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Fast Distributed Demand Response with Spatially-
and Temporally-Coupled Constraints in Smart Grid

Abstract—As the next generation power grid, smart grid
is characterized as an informationized system, and demand
response is one of its important features to deal with the ever
increasing peak energy usage. However, the supply capacity and
required demand make the demand response problem with both
spatially- and temporally-coupled constraints which, to the best
of our knowledge, has not been thoroughly investigated in a
distributed manner. The complexity lies in how to guarantee
privacy and convergence of distributed algorithms. Aiming at this
challenge, in this paper, we firstly propose a distributed algorithm
which is based on dual decomposition and does not require each
user to reveal his/her private information. Then, the convergence
analysis is conducted to provide guidance on how to choose the
proper step size; through which, we notice that the convergence
speed of the subgradient projection method is not fast enough,
and it is highly dependent on the choice of the step size. Therefore,
to increase the convergence rate of the distributed algorithm,
we further propose a fast approach based on binary search.
Finally, the distributed algorithms are illustrated by numerical
simulations, and the extensive comparison results validate the
better performance of the fast approach.

Index Terms—Convergence, demand response, distributed al-
gorithm, smart grid, spatially-/temporally-coupled constraint.

I. INTRODUCTION

SMART grid has been widely regarded as the informa-

tionization of the traditional power grid, which leverages

information and communications technology to fully upgrade

the energy generation, transmission (including substation),

and distribution [1]–[3]. The novel features in the context

of smart grid are many and varied, which include demand

response, renewable energy sources, vehicle-to-grid capabil-

ity, advanced metering infrastructure, microgrid, and so on.

Demand response, which is made feasible by the penetration

of smart meters and introduction of two-way communications,

is a critical component of smart grid [4]–[6]. This capability

enables power users to adapt their energy consumptions in

response to the fluctuations of electricity prices or economic

incentives provided by utilities, further helping reduce the load

at peak hours or during system contingencies [7]–[9]. In the

long run, the ever-increasing spike energy usage could also be

addressed by the demand response approach, instead of purely

operating expensive generators or building more power plants

[10]–[12].

This paper will focus on the demand response problem in

a smart distribution grid, with the goal of maximizing the

total welfare of all users and over all time slots. Specifically,

we consider a system model with a load-serving entity (LSE)

and multiple users (e.g., smart building/community or micro-

grid, as practical applications), where each user independently

makes power consumption schedule. On one hand, since the

aggregated energy demand of all users is subject to the supply

capacity from the distribution infrastructure limit (e.g., the

thermal limit of transformers and feeders), the energy demand

of one user is spatially coupled with those of other users to

avoid exceeding the supply capacity. On the other hand, since

each user requires that the cumulative power consumption

exceeds a threshold by a deadline in order to complete the

daily task (e.g., an electric vehicle needs to be charged 16

kWh for next-day 40-mile drive [13], or a dishwasher after

lunch should finish washing dishes before dinner), the energy

demand at one time slot is temporally coupled with those

at other time slots to guarantee that the required demand is

satisfied. As a result, the problem is demonstrated to have both

spatially- and temporally-coupled constraints which, to the

best of our knowledge, has not been thoroughly investigated

in the context of demand response.

There has been a large amount of literatures on demand

response in smart grid. For instance, a distributed and iterative

algorithm has been proposed in [14], [15] which is based

on utility maximization and can balance between the real-

time supply and demand. However, the temporally-coupled

constraint has not been taken into account. In [16]–[18], price

uncertainty and game interaction have been introduced into

energy consumption scheduling, together with the required

demand constraint. The authors, however, have not further

considered the spatially-coupled constraint incurred by the

supply capacity. Residential load control has been investigated

in [19] with price prediction to tradeoff between electricity

payment and user waiting time minimization. The work has

taken both spatially- and temporally-coupled constraints into

consideration, yet the problem is only solved in a centralized

manner, using the interior-point method [20]. This method may

not be applicable for the practical situation, as the central

controller needs to know the exact utility function of each

user. However, since such information is private and no user

wants to reveal, the central controller may not have sufficient

information to solve the problem.

In summary, existing works either address the demand re-

sponse problem without simultaneously considering the supply

capacity and required demand constraints, or solve the problem

in a centralized manner without preserving users’ privacy. To

this end, this paper will take both aspects into account and

solve the demand response problem in a comprehensive way.

Dual decomposition is a standard method used to address a

large problem with complex constraints, by decoupling it into

simple subproblems that can be solved locally. This method

leads to distributed algorithms, without requiring each user to

reveal his/her private information. In addition, the dual decom-

position approach is usually combined with the subgradient

projection method to solve the corresponding dual problem,

which has been widely used to maximize network utility in
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communication and networking systems [21]–[23]. We base

our distributed demand response problem on the above works,

although the problem formulation and applications are quite

different. Moreover, through convergence analysis, we notice

that the convergence rate of the subgradient projection method

is not fast enough, and it is highly dependent on the choice of

the step size. To overcome the weakness, we further propose

a fast approach which searches for the optimal solution more

efficiently. The computational time is polynomially bounded,

and we differ from the work in [24] by extending to our

doubly constrained demand response problem. Specifically, the

contributions of this paper are summarized in the following:

1) Problem formulation: We formulate the demand response

problem with both spatially- and temporally-coupled con-

straints;

2) Distributed algorithm design: We solve the problem in a

distributed manner, which is based on dual decomposition

and can preserve every user’s privacy;

3) Convergence improvement: We further utilize the binary

search technique to propose a fast approach, which can

speed up the convergence of the distributed algorithm.

