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Abstract—We develop a new class of event detection
algorithms in Wireless Sensor Networks where the sensors
are randomly deployed spatially. We formulate the detection
problem as a binary hypothesis testing problem and design the
optimal decision rules for two practical random deployment
scenarios, namely the Poisson Point Process and Binomial Point
Process deployments. To calculate the intractable marginal
likelihood density under alternative hypothesis, we develop
three types of series expansion methods which are based on an
Askey-orthogonal polynomials. In addition we develop a novel
framework to provide guidance on which series expansion is
most suitable (ie. most accurate) to use for different system’s
parameters. Extensive Monte Carlo simulations are carriedout
to illustrate the benefits of this framework as well as the quality
of the series expansion methods, and the impact that different
parameters have on detection performance via the Receiver
Operating Curves (ROC).
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I. I NTRODUCTION

Wireless Sensor Networks (WSN) have attracted consider-
able attention due to the large number of applications, suchas
environmental monitoring, weather forecasts [1]–[3], surveil-
lance, health care, and home automation [3], [4]. WSN consists
of a set of spatially distributed sensors which monitor a
spatial physical phenomenon containing some desired attribute
(e.g pressure, temperature, concentrations of substance,sound
intensity, radiation levels, pollution concentrations etc.), and
regularly communicate their observations to a Gateway (GW)
[5]–[7]. The GW collects these observations and fuses them
in order to perform event detection, based on which effective
actions can be made [4]. The detection problem of the WSN
can be cast as distinguishing between two hypotheses, such
as the absence (Null Hypothesis), or presence (Alternative
Hypothesis) of a certain event [8]–[10]. The ability of a WSN
to perform such detection and decisions is crucial for various
applications, for example the detection of the presence or
absence of a target in a surveillance system, detection of
missiles, detection of chemical, biological or nuclear plumes
and many more [11]–[13]. It is therefore imperative for the
WSN to be accurate in detecting a valid event (high detection
rate) while maintaining as low as possible false detection (low
false alarm).

For example, in [14] the problem of distributed detection
was considered, where the sensors transmit their local de-

cisions over perfectly known wireless channels. In [15] the
problem of distributed event detection under Byzantine attack
was considered. Theoretical performance analysis was derived
in [16] for detection fusion under conditionally dependentand
independent local decisions. Distributed detection in sensor
networks over fading channels with multiple receive antennas
at the GW was considered in [17].

Previous works on event detection have concentrated on
cases where the sensors deployment (ie. the locations of the
sensors) isdeterministic and known to the GW ( [4], [16]–
[19] and references within). In contrast, the problem of event
detection where the sensors arerandomly deployed in the
field has not been addressed before. This problem is of great
practical interest because in many cases the locations of the
sensors are unknown to the GW. The following are examples
of such scenarios:

1) Surveillance: sensor nodes are dropped by airplanes,
unmanned aerial vehicles or ships in order to survey
a region of interest that is inaccessible from the ground.
To increase life span and reduce costs of the sensors,
they are not equipped with localisation device (ie. GPS)
and their location is considered random and unknown
[20], [21].

2) Privacy-preserving participatory sensing: individuals
share certain environmental information (eg. temperature
readings, traffic conditions etc.) to produce aggregated
models. In order to protect their privacy, the users do
not share their location information [22].

In addition, in the wireless communication literature there
has been great interest in random deployments of wireless
networks, see for example [23], [24]. These works make use
of tools from stochastic geometry to calculate parameters
of interest, such as capacity, Signal-to-Noise-Ratio (SNR) of
such systems. These works mainly consider homogeneous
deployments, mainly due to the mathematical tractability.In
practice however, it’s very unlikely that the sensors wouldbe
distributed in space in a spatially homogenous way, but instead
a non-homogeneous behaviour is more likely to occur, see
[25], [26].

To address these two practical aspects of random deploy-
ment of inhomogeneous spatially deployed sensor networks,
new models and algorithms for event detection need to be
developed. In addition, it is important for network designers to
understand how different parameters would affect the perfor-
mance of the WSN before they deploy the WSN, (i.e., number



2
of sensors, region of deployment, level of inhomogeneity of
the deployment etc.) in order to obtain the optimal detection
performance. It is therefore important to study the average
performance of a network before a decision is made.

At the heart of distance based algorithms in WSN under
random spatial deployment lies the understanding of the
distance distribution. Such quantities have been derived under
spatial deployment such as Poisson Point Process (PPP) and
Binomial Point Process (BPP) [27]–[30]. In [27], sensors are
uniformly randomly distributed following a BPP. The authors
analyzed various properties of such networks including the
distance distribution, moments of distance etc. In [28], the
authors considered a more general distribution, namely the
PPP and provided analysis of the distance distributions for
such networks. In [29] the authors discuss the deployment
of cognitive cellular wireless networks. In [30] the authors
considered distance distributions on mobile wireless networks.
It is important to note that these papers have only tackled
homogeneous type deployments and the practical cases of non-
homogeneous deployments have not been addressed.

In this paper, we develop novel event detection algorithms in
WSN for the case where the sensors are randomly distributed
in space and their locations are unknown to the GW. When
the target (event) is present/active, it emits energy (acoustic or
electromagnetic) which is measured by each of the sensors.
All the measurements from the sensors are then aggregated to
the GW which makes the final decision whether the target is
present or absent. We assume an energy decay model in which
the amount of energy each sensor measures falls off with
distance and obeys an inverse power-law where the exponent is
known as the path loss exponent [24]. In contrast to previous
works which assumed that the locations of the sensors are
known to the GW [8], [17], [31], we assume a random spatial
deployment. That means that the distance from the target to
the sensors is now a random variable.

To obtain the optimal decision rule, the likelihood ratio test
(LRT) for the two hypotheses (event present/ absent) needs
to be evaluated. This involves the calculation of the marginal
likelihood density under each of the hypotheses. While de-
riving the marginal likelihood under the Null hypothesis is
trivial, the derivation of the marginal likelihood under the
Alternative hypothesis is not readily obtained in closed-form,
since it involves a multi-variate convolution which cannot
be solved exactly. As such, we adopt instead a principled
approach to approximating the marginal likelihood under the
alternative hypothesis. To do so we exploit stochastic geom-
etry techniques to model the placement of the sensors [27].
We then approximate the intractable distribution density via
series expansions techniques which are based on an Askey-
orthogonal polynomial expansion. The three series expansions
we develop are the Gram-Charlier, Gamma-Laguerre and Beta-
Jacobi type series expansions. Since these expansions do not
ensure positivity of the density at all points, it is important
to characterise the system parameters for which the density
approximation will remain positive. This characterisation can
be carried out by finding the appropriate regions in the Skew-
Kurtosis plane (S-K plane) which generate positive support
[32], [33]. This characterisation is important and should be

used as a guide to choosing the appropriate series expansion.
We will illustrate the implications of not choosing the correct
series expansion via simulations. Importantly, the algorithms
we develop only require deriving the first four cumulants
and moments to obtain good detection performance and are
therefore of low computational complexity.

