDI
attacks and their defense, including literatures merely on
attacks, merely on defense/detection/countermeasures, or both
on attack and defense. In Table II, we classify existing FDI
attacks based on their associated impacts on smart grid. For
example, some FDI attacks target DC or AC SCADA to
introduce arbitrary errors into power system state estimation,
while others target electricity market to manipulate electric-
ity price, resulting in potential financial loss. In Table III,
we classify existing countermeasures against FDI attacks, in
terms of protecting meter measurements, PMU placement for
securing state variables, as well as jointly protecting meter
measurements together with state variables.

TABLE I
CLASSIFICATION OF FDI ATTACKS AND THEIR DEFENSE

Types References

FDI attacks [19]–[28], [36]–[43]
Defense/detection/countermeasures [44], [52]–[66]
Both attack and defense [29]–[35], [45]–[51]

TABLE II
CLASSIFICATION OF FDI ATTACKS BASED ON THEIR IMPACTS

Target Impact References

SCADA (DC model) biased state estimation [19]–[21], [24], [25]
[27]–[29], [45]–[51]

SCADA (AC model) biased state estimation [22], [23], [26], [39]
Electricity market potential financial loss [30]–[43]

TABLE III
CLASSIFICATION OF COUNTERMEASURES AGAINST FDI ATTACKS

Countermeasure References

Protecting meter measurement [29]–[35], [48]–[55], [60]–[66]
PMU for securing state variable [46], [47], [56]–[59]
Protecting measurement and state [44], [45]

Although FDI attacks, impacts, and defense have already
drawn a large quantity of attention from the academic and
research community, this topic is still worth exploring in
face of certain unsolved issues. The potential future research
directions as well as possible challenges are listed as below.

Firstly, most existing works on FDI attacks and defense are
employing the approximated DC power flow model, that is
easy for the adversary and system operator due to the linear
approximation. The AC power flow model is comprised of
nonlinear equations and includes both the active and reac-
tive power, which is more complicated and time consuming.
However, the AC power flow model is more precise than the
DC model, especially for the distribution subsystem. Currently,
there have been relatively rare studies on FDI attacks based on
the AC power flow model. Driven by the advance in nonlinear
optimization and super computing, the research on the AC



10 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. X, MONTH 2016

TABLE IV
SUMMARY OF IMPORTANT CONCEPTS IN FDI ATTACKS AND DEFENSE ON POWER SYSTEM STATE ESTIMATION

Concept Mathematical description Description or explanation

AC power flow model z = h (x) + e h (x) is nonlinear measurement function of x
DC power flow model z = Hx+ e H is measurement Jacobian matrix
DC State estimation x̂ = Ez based on WLS criterion
DC State estimator E , (HᵀWH)−1 HᵀW “pseudo-inverse” of H since EH = I

Estimated measurement ẑ = Hx̂ = Kz K , HE is “hat matrix”
Measurement residual r = z − ẑ r = (I −K)z
Bad measurement za = z + a a is attack vector (malicious data)
Biased state estimation x̂a = Eza x̂a = x̂+Ea
Biased estimated measurement ẑa = Hx̂a ẑa = Kza
Biased measurement residual ra = za − ẑa ra = r + (I −K)a
FDI attack on DC state estimation a = Hc ra = r since (I −K)a = 0
LR attack on DC state estimation

(
as;ad;af

)
= Hc with as = 0 and 1ᵀad = 0 s: generation buses, d: load buses, f : branches

Security index (minimum sparsity) αi = min
c
‖Hc‖0 s.t. ai = hic = 1 hi is ith row of H

Security index (minimum magnitude) βi = min
c
‖Hc‖1 s.t. ai = hic = 1 hi is ith row of H

Security index (“least-effort” in p-norm sense) γi = min
c
‖Hc‖p s.t. ai = hic = 1 hi is ith row of H

Biased power generation estimation ŝa = HsEza Hs is part of H w.r.t. power generation
Biased power flow estimation f̂a = HfEza Hf is part of H w.r.t. power flow

power flow model will become a potential direction. On the
other hand, most existing researches focus on the centralized
FDI attack and defense, but works on the distributed approach
is less. However, the centralized FDI attacks require that the
attacker knows the information of the network topology and
configuration of the power system. Besides, for the large-scale
power grid, the centralized FDI countermeasures may result
in incomplete and inefficient detection. Thus, the research on
distributed FDI attack and defense will be gradually necessary.

Secondly, the interplay between the attacker and defender
has not been well investigated in the context of cyber security
in smart grid. From the game theoretic point of view, the
defender takes the first action, by deploying defense resources
to secure the power system as much as possible; and the
adversary takes the second action, by attacking on the weakest
target of the system. For simplicity, the two-player interaction
can be modelled by a static zero-sum game. One interesting
thing is that the attacker may not, partially, or fully know
the defender’s strategy, but the defender has zero knowledge
of the attacker’s strategy beforehand. How the information
asymmetry will have impact on the FDI attack and defense
performance is a problem worth studying. Besides, considering
the scenario of multiple defenders and multiple attackers,
some hierarchical games, such as Stackelberg games, shall be
taken advantage of to provide insight into the complicated
interactions. Furthermore, if we view the attack-defense in-
teraction more realistically as a continuous process instead of
only a one-time event, some dynamic games, such as Markov
games, shall be leveraged to characterize the transient state
evolution process. The related works in the area of power
system physical security can be based on, but the transition
is not trivial, since cyber attacks are quite different from the
traditional physical attacks.

Finally, most existing countermeasures against FDI attacks
have assumed that the adversary cannot compromise some
meter measurements no matter how powerful he/she is. Such
an assumption is impractical for realistic situations. To be
more realistic, assume that whether or not the adversary can

compromise a meter depends on how much protection the
defender deploys on the meter. In this viewpoint, one direction
is to devise the cost-efficient protection approach to defend the
power system against cyber attacks. Another direction extends
to determine protecting which meters and deploying how much
protection on them, such that any state variable cannot be
modified by the adversary. Although some pioneering works
have made a trial in this context, more efforts are still needed
to shed light on immunizing power systems from FDI attacks
in practical applications.

VI. CONCLUSION

Recently, FDI attacks have emerged as a new type of cyber
attacks threatening state estimation in power systems. Signif-
icant research efforts have been made in constructing and/or
defending against such attacks in the context of cyber security
in smart grid. To unify the knowledge, a literature overview of
FDI attacks, impacts, and defense is presented in this paper.
Specifically, this overview includes three folds: 1) constructing
FDI attacks; 2) impacts of FDI attacks on electricity market;
and 3) defending against FDI attacks. One direction is from
the perspective of the adversary, to explore the problem of
constructing FDI attacks, and further show their associated
impacts on electricity market operations. Another direction
is from the perspective of the system operator, to present
countermeasures against FDI attacks. From the overview of
existing works, we also outline some future research directions
such as distributed detection based on the AC power flow
models, attack-defense game interactions, and more realistic
assumptions. To conclude, some aforementioned important
concepts in the context of FDI attacks, impacts, and defense
are summarized in Table IV. However, due to so many research
activities in these areas, we might have missed some literatures
and would like to apologize for that.
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