The remainder of this paper is organized as follows. We

describe the system model and formulate the demand response

problem with spatially- and temporally-coupled constraints in

Section II. In Section III, we propose a distributed algorithm

based on dual decomposition to solve the problem. In Sec-

tion IV, we further propose a fast approach to increase the

convergence rate. Simulations are conducted in Section V,

and concluding remarks are drawn in Section VI with future

work. We refer to Appendix A for detailed load models, and

Appendix B for convergence analysis.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider a smart distribution grid with an LSE and a set

N � {1, . . . , N} of users. The cycle of a day is comprised

of a set T � {1, . . . , T} of (discrete) time slots, e.g.,

T = 24. The household appliances in general lie in two

categories of “must-run” and “shiftable” respectively. The

must-run appliances include refrigerators that always need

to be on during the day, and those that need to be used

during the specific time interval, e.g., cooking at cook time,

or illumination at night. The shiftable (also called control-

lable/dispatchable/interruptible/deferrable/flexible/elastic) ap-

pliances include electric vehicle, washer, dryer, etc. For these

appliances, users are only concerned about whether the task

can be finished within a time period, e.g., an electric vehicle

needs to be charged 16 kWh for next-day 40-mile drive, or

a dishwasher after lunch should finish washing dishes before

dinner.

Let xt
i denote the energy demand of user i at time slot t.

The energy demand is bounded by

xt
i ≤ xt

i ≤ xt
i ∀i, t (1)

where xt
i and xt

i denote the lower and upper energy consump-

tion bounds respectively of user i at time slot t. In specific, xt
i

represents the “baseline” demand, which is dependent on user

and time, but independent of electricity price. The baseline

demand comes from must-run appliances. By contrast, xt
i

represents the gross energy consumptions of all the appliances

in the house on the maximum power level.

Besides, let ei denote the “elastic” demand of user i, which

is dependent on electricity price. The elastic demand comes

from shiftable appliances, which requires that the cumulative

power consumption exceeds a threshold by a deadline in order

to complete the daily task. If we define the required demand
from all appliances of user i to be ri �

∑
t x

t
i + ei. That is,

the energy demand at one time slot is temporally coupled with

those at other time slots to guarantee that the required demand

is satisfied. Thus, we have the temporally-coupled constraint,

which couples the energy demand over all time slots together:∑
t

xt
i ≥ ri ∀i (2)

Remark 1: Note that the proposed constraints (1) and (2)

are in rather general form capable of modeling most, but not

all, appliances. A notable exception is to model appliances

whose elastic demands need to be satisfied without being

interrupted. More detailed load models for different home

appliances are elaborated in Appendix A.

Finally, the aggregated electricity consumption of all users

is subject to the supply capacity, denoted by ct at time slot t.
The supply capacity comes from the distribution infrastructure

limit, such as the thermal limit of transformers and feeders.

That is, the energy demand of one user is spatially coupled

with those of other users to avoid exceeding the supply ca-

pacity. Thus, we have the spatially-coupled constraint, which

couples the energy demand of all users together:∑
i

xt
i ≤ ct ∀t (3)

For ease of presentation, we now define X ∈ R
N×T

(with entries xt
i) as the demand matrix. We also define X

and X (with entries xt
i and xt

i) as the demand lower and

upper bound matrixes respectively. The tth column of X ,

denoted by xt ∈ R
N×1, represents the demand snapshot

of all users at time slot t. Similarly, the ith row of X ,

denoted by xi ∈ R
1×T , represents the demand schedule of

user i over all time slots. We distinguish between xt (demand

snapshot) and xi (demand schedule) by their superscript and

subscript. In the rest of this work, we also use the following

mathematical notations: (·)+ denotes max {·, 0}, ·
∣∣b
a denotes

min {max {·, a} , b}, f ′ (·) denotes the first derivative of func-

tion f (·), and f−1 (·) denotes the inverse of f (·).