We summarize our three key contributions as follows.

1) We extend the distance distribution results of [27], [28]
for Poisson Point Process and Binomial Point Process
to the inhomogeneous deployment case (presented in
Theorem 1). These results are required in order to
develop the optimal detection algorithm we derive.

2) We develop three different types of Askey-orthogonal
polynomial expansion methods to approximate the
marginal likelihood density (presented in Section IV).
The first is based on Hermite polynomials and is known
as the Gram-Charlier series expansion; the second is
based on Laguerre polynomials and is known as the
Gamma-Laguerre series expansion; the third expansion
that we derive for the first time is the Beta-Jacobi series
expansion and is based on Jacobi polynomials (presented
in Theorem 2 and Theorem 3).

3) We develop a novel analysis tool to characterise the con-
ditions (Skew-Kurtosis region) at which each expansion
has a positive support (presented in Section IV). The new
tool is of great importance as it provides a guidance as
to which series expansion to use under different type of
system parameters, such as noise distribution, path-loss
exponent parameter, SNR value etc.

4) We show that our proposed Beta-Jacobi series expansion
provides better detection performance that the standard
Gram-Charlier Gamma-Laguerre series expansions for
different practical scenarios.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section we present the model assumptions. We begin
with a formal definition of the Finite Binomial Point Process
and Infinite Poisson Point Process followed by system model
assumptions. These processes are special cases of spatial point
process. In general a spatial point process is a random pattern
of points, in our case in2-dimensional space.

One of the most useful ways to handle a spatial point pro-
cess is to generalise the notion of one-dimensional spatialpoint
processes involving interval countsN(a, b] to the concept of
region countsN(B) which is the number of points falling
in a setB ⊂ Ω ⊆ R

2. One may then characterize a spatial
point process by two measures, the counts of points in sets,
i.e., sets whereN(B) > 0 for regionsB and the vacancy sets
V (B̃) = N(B̃) = 0 where there are no counts present. The
two most commonly used spatial point processes are the BPP
and PPP as described below, see details in [34].
Definition 1 (Finite Binomial Point Process (FBPP) [34],
[35]). A Finite Binomial Point Process is defined by consid-
ering a fixed number ofn points at random locations in a
bounded regionW ⊂ R

2. Define byX1, . . . , Xn the i.i.d.
random locations with the intensity of the number of points in
a small region around any locationx denoted asλ (x). This
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produces a probability density of eachXi given by

fX(x) =

{
1

λ(W ) , if x ∈ W,

0, otherwise,
(1)

whereλ(W ) denotes the area ofW . Each random pointXi is
uniformly distributed inW so that for a bounded setB ∈ R

2

on has the distribution

Pr (Xi ∈ B) =

∫

B

fX(x)dx =
λ(B ∩W )

λ(W )
. (2)

In this paper we will consider a general case involving
an inhomogeneous version of the finite domain spatial BPP
(inhomogeneous FBPP). The distribution of the points will
have a densityfX(x) given by the decaying power law, relative
to the center ofW which is specified to be a disc in our
applications. Therefore it will have a form given accordingto

fX(x) =

{
x
−ν

1 (x) , if x ∈ W

0, otherwise,
(3)

with reference to the center ofW .
The second point process to be considered will be on an

infinite domain and will be considered to be a PPP defined
according to Definition 2.
Definition 2 (Infinite Poisson Point Process (IPPP) [35]).
Consider a locally compact metric spaceW ⊆ R

2 and
measureΛ on W which is finite on every compact set and
contains no atoms. Then the spatial PPP onW with intensity
measureΛ is a point process onW such that

• for every compact setB ⊂ W , the countN(B) is
distributed according to a Poisson distribution withΛ(B)
mean; and

• if B1, . . . , Bm are disjoint compact sets, then
N(B1), . . . , N(Bm) are independent.

In the examples considered in this paper we will utilise one
of two possibilities:

• Homogeneous IPPP (HIPPP), whenλ is constant.
• Non-homogeneous IPPP (NIPPP), whenλ is not constant.

Without loss of generality, we also assumeλ(x) = x
−ν

is a power law withν > 0.

The difference between the FBPP and the IPPP is that
the number of pointsn within set V , is a known constant
under FBPP, and is arandom unknownunder IPPP. Fig. 1
presents realisations from homogenous BPP, inhomogeneous
BPP, homogenous PPP and inhomogeneous PPP, respectively.

A. Wireless Sensor Network Operation Model

We now present the system model for the wireless sensor
network.

1) The source is present (H1) or absent (H0). UnderH1,
the source transmits constant powerP0, and underH0,
the source does not transmit any power (P0 = 0).

2) The location of the source (if present) is assumed known
xs = [x0, y0]. We assume without loss of generality, that
it is located at the center of circle of radiusR.

3) Consider a WSN consisting of sensors with locations
following either a FBPP deployment (Definition 1) or
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Fig. 1: Realisations from Homogenous BPP deployment (top
left), Non-homogenous BPP deployment (bottom left), Ho-
mogenous PPP deployment (top right) and Non-homogenous
PPP deployment (bottom right) .

an IPPP deployment (Definition 2) in a2 dimensional
region.

a) For FBPP deployment,NB sensors are deployed
in a circle with radiusR.

b) For IPPP deployment, an unknown random number
of sensors are deployed in a circle with radiusR.
Note that for the case of IPPP, the number of points
NP is not fixed.

The spatial density of the sensors is given byλ(x) =
x
−ν , ν 6= 0.

4) The unknown random location of thek-th sensor
(k = {1, · · · , N}) is Xk = [Xk, Yk].

5) The amount of energy thek-th sensor measures is
inversely proportional to the Euclidean distance between
the source and the sensor and is given by

√
P0R

−α/2
k .

The random variableRk represents the random distance
between thek-th sensor and the source. This distance
is defined as the minimum radius of the ball with
centerxs, that contains at leastk points in the ball,
i.e., Rk = inf{r : {R(1), R(2), · · · , R(k)} ∈ Bxs(r)}.
Bxs(r) is the ball with radiusr and center atxs.