B. Problem Formulation

The energy demand of each user varies at different times

of the day. Such different behaviors of users are modeled by

different choices of utility functions. Formally, with user i at

time slot t, we associate an increasing, concave, and differ-

entiable utility function U t
i (·). The utility derived by energy

demand xt
i is U t

i (x
t
i), quantifying the user obtained comfort

as a function of his/her energy consumption. The quadratic

utility function is usually considered, which corresponds to

linear decreasing marginal benefit [14], [15].
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Let pt denote the real-time electricity price at time slot t.
Thus, the welfare of user i at time slot t is the obtained utility

minus the electricity payment: W t
i (x

t
i) = U t

i (x
t
i)− ptxt

i, and

the total welfare, of all users and over all time slots, is defined

as W (X) �
∑

i,t W
t
i (x

t
i). We define the demand response

problem to schedule the energy demand of all users and over

all time slots, with the aim of maximizing the total welfare,

subject to spatially- and temporally-coupled constraints:

max
X

W (X) (4)

s.t. (1), (2) and (3)

Remark 2: The user’s welfare function models his be-

haviors, including his response to various congestion prices.

And different users may have different welfare functions.

If two users have exactly the same response to a certain

given congestion price, they will each curtail or promote the

same amount of demand. This makes sense since we assume

the continuous energy consumption. Note that the framework

proposed in this paper accommodates discrete scenarios, but

the solution would become as more complicated, of which the

details will be considered as our future work.

III. DUAL DECOMPOSITION APPROACH

Since problem (4) has spatially-coupled constraints (3) and

temporally-coupled constraints (2), which couple the energy

demand of all users and over all time slots, the problem cannot

be directly tackled. However, by means of dual decomposition

[20], we can decouple (4) into simple subproblems which

can be solved independently. The primal problem and its dual

problem are strictly equivalent, due to its strong duality. We

derive and solve its dual problem as follows.

A. Dual Problem

Define the (partial) Lagrangian of primal problem (4):

L (X,λ,μ) =
∑
i,t

[
W t

i

(
xt
i

)
−

(
λt − μi

)
xt
i

]
+ Γ

where we relax the supply capacity constraint (3) by intro-

ducing Lagrangian multiplier λt ≥ 0 at time slot t, and relax

the required demand constraint (2) by introducing Lagrangian

multiplier μi ≥ 0 for user i, while λ �
(
λ1, . . . , λT

)
,μ �

(μ1, . . . , μN ) are the Lagrangian multiplier (dual variable)

vectors, Γ �
∑

t λ
tct −∑

i μiri.
The dual function (the objective function of the dual prob-

lem) is the supreme of the Lagrangian over the demand matrix

X:

D (λ,μ) = sup
X≤X≤X

L (X,λ,μ) =
∑
i,t

[
St
i

(
λt, μi

)]
+ Γ

where St
i (λ

t, μi) is defined as the (i, t)
th

subproblem to be

solved by user i at time slot t. Note that each subproblem is

independent, without spatially- nor temporally-coupled con-

straints:

St
i

(
λt, μi

)
� max

xt
i

W t
i

(
xt
i

)
−

(
λt − μi

)
xt
i (5)

s.t. xt
i ≤ xt

i ≤ xt
i

The subproblem function St
i (λ

t, μi) is convex as it is the

pointwise supreme of affine functions [20]. Thus the dual

function D (λ,μ) is also convex.
The dual problem is to minimize the dual function over the

Lagrangian multiplier vectors λ,μ:

min
λ,μ≥0

D (λ,μ) (6)

The optimal point of primal problem (4) is upper bounded by

any feasible value of dual problem (6), i.e., for any λ,μ ≥
0 and any feasible X satisfying (1), (2) and (3), we have

D (λ,μ) ≥ W (X). From λ∗,μ∗, the optimal solution of

dual problem (6), we can get X∗, the optimal solution of

primal problem (4), by solving subproblem (5).

B. Subgradient Projection
From the above, solving primal problem (4) is equivalent

to solving its dual problem (6). For the differentiable dual

function D (λ,μ), the subgradient projection method can be

employed to iteratively calculate the optimal solution of dual

problem (6). The Lagrangian multipliers λt, μi are updated in

an opposite direction to the subgradient of the dual function:⎧⎪⎪⎨
⎪⎪⎩

λt,k+1 =

[
λt,k − γ

∂D(λk;μ)
∂λt,k

]+

μk+1
i =

[
μk
i − γ

∂D(μk;λ)
∂μk

i

]+
where γ > 0 is the step size to adjust the convergence rate, and

k ∈ N
+ denotes the index of iterations. Convergence towards

the optimal solution is guaranteed for a sufficiently small

step size, such that the dual function satisfies the Lipchitz

continuity condition. The convergence analysis in Appendix B

provides guidance on how to choose the step size.
From the above, the first term of the dual function consists

of N × T independent subproblems. In other words, by dual

decomposition, the global optimization problem (4) has been

decoupled into N × T local optimization subproblems (5) of

each user at each time slot. Different users at different time

slots interact through the Lagrangian multipliers λt, μi.
For each local optimization subproblem (5), given λt, μi,

the local optimal energy demand:

x̃t
i � xt∗

i

(
λt, μi

)
=

(
W t

i
′)−1 (

λt − μi

) ∣∣∣xt
i

xt
i

(7)

is unique due to the concavity of U t
i (·). Under arbitrary λ,μ,

the locally optimal solution X∗ (λ,μ) may not be globally

optimal. However, by the duality theory [20], there exists dual

optimal λ∗,μ∗ such that X∗ (λ∗,μ∗) is the globally optimal

solution X∗.
From the above, given λ∗,μ∗ from the dual problem (6),

each user can calculate (7) independently without the need

to coordinate with other users nor time slots. In this sense,

the Lagrangian multiplier serves as a coordination signal that

aligns local optimality (7) with global optimality (4).
With solution (7) to subproblem (5), the dual function is

simplified and the subgradient of the dual function is⎧⎪⎨
⎪⎩

∂D(λk;μ)
∂λt,k = ct −∑

i

x̃t
i

∂D(μk;λ)
∂μk

i

=
∑
t
x̃t
i − ri

(8)
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We obtain the following Lagrangian multiplier update rule:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λt,k+1 =

[
λt,k − γ

(
ct −

∑
i

x̃t
i

)]+

(9a)

μk+1
i =

[
μk
i − γ

(∑
t

x̃t
i − ri

)]+

(9b)

C. Distributed Algorithm

The dual decomposition approach to the demand response

problem (4) has two folds. On one hand, each subproblem

St
i (λ

t, μi) is locally solved, returning daily energy demand

schedule x̃i of user i. These subproblems are defined by

(5) and solved by (7). On the other hand, the dual problem

D (λ,μ) is iteratively solved, returning the dual optimal

Lagrangian multipliers λ∗,μ∗. The dual problem is defined

by (6) and solved by (9a) and (9b).

The Lagrangian multipliers have the following interpreta-

tions. Following the classical concept in economics, λt is the

congestion price at time slot t to leverage the balance between

supply and demand. For example, if the total demand of all

users
∑

i x̃
t
i exceeds the supply capacity ct (aggressive case),

the congestion price λt will rise (see (9a)) to capture the

fact that it is expensive to use electricity at that time slot,

which will in turn decrease the demand x̃t (see (7)). In such

a way the supply and demand will reach balance, and vice

versa. Similarly, μi is the coordination parameter of user i to

coordinate his demand schedule, such that the required demand

is met. For example, if the total demand over all time slots∑
t x̃

t
i is less than the required demand ri (conservative case),

the coordination parameter μi will rise (see (9b)), which will

in turn increase the demand x̃i (see (7)). In such a way the

required demand will get satisfied, and vice versa.
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Fig. 1. The illustration of information exchange between LSE and users
based on the dual decomposition approach.

Algorithm 1: operated at LSE

1 repeat
2 receive total demand of all users

∑
i x̃

t
i, ∀t;

3 update congestion price λk+1 (9a);

4 send λk+1 to all users;

5 until λ converges as
∣∣λt,k+1 − λt,k

∣∣ < ε, ∀t;

Algorithm 2: operated at user i

1 repeat
2 update coordination parameter μk+1

i (9b);

3 receive congestion price λk+1 from LSE;

4 update energy demand x̃i (7);

5 send x̃i to LSE;

6 until μi converges as
∣∣μk+1

i − μk
i

∣∣ < ε;

The interaction between LSE and users based on the dual

decomposition approach is illustrated in Fig. 1. The distributed

algorithms at LSE and each user are summarized in Algo-
rithm 1 and 2, respectively, where ε is the error tolerance

(stopping criterion). All the updates (9a), (9b) and (7) are

performed based on local information. The congestion price

λ is updated at LSE, based on the total demand of all users

and the supply capacity. Then the price is announced to each

user, aiming to balance between supply and demand. The

coordination parameter μi is updated at each user, based on

the total demand over all time slots and the required demand.

Each user also updates his energy demand x̃i, based on the

congestion price and coordination parameter, and feeds it

back to LSE. Compared with existing centralized methods, the

distributed algorithm does not reveal the exact utility function

of each user, and thus preserves their privacy 1.

Remark 3: Note that the proposed algorithm is not totally

distributed since LSE has to be involved. In this paper, we

nevertheless term it as a “distributed” method, following

that in some references (e.g., [14], [15]), to differentiate it

from existing centralized methods where the central controller

(LSE) needs to know the exact utility function of each user. In

the proposed algorithm, instead of transmitting private data to

LSE, each user operates local computation and makes his own

decision, and then only sends the energy demand decision to

LSE.