6) Each sensor transmits its observation over a perfect
channel to the GW via a shared medium. The observed
signal at the GW in thel-th time slot(l = {1, · · · , L})
is a linear combination of all the signals given by:





H0 : Yl = Wl

H1 : Yl =

Ni∑

k=1

√
P0Rk

−α/2 +Wl,

whereWl is the i.i.d additive Gaussian noiseN (0, σ2
Wl

).
The parameterα is the path-loss coefficient.

We proceed by presenting the optimal decision rule for
the event detection. We then derive the various components
required in order to evaluate the optimal decision rule.
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B. Optimal Event Detection Decision Rule

The optimal decision rule is a threshold test based on the
likelihood ratio [36]. We consider a frame-by-frame detection,
where the length of each frame isL. The decision rule is then
given by:

Λ (Y1:L) ,
p(Y1:L|xs,H0)

p (Y1:L|xs,H1)

H0

≷
H1

γ, (4)

where the thresholdγ can be set to assure a fixed system
false-alarm rate under the Neyman-Pearson approach or can
be chosen to minimize the overall probability of detection error
under the Bayesian approach [37]. We can decompose the full
marginals under each hypothesis,p (Y1:L|xs,Hk), k = 0, 1,
as

p(Y1:L|xs,Hk) =

L∏

l=1

p(Yl|xs,Hk).

This decomposition is useful as it allows us to work on a
lower dimensional space, resulting in efficiency gains for the
algorithm we develop and requiring no memory storage for
data.

III. E VENT DETECTION ALGORITHM UNDER RANDOM

POINT PROCESSSENSORDEPLOYMENT

The optimal decision rule in (4) involves calculating the
marginal likelihood under each hypothesis,p (Y1:L|xs,Hk),
k = 0, 1. The marginal likelihood underH0 can be easily
calculated as it follows a Normal distribution. The marginal
likelihood under the alternative hypothesis,p (Yl|xs,H1), is
not attainable in closed form because it involves solving the
(N +1)-fold convolution as we will show in this section (see
(5)). We will therefore develop a novel approximation of the
marginal likelihood under the alternative hypothesis, based
on an Askey-orthogonal polynomial expansion. In particular,
we will derive the Gram-Charlier, Gamma-Laguerre and Beta-
Jacobi type series expansions.

We begin with obtaining the distribution of the distance
between thek-th sensor and the source location, denoted
by fRk

(r|xs,H1). We derive this density for both BPP and
IPPP deployments. To achieve that we extend the earlier
work of [27] who derived the distance distribution for the
homogeneous case, to the inhomogeneous case.
Theorem 1. The density of the Euclidean distance between
the k-th sensor and the source,Rk, is given by:

1) BPP deployment:

fRk
(r|xs,H1) =

(2− ν) Γ
(
k + 1−ν

2−ν

)
Γ (NB + 1)

R Γ (k) Γ
(
NB + 1−ν

2−ν + 1
)

× β

(( r

R

)2−ν

; k +
1− ν

2− ν
,NB − k + 1

)
.

2) IPPP deployment:

fRk
(r|xs, n = NP ,H1)

=
(2π)

k

Γ (k) (2− ν)
k−1

r(2−ν)k−1 exp

(
−2πr2−ν

2− ν

)
,

whereβ (x, α, β) := 1
B(α,β)x

α−1 (1− x)
β−1 is the β distri-

bution andΓ (n) := (n− 1)! is the Gamma function. For both
cases, the support ofRk is Zk ∈ R+.

Proof. See Appendix A.

Corollary 1. WhenN → +∞ and R → +∞, the non-
homogenous BPP converges to a IPPP. Sincep = (r/R)

2−ν ,
thenR = rp−

1
2−ν . Also,N =

∫
W

λ(r)dr = 2π
2−νR

2−ν . We

havep = (r/R)2−ν = 2πr2−ν

N(2−ν) . The densityfRk
is given by:

fRk
(r|xs,H1)

= lim
N→+∞

−ν + 2

r

(1− p)N−kpkΓ(N + 1)

Γ(N − k + 1)Γ(k)

=
(2π)k

Γ(k)(2 − ν)k−1
r(2−ν)k−1 exp

(
−2πr2−ν

2− ν

)

× lim
N→+∞

∏k−1
i=0 (N − i)

Nk

=
(2π)k

Γ(k)(2 − ν)k−1
r(2−ν)k−1 exp

(
−2πr2−ν

2− ν

)
O(

Nk

Nk
)

=
(2π)k

Γ(k)(2 − ν)k−1
r(2−ν)k−1 exp

(
−2πr2−ν

2− ν

)
.

Next, based on the result in Theorem 1, we derive the
density distribution of each of the elements in the observa-
tion under the alternative hypothesisYl. This involves the
non-linear transformation of the random distance, namely
fZk

(
r−α/2|xs,H1

)
.

Lemma 1. The densityfZk
(z|xs,H1) = fZk

(
r−α/2|xs,H1

)

is given by:

1) BPP deployment:

fZk
(z|xs,H1) =

2 (2− ν)

αR

Γ
(
k + 1−ν

2−ν

)
Γ (NB + 1)

Γ (k) Γ
(
NB + 1−ν

2−ν + 1
)

× β

((
z−2/α

R

)2−ν

; k +
1− ν

2− ν
,NB − k + 1

)
z−2/α−1.

2) IPPP deployment:

fZk
(z|xs, n = NP ,H1) =

(2π)k

Γ (k) (2− ν)
k−1

(
2

α

)

× z−2/α((2−ν)k)−1 exp

(
− 2π

2− ν
z−2/α(2−ν)

)
.

For both cases, the support ofZk is Zk ∈
(
R−α/2,∞

)
.

Proof. See Appendix B.

Now that we have derived the density and distribution of
each of the elements inYl, we need to derive the density of
the term

∑Ni

k=1

√
P0Zk. We express this random sum ofY as

anN -fold convolution ofZk, k ∈ {1, . . . , N}, given by

fY (y) = ∗Ni

i=1fZi(y) =

∫ ∞

−∞
fZNi−1(y − w)fZNi

(w)dw,

(5)

where∗ represents the convolution operation. Each of these
convolution integrals is intractable and cannot be solved
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analytically in closed form. To approximate the marginal
likelihood Yl we will utilise a series expansion approach
presented in the next section.

IV. PROBABILITY DENSITY APPROXIMATION VIA SERIES

EXPANSION METHODS

In order to evaluate the marginal likelihood in (5), we derive
novel approximation for the marginal likelihood. We develop
three different series expansion methods for representingthe
marginal likelihood using orthogonal basis functions [32],
[33]. We will show how these expansions are applicable
under different scenarios. The series expansion we utiliseare
based on a kernel density multiplied by polynomials, known
as Askey polynomials [38]. Typical Kernel densities include
Gaussian density basis, Gamma density basis and Beta density
basis. The respective Askey polynomials [38] are Hermite
polynomials, Laguerre polynomials and Jacobi polynomials.
These series expansions for the scalar case can be generically
expressed as follows:

f (y) = g (y)


1 +

∞∑

j=1

djHj (y)


 , (6)

whereg (y) is the kernel,dj is thej-th weight andHj (y) is
the j-th order basis function. All of these series expansion
methods use the basic properties of orthogonality between
density functions and polynomials. This property guarantees
the integration of density to be equal to one [32], [33]. Each
of these series expansion has different properties and different
supports. An important aspect of these expansions is that
they do not ensure positivity of the density at all points (for
example, it can be negative for particular choices of Skew and
Kurtosis). It is therefore important to characterize thesevalues
that produce the ”envelope” for the density approximation in
which it will remain positive. This characterization can be
carried out by finding the appropriate regions in the Skew-
Kurtosis plane (S-K plane) which generate positive support
[32], [33].

We will derive three series expansion methods, which will
be used for different practical scenarios (eg. different system
parameters). The first two are the Gram-Charlier and Gamma-
Laguerre series expansions. We then develop a new series
expansion which we term the Beta-Jacobi series expansion.

A. Gram-Charlier Series Expansion

The Gram-Charlier series expansion utilises a Gaussian
kernel,g (y), and Hermite polynomials,Hs (x), as basis func-
tions. These polynomials are defined in terms of the derivatives
of the normal density,g (y) as follows:

dsg (y)
dsy

= (−1)s Hs (y) g (y) . (7)

The Gram-Charlier series expansion is given by:

fY (y) =
1√
2πκ2

exp

(
− (y − κ1)

2

2κ2
2

) ∞∑

r=1

κr

r!

−dr (g (y))
dry

,

(8)

g (y) is the normal density andκr is ther-th cumulant ofY .
If we include only the first two correction terms to the

normal distribution we obtain theGram-Charlier A series
presented next.
Lemma 2 (Gram-Charlier A Series Expansion:). The fourth
order approximation of a probability distribution,fY (y), via
the Gram-Charlier A series is given by

fY (y) ≈
1√
2πκ2

exp

(
− (y − κ1)

2

2κ2
2

)

×
(
1 +

κ3

6κ3
2

H3

(
y − κ1

κ2

)
+

κ4

24κ4
2

H4

(
y − κ1

κ2

))
,

(9)

whereH3(y) = y3 − 3y and H4(y) = y4 − 6y2 + 3 are the
Hermite polynomials, andκ1, κ2, κ3, κ4 are the first, second,
third and fourth cumulants ofY .

As mentioned before, it is important to characterise the
regions in the S-K plane which yield positive support of the
density. This is presented in the following Lemma.
Lemma 3 (Positive density conditions [32]:). The Gram-
Charlier A series expansion yields positive values for the
densityfY (y) only if:

{
s (ỹ) = −24H3(ỹ)

d(ỹ) ,

k (ỹ) = 72H2(ỹ)
d(ỹ) ,

whereỸ = Y−κ1

κ2
and d (ỹ) = 4H2

3 (ỹ)− 3H2 (ỹ)H4 (ỹ) .

This region characterizes the positive density regions for
the Gram-Chalier series in terms of the Skew and Kurtosis
properties of the approximated distribution. The support of
the Gram-Charlier expansion isy ∈ R.

B. Gamma-Laguerre Series Expansion

The Gamma-Laguerre series expansion approximates a
probability distribution,fY (y), by utilising the orthogonality
between the Gamma density kernel and the Laguerre poly-
nomials in order to obtain an efficient series expansion [33].
In contrast to the Gram-Charlier series expansion where the
Hermite polynomials have support on the entire real line, the
Laguerre polynomials only have support on the positive real
line y ∈ R

+.
Instead of directly working withy, we first rescale it to

a R.V. ỹ by ỹ = by, where b = E[y]
Var[y] and seta = E[y]2

Var[y] .
Denoting the density of̃y asfỹ, we expressfỹ as follows:

fỹ (ỹ) = g (ỹ; a)

∞∑

n=1

AnL
(a)
n (ỹ) ,

where the kernel is the Gamma density, ie.g (ỹ; a) =
ỹa−1 exp−ỹ

Γ(a) , with shape = a and scale =1, and the orthonormal
polynomial basis (with respect to this kernel) is given by the
Laguerre polynomials (in contrast to Hermite polynomials in
the Gaussian case of the Gram-Charlier expansion), defined as

L(α)
n (x) = (−1)

n
x1−a exp (−x)

dn

dxn

(
xn+a−1 exp (−x)

)
.

Next we characterise the S-K region of the Gamma-
Laguerre series expansion in which it yields positive support.
These results are based on those derived in [33].
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Lemma 4 (Positive density conditions:). The Gamma-
Laguerre series expansion yields positive values for the density
fX(x) if:




s (x) = − 1

B1
(µ4(x)B2 +B3) for x ∈ [0,+∞)

k (x) =
(

B′

1B3

B1
−B′

3

)(
B′

2 − B′

1B2

B1

)−1

,
,

whereB1, B2, B3, B′
1, B′

2 andB′
3 are defined in [33].

C. Beta-Jacobi Series Expansion

In this section we develop a novel series expansion that
is based on the Beta kernel. This new expansion is relevant
for cases whereY has a bounded support[a, b]. To achieve
this, we construct the series based on a Beta kernel (instead
of Gamma or Normal kernels as before) and the Jacobi
polynomials. It is important to note that the Jacobi polynomials
are only orthogonal on[−1, 1]. Hence, we need to transform
Y so that it also has support[−1, 1] . This is achieved via the
transformation

X =
2

b− a

(
Y − a+ b

2

)
. (10)

We now present our novel Beta-Jacobi density series expan-
sion, see discussions in [39].
Theorem 2 (Beta-Jacobi density series expansion). The Beta-
Jacobi series expansion is given by:

fX(x) =
(x+ 1)θ−1 (1− x)η−1

B(θ, η)2θ+η−1

d∑

i=0

aiP
(η−1,θ−1)
i (x) ,

where the coefficients,ai, and the Jacobi polynomials,
P

(η−1,θ−1)
i (x), are given by:

ai =

i∑

j=0

E
[
Xj
] B (θ, η) (2i+ θ + η − 1) i!

Γ (i+ θ)

×
i∑

m=j

Γ (η + θ + i +m− 1)

Γ (i−m+ 1)Γ (η +m)m!2m

(
m

j

)
(−1)

m−j

P
(η−1,θ−1)
i (x) =

Γ (η + i)

Γ (η + θ + i− 1)

×
i∑

m=0

Γ (η + θ + i+m− 1)

Γ (i−m+ 1)Γ (η +m+ 1)m!