IV. FAST APPROACH

A. Convergence Analysis

Although the subgradient projection method is a standard

way to solve a differentiable convex problem, the convergence

rate is not fast enough, and it is highly dependent on the choice

of the step size. As analyzed in Appendix B, this method

converges for a sufficiently small step size 0 < γ < 2/K,

where K is the Lipschitz constant. If the step size is chosen too

large, the distributed algorithm will diverge; whereas if it is too

small, the convergence rate will be slow. Figure 2 illustrates

the convergence of the subgradient projection method, started

with λ1,μ1 = 0. The corresponding parameters are set up

according to TABLE I and elaborated in Section V. We vary

the step size value from 0.01 to 0.04 to evaluate how it will

impact on the convergence rate. The figure indicates that as the

step size increases, the algorithm converges fast. But when it

1Since the users’ utility functions could infer their energy usage patterns,
they are typically regarded as users’ private information [25], [26]. The
proposed algorithm protects users’ utility functions and hence, helps protect
privacy of the users.
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exceeds a threshold, the output will oscillate around a certain

equilibrium. Therefore, to overcome the weakness, we propose

a fast approach based on binary search, which does not depend

on the step size and searches for the optimal solution more

efficiently.
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γ=0.01, converge in 263 steps
γ=0.02, converge in 136 steps
γ=0.03, converge in 92 steps
γ=0.04, diverge

Fig. 2. The impact of the step size on the convergence rate of the subgradient
projection method.

Firstly, the Karush-Kuhn-Tucker (KKT) conditions associ-

ated with (1)-(4) are [20, Section 5.5.3]

Stationarity:

∇XL (X,λ,μ) = 0

i.e.,

W t
i
′ (xt

i

)
− λt + μi = 0 ∀i, t (10)

Complementary slackness:

λt

(
ct −

∑
i

xt
i

)
= 0 ∀t (11)

μi

(∑
t

xt
i − ri

)
= 0 ∀i (12)

Dual feasibility:

λt ≥ 0 ∀t
μi ≥ 0 ∀i

Primal feasibility:

plus (1), (2) and (3)

Consider the solution (7) as a function of λt, μi. For any

selection of λt, μi, clearly xt∗
i (λt, μi) satisfies (1) and (10).

Hence, to solve original problem (4), we need to find the

optimal λt∗, μ∗
i such that xt∗

i (λt∗, μ∗
i ) satisfies (2), (3), (11)

and (12).

B. Subproblem One

Given λ, at each user i, define

gi (μi;λ) �
∑
t

xt∗
i

(
μi;λ

t
)

Then, for (2) and (12), we need to find μ∗
i such that{

gi (μ
∗
i ;λ)− ri ≥ 0

μ∗
i [gi (μ

∗
i ;λ)− ri] = 0

(13)

Consider two cases as follows:

1) If gi (0;λ) > ri, then μ∗
i = 0;

2) Else, we need to find μ∗
i > 0 such that gi (μ

∗
i ;λ) = ri.

This is equivalent to the convergence stopping criteria in (9b),

i.e, μt,k+1 converges in the following two cases:

1) If
∑

t x̃
t
i = ri, then μt,k+1 > 0;

2) If
∑

t x̃
t
i > ri, then μt,k+1 = 0.

From (7), xt∗
i (μi;λ

t) can be expressed as the following

piecewise function:

xt∗
i

(
μi;λ

t
)

=

⎧⎨
⎩

xt
i, μi ≤ μt

i
(λt) � λt −W t

i
′ (xt

i)

(W t
i
′)
−1

(λt − μi) , otherwise

xt
i, μi ≥ μt

i (λ
t) � λt −W t

i
′ (xt

i

)
Clearly, each xt∗

i (μi;λ
t) is piecewise and increasing over μi,

and thus gi (μi;λ) is the same. A simple example of g (μ) is

illustrated in Fig. 3 for ease of understanding.

μ1

μ1

x1

x1

μ2

μ2

x2

x2

τ0 τ1

τ2

τ3

τ4

μ*

r

0 μ

g(
μ)

x1*(μ) x2*(μ) g(μ)=x1*(μ)+x2*(μ)

Fig. 3. The illustration of a simple example of g (μ) = x1∗ (μ) + x2∗ (μ).

Since there are a number T of xt∗
i (μi;λ

t) , t = 1, . . . , T ,

thus the breakpoints of the piecewise and increasing function

gi (μi;λ) occur at the 2T points μt
i
(λt) and μt

i (λ
t). Let

τ1, . . . , τH denote all positive breakpoints, where H ≤ 2T and

τ0 = 0 < τ1 ≤ τ2 ≤ . . . ≤ τH . We present Algorithm 3 for

solving (13), based on binary search for the bracket between

two breakpoints. This algorithm is considered more efficient

than (9b), since it searches for μ∗
i in one step, and its computa-

tional complexity is polynomially bounded by the time horizon

T . Taking Fig. 3 (T = 2) for illustration, since there are two of

x1∗ (μ) and x2∗ (μ), thus the breakpoints of the piecewise and

increasing function g (μ) = x1∗ (μ)+x2∗ (μ) occur at the four

points μ1, μ1 and μ2, μ2. We sort them in an increasing order

as τ0 = 0 < τ1 = μ1 < τ2 = μ2 < τ3 = μ1 < τ4 = μ2, and

thus the search range is between τ0 and τ4. Through binary

search, if we find, for instance, that μ∗ lies in the bracket

between the two breakpoints τ3 and τ4, then it can be directly

calculated by solving the equation x1+
(
W 2′)−1 (

λ2 − μ
)
= r

in one step.