(
x− 1

2

)m

.

Proof. See Appendix C.

The distribution ofY is obtained from the distribution of
X via the transformation

fY (y) =
2

b+ a
fX

(
2 (y + a)

b+ a
− 1

)
, (11)

wherefX (x) is given in Theorem 2. The values ofθ, η need to
be chosen in order to find a good approximation ofX . We find
approximate values ofθ, η through K-S curve as mentioned
below.

Next we find the Skew-Kurtosis conditions to guarantee
positive density:

Theorem 3 (Positive density conditions:). The Beta-Jacobi
series expansion yields positive values for the densityfX(x)
if:




s (x) = − 1

B1
(µ4(x)B2 +B3) for x ∈ [−1,+1)

k (x) =
(

B′

1B3

B1
−B′

3

)(
B′

2 − B′

1B2

B1

)−1 ,

whereB1, B2, B3, B
′
1, B

′
2, B

′
3 are defined in Appendix D.

Proof. See Appendix D

Remark 1. To use the three series expansions above, we have
to calculate the first four cumulants and moments of the model
under IBPP and IPPP, which will be presented this in the next
section.

V. CALCULATION OF THE MOMENTS

As mentioned earlier, the series expansions we developed
requires the cumulants ofY under the alternative hypothesis.
To obtain the cumulants we need to calculate the Moment
Generating Function (MGF) of the observationYl|H1, given
by

MYl|H1
(t) = MZ1 (t)MZ2 (t) · · ·MZN (t)MWl

(t) .

Calculating the MGF of each of the elements,Zk, as presented
in Lemma 1 for BPP and IPPP, involves the following:

1) IBPP deployment:

MZk
(t) = EfZk

[exp(tz)] =

∫
w(k)z−2/α−1 exp(tz)

× β

((
z−2/α

R

)2−ν

; k +
−ν

1− ν
,Ni − k + 1

)
dz,

where

w(k) =
2(2− ν)

αR

Γ
(
k + 1−ν

2−ν

)
Γ(NB + 1)

Γ(k)Γ
(
NB + 1−ν

2−ν + 1
) .

2) IPPP deployment:

MZk
(t) = Ef(Zk) [exp(tZ)] =

∫
(2π)k

Γ(k)(2− ν)k−1

×
(
2

α

)
z−2/α((2−ν)k)−1 exp(− 2π

2− ν
z−2/α(2−ν))dz.

Solving both integral directly is difficult. Instead, an equivalent
solution can be obtained by calculating them-th moment for
Zk and then deriving the MGF based on the moments.
Theorem 4. Them-th moment ofZk is given by:

1) BPP deployment:

E [Zm
k ] =




R−mα/2 Γ(NB+1)Γ(k− mα

2(2−ν) )
Γ(k)Γ(NB− mα

2(2−ν)
+1)

, k − mα
2(2−ν) /∈ Z≤0

∞, otherwise

2) IPPP deployment:

E [Zm
k ] =

{(
ν+2
2π

)− αm
2(ν+2)

Γ(k− αm
2(ν+2))

Γ(k) , k − αm
2(ν+2) /∈ Z≤0

∞, otherwise

Proof. See Appendix E
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Based on the moments, we can calculate the cumulants and

moments.
Lemma 5. The first four cumulants ofYl|xs,H1, κi, i =
1, 2, 3, 4 are given by:

κ1 =

NB∑

k=1

√
P0E [Zk] ,

κ2 =

NB∑

k=1

P0

(
E
[
Z2
k

]
− (E [Zk])

2
)
+ σ2

W ,

κ3 =

NB∑

k=1

√
P0

3
(
E
[
Z3
k

]
− 3E

[
Z2
k

]
E [Zk] + 2 (E [Zk])

3
)
,

κ4 =

NB∑

k=1

P 2
0

(
E
[
Z4
k

]
− 4E

[
Z3
k

]
E [Zk]− 3 (E [Zk])

2
)

+
(
12E

[
Z2
k

]
(E [Zk])

2 − 6 (E [Zk])
4
)
.

The Moments can be expressed as polynomials of cumulants:

µ1 = κ1,

µ2 = κ2 + κ2
1,

µ3 = κ3 + 3κ2κ1 + κ3
1,

µ4 = κ4 + 4κ3κ1 + 3κ2
2 + 6κ2κ

2
1 + κ4

1.

Proof. See Appendix F.

Now that we have derived the four cumulants and moments,
we use the series expansion methods in Section IV to ap-
proximatepYl

(y|xs,H1) and derive the LRT in (4). Finally,
the Event Detection algorithm under FBPP is presented in
Algorithm 1.

Algorithm 1 Event Detection in Sensor Networks with Ran-
dom Deployment
Input: Yl, γ, NB, R, ν, α, σw

Output: Binary decision (H1, H0)

1) Calculate the first four moments according to Theorem
4.

2) Calculateκi andµi according the Lemma 5.
3) Perform S-K region analysis to assess the appropri-

ateness of each of the series expansions according to
Lemma 3, Lemma 4 and Theorem 3.

4) Choose the series expansion for which the S-K point is
inside the K-S region.

5) Evaluate the series expansion chosen in Section IV to
find p̂Yl

(y|xs,H1) according to (6).
6) CalculateΛ(Yl) via (4) and compare to the thresholdγ.

VI. SIMULATION RESULTS

We present the performance of the proposed algorithms
via Monte Carlo simulations. In particular we present the
followings:

1) Moment calculation accuracy: the series expansions
we develop are based on fourth order moments and
cumulants. Hence it is important to verify the accuracy
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(a) Homogenous BPP deployments. The parameters used:R = 100, α =

0.5, N = 10, ν = {0, 0.5}.
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(b) Non-homogeneous BPP deployments. The parameters used:R =

100, α = 0.5, ν = {0, 0.5}

Fig. 2: Comparison of the theoretical results of the first four
moments per Theorem 4 and the corresponding Monte Carlo
simulation results under BPP type deployment.

of the results which are based on the results derived in
Theorem 1, Lemma 1, Theorem 4 and Lemma 5.

2) Positivity regions of the estimated density: we char-
acterise the regions at which the density has positive
support, based on Lemma 3, Lemma 4 and Theorem 3.
We then show the implications of not choosing the
correct series expansion.

3) Detection performance: we present the detection and
false alarm probability via Receiver Operating Charac-
teristics (ROC) curves under different scenarios.

The simulations setting is as follows: the results are ob-
tained from50, 000 realizations for a given parameter set of
N, σw, ν, P0, R, α. The additive noise is assumed to be i.i.d
Gaussian distributed at each sensor.