C. Distributed Algorithm

Given μ, at each time slot t, define

f t
(
λt;μ

)
�

∑
i

xt∗
i

(
λt;μi

)
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Algorithm 3: input λ and output μ∗
i

1 if gi (0;λ) > ri then
2 return 0;

3 else
4 left ← 0, right ← H;

5 repeat
6 middle ← [(left+ right) /2], where [·] denotes

the integer part;

7 M ← gi (τmiddle;λ);
8 if M = ri then
9 return τmiddle;

10 else if M < ri then
11 left ← middle;

12 else
13 right ← middle;

14 end if
15 until right− left = 1;

16 T1 ←
{
t
∣∣μt

i (λ
t) ≤ τleft

}
;

17 T2 ←
{
t
∣∣μt

i
(λt) ≥ τright

}
;

18 T3 ← T − T1 − T2;

19 return

arg
μi>0

[ ∑
t∈T1

xt
i +

∑
t∈T2

xt
i +

∑
t∈T3

(W t
i
′)
−1

(λt − μi) = ri

]
;

20 end if

Then, for (3) and (11), we need to find λt∗ such that{
ct − f t (λt∗;μ) ≥ 0
λt∗ [ct − f t (λt∗;μ)] = 0

(14)

Consider two cases as follows:

1) If f t (0;μ) < ct, then λt∗ = 0;

2) Else, we need to find λt∗ > 0 such that f t (λt∗;μ) = ct.

This is equivalent to the convergence stopping criteria in (9a),

i.e, λt,k+1 converges in the following two cases:

1) If
∑

i x̃
t
i = ct, then λt,k+1 > 0;

2) If
∑

i x̃
t
i < ct, then λt,k+1 = 0.

However, here we still let LSE take the subgradient pro-

jection method (9a) to update the congestion price λ, instead

of similarly extending Algorithm 3 to the side of LSE. The

reason is that in that case LSE needs to know the utility

function of each user to find λt∗ satisfying (14), which may not

be applicable for the practical situation. Since such information

is private and no user wants to reveal, so LSE may not have

sufficient information to operate in that way. Therefore, we

still apply the conventional subgradient projection method to

the side of LSE, which does not require each user to reveal

such private information.

The interaction between LSE and users based on the fast

approach is illustrated in Fig. 4. The distributed algorithm

at LSE and each user are summarized in Algorithm 1 and

4, respectively. All the updates (9a), Algorithm 3 and (7)

are performed based on local information. Specifically, the

coordination parameter μi is updated at each user, based on the

congestion price, the utility function and the required demand.

LSE

, 1 , , (9a)t k t k t t
i

i
c x t� � �

�

� � �� �	 
 
 �� � �
� �� �

� , t,
�t �,
�t

��t

ixix
t
i
��ttt

i
�


�
��i

User

�� Coordination parameter update:

� � � �, 11 1 (7), '  
t
i
t
i

xt t t k k
i i i x
x W t� �� �


	 
 ���t t� 'i i�xt t� 'i i�W� 't� 'i�

i

�� Energy demand update:

1 1k k
i�� �� �Algorithm 3��

�� Congestion price update:

Congestion
price 1k���

Energy
demand iix

User1 UserN

Fig. 4. The illustration of information exchange between LSE and users
based on the fast approach.

Algorithm 4: operated at user i

1 repeat
2 receive congestion price λk+1 from LSE;

3 update coordination parameter μk+1
i by Algorithm 3;

4 update energy demand x̃i (7);

5 send x̃i to LSE;

6 until μi converges as
∣∣μk+1

i − μk
i

∣∣ < ε;

V. NUMERICAL RESULTS

We provide numerical examples in this section to illustrate

the formulated demand response problem with spatially- and

temporally-coupled constraints, and compare the proposed dis-

tributed algorithms of dual decomposition and fast approach.

We consider a smart distribution grid with N = 100 users,

and the time horizon is T = 24. The must-run appliances

(baseline demand) of users are refrigerator-freezer (daily us-

age: 1.32 kWh), cooking stove (daily usage: 2.01 kWh),

television (daily usage: 6 kWh), laptop-desktop computer

(daily usage: 13.92 kWh), lighting (daily usage: 1 kWh), and

heating (daily usage: 7.1 kWh); while the shiftable appliances

(elastic demand) are electric vehicle (daily usage: 16 kWh),

dishwasher (daily usage: 1.44 kWh), and clothes washer-dryer

(daily usage: 4.44 kWh) [26]. Thus the required demand ri
of user i is chosen randomly from a uniform distribution

on [31.35, 53.23]. All the following results are obtained by

MATLAB R2007b running on a laptop PC with Intel Core

i5-3320 CPU @ 2.6 GHz, 4 GB RAM memory, and 32-bit

Windows 7 OS.

TABLE I
PARAMETER SETUPS

Parameter Value Parameter Value Parameter Value

N 100 ri [31.35, 53.23] λ1,μ1 0
T 24 ct [130.6, 221.8] γ 0.03
xt
i 1 y [1.3, 2.2] xt

i 2.5

The utility function associated with user i at time slot t

is quadratic: U t
i (x

t
i) �

{
− (xt

i − y)
2

0 ≤ xt
i < y

0 xt
i ≥ y

[16]–
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(a) The dual objective value versus iteration.
The dashed line shows the optimal value.
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(b) The congestion price at a certain time slot (top)
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tom), versus iteration.
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(c) The supply capacity violation (top) and the re-
quired demand violation (bottom), versus iteration.

Fig. 5. The comparison between dual decomposition and fast approach to the demand response problem with spatially- and temporally-coupled constraints.

[18], where the target demand y is chosen randomly from a

uniform distribution on [1.3, 2.2]. We set the lower and upper

bounds on demand as xt
i = 1 and xt

i = 2.5 respectively

for all i and t. The hourly-based real-time electricity prices

are taken from the real-time pricing program in Illinois, USA

on August 4, 2013 [18, Fig. 5(a)]. The supply capacity ct at

time slot t is chosen randomly from a uniform distribution

on [130.6, 221.8]. For this example, we calculate a valid

Lipschitiz constant K = 149 for the dual function D (λ,μ)
using (18) in Appendix B, which implies that the proposed

dual decomposition approach will converge as long as the step

size is sufficiently small such as 0 < γ < 0.0134. Numerical

trials suggest that the algorithm converges for γ ≤ 0.037, and

diverges for γ ≥ 0.038. From Fig. 2, we choose γ = 0.03 to

ensure fast convergence rate. The above simulation parameter

setups are summarized in TABLE I.

The comparison between dual decomposition and fast ap-

proach to the demand response problem with spatially- and

temporally-coupled constraints has been detailedly illustrated

in Fig. 5. Specifically, Figure 5(a) shows the dual objective

value versus iteration, and the optimal value. Figure 5(b)

shows the Lagrangian multipliers (the congestion price λt and

the coordination parameter μi), versus iteration. Figure 5(c)

shows the supply capacity violation
∑

t (1 · xt − ct)
+

and the

required demand violation
∑

i (ri − xi · 1)+, versus iteration.

It is observed that the fast approach converges much faster

than the dual decomposition method. This is because, the

subgradient projection method needs to iteratively calculate

the optimal μ to the dual problem (see (9b)); whereas the

fast approach searches for the optimal coordination parameter

more efficiently in one step (see Algorithm 3). Besides, at

each iteration, we have a dual feasible point (λ,μ); but the

corresponding primal point X is generally not feasible. Thus

the optimal value of the primal problem is upper bounded by

the dual objective value.

Figure 6 shows the total demand of all users
∑

i x
t
i, the
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Fig. 6. The supply capacity (top, dashed), the total demand of all users (top,
solid), and the congestion price (bottom).
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slots (top, solid), and the coordination parameter (bottom).
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supply capacity ct, and the congestion price λt. It is verified

that the spatially-coupled constraints are satisfied. The con-

gestion prices are zero whenever the system operates under

full capacity. Similarly, Figure 7 shows the total demand

over all time slots
∑

t x
t
i, the required demand ri, and the

coordination parameter μi. It can be seen that the temporally-

coupled constraints are satisfied. The coordination parameters

are zero whenever the required demand is overqualified. This is

due to the complementary slackness conditions (11) and (12),

which state that for all inactive constraints the corresponding

Lagrangian multipliers should be zero.

VI. CONCLUSION

In this paper, the demand response problem with spatially-

and temporally-coupled constraints has been investigated. We

first proposed a distributed algorithm adopting dual decompo-

sition to solve the problem, which preserves every user’s pri-

vacy. Since the convergence rate of the subgradient projection

method is not fast enough, and it is highly dependent on the

choice of the step size, we further introduced a fast approach

which can search for the optimal solution more efficiently.

Numerical results were conducted, which verify the theoretical

analysis and also demonstrate the outperformance of the fast

approach.

As aforementioned in Section II, in this paper we have

assumed the user’s energy consumption as continuous vari-

ables. To be more realistic, we will extend the former setting

to the scenario of appliances with discrete power levels.

This, however, will lead the problem to be formulated into

a mixed integer optimization problem. Getting its solution

would become much more complicated. Better formulation of

the problem and more efficient algorithm design specifically

for discrete scenarios therefore will be of our future research

interest.

APPENDIX A

DETAILED LOAD MODELS

The specific load models of commonly-used electric appli-

ances in households are introduced in the followings.

1) Type 1: Let A1 denote must-run appliances like lighting

or cooking that must be on for a certain period of time.