A. Moments calculation

Figs. 2-3 present comparison of theoretical moments (The-
orem 4) and Monte Carlo simulations for BPP and PPP,
respectively. For both cases we consider both homogeneous
and non-homogenous deployments. For both BPP and PPP ho-
mogeneous deployments, the results show perfect agreement.
For non-homogenous PPP, the result slightly disagrees. This
is due to the generation of non-homogenous PPP. Specifically,

Remark 2. Given λ(x) = x−ν , within W , the expected
number of points,E [W ] is calculated below:

E [W ] =

∫

W

λ(x)dx =

∫ R

0

x−ν2πxdx =
2π

ν + 2
Rν+2

According to [40], pdf ofx is shown asg(x) = λx
E[W ] =

rν(ν+2)
2πRν+2 . Given a smallε, the range ofg(x) is given by[
ν+2
2πR2 ,

εν(ν+2)
2πRν+2

]
. One way to generate the non-homogenous

BPP is to use the accept and reject method. The procedure to
generate NFBPP is below:
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(a) Homogeneous PPP deployments. The parameters used:R = 100, α =

0.5, N = 10, ν = {0, 0.5}.
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(b) Non-homogeneous PPP deployments. The parameters used:R =

100, α = 0.5, ν = {0, 0.5}
Fig. 3: Comparison of the theoretical results of the first four
moments per Theorem 4 and the corresponding Monte Carlo
simulations under PPP type deployments

1) GenerateNs points within W , Ns should be large
enough.

2) Within theseNs, randomly selectsN points with prob-
ability λ(x)

εc .

The value ofε will affect the approximation of theoretical
moments. The smallerε, the better the approximation, how-
ever, the more difficult to generate the points inside the region.
In the simulation we selectε = 0.5.

B. Comparison of Critical Region

When the sensors are located close to the center of the
region, the empirical sample density and estimated densitydo
not agree. This is because those points close to the center
may violate the probability density because they will result
in an inaccurate sample mean. Therefore, we remove a small
hole around the center. We user to represent the radius of
the hole, which we call critical region. Figure 4a shows the
effect of removing those points for different critical region
sizes. In particular, we varyr ∈ {0.1, 0.5, 1, 5}. We also
compare the accuracy of series expansion methods with respect
to differentr. Fig. 4b clearly shows the effect thatr has on the
approximation for all three series expansion methods. Fig 4b
showS the probability density function (PDF) for different
values ofr. From extensive numerical experiments, we have
found that the choicer = 5 yields accurate approximations
for a range of moments and will be used in all simulations.

C. Marginal likelihood estimation via series expansion and
S-K region

As discussed in Section IV, we use the Skew-Kurtosis curve
to characterise regions where each of the series expansion
would yield a positive PDF, given set of system parameters.
It is therefore a useful tool which helps choose which series
expansion to use. In this section, we present several examples
to show how this will affect the approximation under each
series expansion. The different sets of parameters are presented
in Table I.
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Gram−Chalier
Gamma−Laguerre
Beta−Jacobi
Monte Carlo

(b) PDF estimation via Gram-Charlier, Gamma-Laguerre and Beta-Jacobi and
Monte Carlo simulation.
Fig. 4: Effect of critical region on marginal likelihood estima-
tion as a function of the critical region
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Negative Support Region

(b) PDF estimation vs. Monte Carlo simulation
Fig. 5: Gram-Charlier series expansion for two different sys-
tem parameters presented in Table I.

1) Gram-Charlier series expansion:In Fig. 5 we plot the
S-K curve and PDF Gram-Charlier series expansion estimation
for three different sets of system parameters. The three sets
of system parameters generate three different Skew-Kurtosis
values, represented by the red dot in each of the figures. In
the left figure, the S-K point falls at the region that satisfies
the conditions in Lemma 3, while the other two do no satisfy
the condition, which results in poor estimation of the PDF.
This illustration shows the ability of the Gram-Charlier series
expansion to accurately approximate the true distribution,
depending on system parameters. It is clearly shown that for
low SNR case, the approximation is good, but for high SNR
case, the approximation has a negative PDF approximation.

2) Gamma-Laguerre series expansion:In Fig. 6 we plot the
S-K curve and PDF Gram-Charlier series expansion estimation
for three different sets of system parameters. In contrast with
Gram-Charlier series expansion, it is clearly shown that for
high SNR, the approximation is good. However, for low
SNR, the approximation is not very accurate. This is because
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Gram Charlier Gamma Laguerre Beta Jacobi

Parameters Set1 Set2 Set3 Set1 Set2 Set3 Set1 Set2 Set3

R 100 100 100 100 100 100 100 100 100

P0 1 1 1 1 1 1 1 1 1

N 50 10 10 10 10 10 10 10 10

α 2 2 1.5 2.5 1.7 3 2.5 1.7 3

ν 0 0 0.6 0 0 0 0 0 0

σw 0 0 0.4 1 0 0.4 1 0 0.4

TABLE I
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(b) PDF estimation vs. Monte Carlo simulation
Fig. 6: Gamma-Laguerre series expansion for three different
system parameters in Table I.
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Negative Support Regions

(b) PDF estimation vs. Monte Carlo simulation
Fig. 7: Beta-Jacobi series expansion for three different system
parameters in Table I.

Gamma-Laguerre series expansion only has positive support.
3) Beta-Jacobi series expansion:In Fig. 6 we plot the S-

K curve and PDF Beta-Jacobi series expansion estimation for
three different sets of system parameters. For all three cases,
the approximation is accurate. The only draw back for Beta-
Jacobi estimation is the small fluctuations around the tail of
the density.

D. Event detection performance comparison

We now present the detection performance of the algorithms
via Receiver Operating characteristics (ROC) for different se-
ries expansion methods. We select two representative scenarios
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Fig. 8: ROC curves for the three series expansions for different
values of path-loss exponentα = {2, 2.2, 2.4}.
of high and low SNR to show the direct effect of the S-K curve
has on the performance of the series expansions.

Fig. 8 presents the ROC curve for high SNR,σw = 0.01
and various values of the path-loss exponentα = {2, 2.2, 2.4}.
It can be seen from the ROC curves that Gram-Chalier
expansion performs the worst while our Beta-Jacobi expansion
performs best in these three cases. The S-K curves under each
case is also plotted. It can be seen from these figures that
the SK points are located outside the region for the Gram-
Chalier expansion, while inside the region for Beta-Jacobi
and Gamma-Laguerre expansions. The reason for the poor
performance of Gram-Chalier is that the scenario is of high
SNR values. When the additive noise variance is very small,
it is difficult for Gram-Chalier to approximate the marginal
likelihood under the alternative hypothesis since the support
is quite narrow.

Fig. 9 presents the ROC curve for low SNR,σw = 0.4 and
various values of the path-loss exponentα = {1.9, 2.1, 2.3}. In
this case our Beta-Jacobi expansion outperforms the Gamma-
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Fig. 9: ROC curves for the three series expansions for different
values of path-loss exponentα = {1.9, 2.1, 2.3}.
Laguerre expansion and is comparable with the Gram-Chalier
expansion. The system parameters are:N−20, ν = 0.6, σw =
0.4, R = 100. α is changing from1.9 to 2.3. It is shown that
Gamma-Laguerre performs the worst for these cases. This is
because when the support of the marginal density has negative
values, which the Gamma-Laguerre can not obtain. The same
interpretation can also be found in the S-K curves.

VII. C ONCLUSIONS

We developed new event detection algorithms in Wireless
Sensor Networks under two types of random spatial deploy-
ments. We formulated the problem as a binary hypothesis
testing problem and designed optimal decision rule for it. We
derived the marginal densities under two hypothesis. We used
low complex and high accurate series expansion methods to
approximate the marginal density under alternative hypothesis.
We showed the various series expansion methods are practical
and suitable for different practical scenarios. We also used
extensive simulation results to generate the Receiver Operating
Curves (ROC) under different set of parameters. We verified
the optimality of the series expansion methods and show the
Skew-Kurtosis Curves for each method. Our schemes provided
useful benchmark for other centralized and distributed scheme
designs.

APPENDIX A
PROOF OFTHEOREM 1

Proof. We begin by calculatingp, as defined in Definition 1.
According to [27], assume thatbd (x, r) is contained within
W andW is circle with RadiusR. We then obtain that

p =

∫

bdx,r∩W

λ(x)dx =

∫
bd(x,r)

λ(x)dx
∫
W

λ(x)dx

=

∫ r

0 x−ν2πxdx
∫ R

0
x−ν2πxdx

=





( r

R

)2−ν

, ν < 2

log r − log ε

logR− log ε
, ν = 2

r2−ν − ε2−ν

R2−ν − ε2−ν
, ν > 2,

whereε → 0+.
Next, utilizing the results in [27], we can find the general

expression for distribution distribution under inhomogeneous
deployment. The procedure is same except that we use the
expression forp from the above equation. For BPP,NB is
finite number. ForIPPP , N is asymptotically+∞. we obtain
the following:
BPP deployment:

fRk
(r|xs,H1) =

dp
dr

(1− p)NB−kpk−1

B(NB − k + 1, k)

=
2− ν

R

(1− p)
NB−k

pk−1+ 1−ν
2−ν

B(NB − k + 1, k)

=
2− ν

R

Γ
(
k + 1−ν

2−ν

)
Γ(NB + 1)

Γ(k)Γ
(
NB + 1−ν

2−ν + 1
)

× β(
( r

R

)2−ν

; k +
1− ν

2− ν
,NB − k + 1).

IPPP deployment:

fRk
(r|xs, N = NP ,H1) =

2− ν

R

(1− p)N−kpk−1+ 1−ν
2−ν

B (N − k + 1, k)

=
2− ν

R

(1 − p)N−kpk−1+ 1−ν
2−ν Γ (N + 1)

Γ (N − k + 1)Γ (k)
.

APPENDIX B
PROOF OFLEMMA 1

Proof. We utilize the results for transformation of random
variables [] to obtain:
BPP deployment:

fZk
(z) = −f

(
φ−1 (z)

) dφ−1 (z)

dz

=
2(2− ν)

Rα

Γ
(
k + 1−ν

2−ν

)
Γ(NB + 1)

Γ(k)Γ
(
NB + 1−ν

2−ν + 1
) z−2/α−1

× β(

(
z−2/α

R

)2−ν

; k +
1− ν

2− ν
,NB − k + 1)
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IPPP deployment deployment:
Let z = φ(r) = r−α/2, y ∈ (0,∞). Then

fZk
(z) = −fRk

(
φ−1 (z)

) dφ−1 (z)

dz

=
(2π)k

Γ (k) (2− ν)
k−1

(
2

α

)
z−2/α((2−ν)k)−1

× exp

(
2π

2− ν
z−2/α(2−ν)

)
.

APPENDIX C
PROOF OFTHEOREM 2

Proof. To obtain the coefficientsai, we need to solve the
following expression:

ai =
B (θ, η) (2i+ θ + η − 1) Γ (i+ θ + η − 1) i!

Γ (i+ θ) Γ (i+ η)

×
∫ 1

−1

f (x)P
(η−1,θ−1)
i (x) dx.

Using the following series expansion:
(
x− 1

2

)m

=
1

2m

m∑

j=0

(
m

j

)
(−1)m−jxjdx,

and after some algebraic manipulations, we obtain that

ai =

i∑

j=0

µj
B(θ, η) (2i+ θ + η − 1) i!

Γ (i+ θ)

×
i∑

m=j

Γ (θ + η + i+m− 1)

Γ (i−m+ 1)Γ (η +m)m!2m

(
m

j

)
(−1)

m−j
.

whereµj = E
[
Xj
]
=
∫ 1

−1 f (x)xjdx.

APPENDIX D
PROOF OFTHEOREM 3

Proof. We express the fourth order Beta-Jacobi series expan-
sion as follows:

f(x) =
(x+ 1)θ−1 (1− x)η−1

B(θ, η)2θ+η−1

4∑

i=0

aiP
(η−1,θ−1)
i (x)

= B1µ3 +B2µ4 +B3,

where

B1 = (C33P3 + C43P4)
(x+ 1)

θ−1
(1− x)

η−1

B(θ, η)2θ+η−1
,

B2 = C44P4
(x+ 1)

θ−1
(1− x)

η−1

B(θ, η)2θ+η−1
,

B3 =
(x+ 1)

θ−1
(1− x)

η−1

B(θ, η)2θ+η−1
((C30 + C31µ1 + C32µ2)P3)

+
(x+ 1)

θ−1
(1− x)

η−1

B(θ, η)2θ+η−1

(
2∑

i=0

aiPi + (C40 + C41µ1 + C42µ2)P4

)
,

Cij =
B (θ, η) (2i+ θ + η − 1) i!

Γ (i+ θ)

i∑

m=j

(
m

j

)
(−1)

m−j

× Γ (η + θ + i+m− 1)

Γ (i−m+ 1)Γ (η +m)m!2m
,

andµ1 = E [X ] , µ2 = E
[
X2
]
.