For an appliance a ∈ A1, let Ta � [αa, βa] denote the

time slots that the appliance must run. Such appliances

have their strictly defined constraints:{
xt
a ≡ bta ∀t ∈ Ta

xt
a = 0 otherwise

where bta denotes the baseline demand that the appliance

a must consume at time slot t.
2) Type 2: Let A2 denote shiftable appliances, e.g., electric

vehicles, for which the users only concern whether the

task can be finished within a certain time period. For an

appliance a ∈ A2, let Ta � [αa, βa] denote its working

time slot, where βa is the deadline for the appliance a to

be finished. Such appliances are subject to the following

constraints:{
0 ≤ xt

a ≤ xt
a ∀t ∈ Ta

xt
a = 0 otherwise

and

βa∑
t=αa

xt
a ≥ ea

where xt
a denotes the maximum energy level that the

appliance a can consume in time slot t, and ea denotes

the elastic demand that the appliance a requires to finish

a given task. Setting xt
a = 0 for ∀t ∈ T \Ta, these

constraints can be simplified as{
0 ≤ xt

a ≤ xt
a ∀t ∈ T∑

t∈T
xt
a ≥ ea

The proposed constraints (1) and (2) are in general form

for types 1 and 2. Since xt
i �

∑
a∈A xt

a, we have that for

xt
i �

∑
a∈A1

xt
a, xt

i � xt
i+

∑
a∈A2

xt
a; since ei �

∑
a∈A2

ea,

there exists the relationship that
∑

t x
t
i ≥

∑
t x

t
i + ei.

3) Type 3: Let A3 denote the special subset of shiftable

appliances, like washer and drier, whose elastic demands

need to be satisfied without being interrupted. Similar

to that for type 2 appliances, for an appliance a ∈ A3,

setting xt
a = xt

a = 0 for ∀t ∈ T \Ta, we have{
xt
a ≤ xt

a ≤ xt
a ∀t ∈ T∑

t∈T
xt
a ≥ ea

Since the appliance is non-interruptible, the task should

be finished within a consecutive time period. Let rta
denote the remaining demand that the appliance a still

requires at the beginning of time slot t. We have,

rta =

⎧⎨
⎩

ea t = 1

ea −
t−1∑
τ=1

xτ
a t = 2, . . . , T

At the beginning of time slot t, if the task has not started

yet, i.e., rta = ea, then the appliance can choose to wait or

start. Conversely, if the task has started, i.e., rta < ea, then

the appliance must continue working until completing the

task, i.e., rta = 0. That is, we need to set additional

constraints [27], [28]:⎧⎨
⎩

xt
a ≥ 0 rta = ea

xt
a > 0 0 < rta < ea

xt
a = 0 rta = 0

However, these constraints cannot be trivially generalized

to the proposed constraints (1) and (2), since the condition

rta is dependent on the variable xt
a. Handling the non-

interruptible constraints therefore essentially resorts to a

dynamic programming problem. We do not include such

a special case in this paper, but will further consider it in

our future work.

B CONVERGENCE ANALYSIS

Here, the convergence of the distributed algorithm is ana-

lyzed, which will provide guidance on how to choose the step

size. As we know, a standard result is that the subgradient

projection method converges for a sufficiently small step size

0 < γ < 2/K, where K is the Lipschitz constant [29]. Thus
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in the following we derive a valid Lipschitz constant for the

dual function D (λ,μ).
We first define a single Lagrangian multiplier ν � (λ,μ).

From (8), thus,{
∇λtD (ν) = ct − 11×N · xt∗ (ν)
∇μi

D (ν) = x∗
i (ν) · 1T×1 − ri

By construction of ∇D (ν), we have

‖∇D (ν1)−∇D (ν2)‖2
≤

(√
N +

√
T
)
‖X∗ (ν1)−X∗ (ν2)‖F

(15)

where ‖·‖F denotes the matrix Frobenius norm.

Let ρti � λt−μi denote the combined Lagrangian multiplier

for user i at time slot t, and ρ ∈ R
N×T (with entries ρti) is

the combined Lagrangian multiplier matrix. We have ρ1,ρ2

corresponding to ν1,ν2. From (7), thus,

X∗ (ν) = (W ′)
−1

(ρ)
∣∣∣XX

If we define ρt
i
� W t

i
′ (xt

i

)
, ρti � W t

i
′ (xt

i), and V t
i (·) �

(W t
i
′)
−1

(·), thus,

‖X∗ (ν1)−X∗ (ν2)‖F
≤max

i,t

{∣∣∣V t
i
′
(
ρt
i

)∣∣∣ , ∣∣V t
i
′ (ρti)∣∣} ‖ρ1 − ρ2‖F

(16)

Finally, due to ρ = 1N×1 · ν [1 : T ] − ν [T + 1 : T +N ] ·
11×T , we have

‖ρ1 − ρ2‖F ≤ 2max
{√

N,
√
T
}
‖ν1 − ν2‖2 (17)

Combining inequalities (15), (16) and (17), there exists

‖∇D (ν1)−∇D (ν2)‖2 ≤ K ‖ν1 − ν2‖2
where the Lipschitiz constant K for the dual function is

K =2
(√

N +
√
T
)
×max

{√
N,

√
T
}

×max
i,t

{∣∣∣V t
i
′
(
ρt
i

)∣∣∣ , ∣∣V t
i
′ (ρti)∣∣} (18)
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