In order to guarantee thatf (x) is positive, we obtain the
following set of equations
{
B1µ3 +B2µ4 +B3 = 0, (f (x) = 0)

B′
1µ3 +B′

2µ4 +B′
3 = 0, (f ′ (x) = 0)

for x ∈ [−1, 1]

Solving for the Skew and Kurtosis, we obtain that:



µ3 (x) = − 1

B1
(µ4(x)B2 +B3)

µ4 (x) =
(

B′

1B3

B1
−B′

3

)(
B′

2 − B′

1B2

B1

)−1 , for;x ∈ [−1,+1)

where

B′
1 = (C33P

′
3 + C43P

′
4)
(x+ 1)

θ−1
(1− x)

η−1

B(θ, η)2θ+η−1

+B1

(
θ + 1

x+ 1
− η − 1

1− x

)
,

B′
2 = C44P

′
4

(x+ 1)
θ−1

(1− x)
η−1

B(θ, η)2θ+η−1
+B2

(
θ + 1

x+ 1
− η − 1

1− x

)
,

B′
3 =

2∑

i=0

aiP
′
i + (C3 + C31µ1 + C32µ2)P

′
3

+ (C4 + C41µ1 + C42µ2)P
′
4

(x+ 1)
θ−1

(1− x)
η−1

B(θ, η)2θ+η−1

+B3

(
θ + 1

x+ 1
− η − 1

1− x

)
,

and

P ′
0 = 0

P ′
i =

Γ (η + i)

Γ(η + θ + i− 1)

×
(

i∑

m=1

Γ(η + θ + i+m− 1)

2Γ(i−m+ 1)Γ(η +m)(m− 1)!

(
x− 1

2

)m−1
)

.

APPENDIX E
PROOF OFTHEOREM 4

Proof. 1) BPP deployment:
We define the following change of variables:X =(

Z−2/α

R

)2−ν

. We now express them-th moment ofZk

as:

E [Zm
k ] =

∫
w(k)β

(
x; k +

1− ν

2− ν
,NB − k + 1

)

×
(
x− α

2(2−ν)R−α/2
)− 2

α+m−1 dx− α
2(2−ν)R−α/2

dx
dx

= C1

∫ 1

0

1

B
(
k + 1−ν

2−ν , NB − k + 1
)xk− mα

2(2−ν)
−1

× (1− x)
NB−k dx

= C1

B
(
k − mα

2(2−ν) , NB − k + 1
)

B
(
k + 1−ν

2−ν , NB − k + 1
) ,
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whereB (·) is theβ function and

C1 = R−mα/2
Γ
(
k + 1−ν

2−ν

)
Γ(NB + 1)

Γ(k)Γ
(
NB + 1−ν

2−ν + 1
) .

Finally we obtain that

E
[
Zm
kl

]
= R−mα/2

Γ (NB + 1)Γ
(
k − mα

2(2−ν)

)

Γ (k) Γ
(
NB − mα

2(2−ν) + 1
) .

2) IPPP deployment: We express them-th moment as
follows:

E[Zm
k ] =

∫ ∞

0

zmfZk
(z)dz

=
2

α

(2π)k

Γ(k)(2− ν)k−1

∫ ∞

0

zm−2(2−ν)k/α−1

× exp(− 2π

2− ν
z−2/α(c+2))dz.

Using the identityΓ (t) =
∫∞
0

xt−1 exp−x dx, and using
the following change of variablesX = 2π

c+2Z
−2/α(2−ν),

we obtain that

E [Zm
k ] =

2

α

(2π)k

Γ (k) (2− ν)k−1

α

2 (2− ν)

(
2− ν

2π

)− αm
2(2−ν)

+k

×
∫ +∞

0

exp (−x)xk− αm
2(2−ν)

−1dx

=

(
2− ν

2π

)− αm
2(2−ν) Γ

(
k − αm

2(2−ν)

)

Γ (k)
.

APPENDIX F
PROOF OFLEMMA 5

Proof. 1) BPP deployments:
Using the result in Theorem 4, MGF ofZk is given by:

MZk
(t) = 1 +

∞∑

m=1

tm

m!
R−mα/2

Γ(NB + 1)Γ
(
k − mα

2(2−ν)

)

Γ(k)Γ
(
NB − mα

2(2−ν) + 1
)

Due to the conditional independence ofZk, and that the
MGF of Wl is given byMWl

(t) = exp(12σ
2
wl
t2), we

have that

MYl
(t) =

NB∏

k=1

MZk
(t)MWl

(t)

=

NB∏

k=1


1 +

∞∑

m=1

(
√
P0t)

m

m!
R−mα/2

Γ(NB + 1)Γ
(
k − mα

2(2−ν)

)

Γ(k)Γ
(
NB − mα

2(2−ν) + 1
)




× e
1
2σ

2
W t2 .

2) IPPP deployments:
Using the result in Theorem 4, MGF ofZk is given by:

MZk
(t) = 1 +

∞∑

m=1

tm

m!

(
2− ν

2π

)− αm
2(2−ν) Γ

(
k − αm

2(2−ν)

)

Γ(k)

Using the same procedure as before, we obtain that

MYl
(t)

=

NP∏

k=1


1 +

∞∑

m=1

(
√
P0t)

m

m!

(
2− ν

2π

)− αm
2(2−ν) Γ

(
k − αm

2(2−ν)

)

Γ(k)




× σ2
W t2.

In order to derive cumulants and moments, first we find the
cumulant functiong (t) under both deployments.

1) BPP deployment:

g (t) = logMYl
(t)

=

NB∑

k=1

log

(
1 +

∞∑

m=1

(
√
P0t)

m

m!
R−α

2 mh(k)

)
+

1

2
σ2
wt

2,

where

h(k) := R−mα/2
Γ(NB + 1)Γ

(
k − mα

2(2−ν)

)

Γ(k)Γ
(
NB − mα

2(2−ν) + 1
) .

Next we obtain the first cumulantκ1 as follows:

κ1 =
dg (t)

dt
|t=0

=

NB∑

k=1

√
P0t

0

1 h(k) +
∑∞

m=2 m
(
√
P0)

mtm−1

m! h(k)

1 +
∑∞

m=1
(
√
P0t)m

m! h(k)
|t=0 + σ2

W t|t=0

=

NB∑

k=1

√
P0h(k)

=

NB∑

k=1

√
P0E [Zk] .

Similarly, by taking the second, third and forth derivative
of g (t). We next find theκ2, κ3 and κ4 as shown in
Theorem 5.

2) IPPP deployment:
κ1, κ2, κ3 andκ4 are in the same form as in BPP de-
ployment using the appropriate values for the moments.
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