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Abstract—We develop a new class of event detection cisions over perfectly known wireless channels. In [15] the
algorithms in Wireless Sensor Networks where the sensors problem of distributed event detection under Byzantinackt

are randomly deployed spatially. We formulate the detectia o5 onsidered. Theoretical performance analysis wasedkri
problem as a binary hypothesis testing problem and design # ;

optimal decision rules for two practical random deployment N [16] for detection fusion under conditionally dependand
scenarios, namely the Poisson Point Process and BinomialiRb independent local decisions. Distributed detection inssen

Process deployments. To calculate the intractable margiha networks over fading channels with multiple receive angenn
likelihood density under alternative hypothesis, we develp gt the GW was considered in [17].

three types of series expansion methods which are based on an . .
Askey-orthogonal polynomials. In addition we develop a nosl Previous works on event detection have concentrated on

framework to provide guidance on which series expansion is ases where the sensors deployment (ie. the locations of the

most suitable (ie. most accurate) to use for different syste’s sensors) igleterministic and known to the GW ( [4], [16]-

parameters. Extensive Monte Carlo simulations are carriedout  [19] and references within). In contrast, the problem ofrgve

e o s o . Tpach o i detecion where the sensors aeorly deployed In the

parameters have on detection p;erformance via the Receiver field has .not been addressgd before. This problem _'S of great

Operating Curves (ROC). practical interest because in many cases the locationseof th
sensors are unknown to the GW. The following are examples

Keywords: Wireless sensor networks, Event Detection, Bi- of such scenarios:

nomial Point Process, Poisson Point Process, Series expans 1) Surveillance: sensor nodes are dropped by airplanes,

unmanned aerial vehicles or ships in order to survey
a region of interest that is inaccessible from the ground.

|. INTRODUCTION To increase life span and reduce costs of the sensors,
Wireless Sensor Networks (WSN) have attracted consider- they are not equipped with localisation device (ie. GPS)
able attention due to the large number of applications, sisch and their location is considered random and unknown
environmental monitoring, weather forecasts [1]-[3],vsilr [20], [21].

lance, health care, and home automation [3], [4]. WSN cemisis 2) Privacy-preserving participatory sensing: individual
of a set of spatially distributed sensors which monitor a  share certain environmental information (eg. temperature

spatial physical phenomenon containing some desiretakri readings, traffic conditions etc.) to produce aggregated
(e.g pressure, temperature, concentrations of substsoced models. In order to protect their privacy, the users do
intensity, radiation levels, pollution concentrations.gtand not share their location information [22].

regularly communicate their observations to a Gateway (GW) addition, in the wireless communication literature ther
[5]-[7]- The GW collects these observations and fuses thdms been great interest in random deployments of wireless
in order to perform event detection, based on which effectinetworks, see for example [23], [24]. These works make use
actions can be made [4]. The detection problem of the WSM tools from stochastic geometry to calculate parameters
can be cast as distinguishing between two hypotheses, so€linterest, such as capacity, Signal-to-Noise-Ratio (PR
as the absence (Null Hypothesis), or presence (Alternatisech systems. These works mainly consider homogeneous
Hypothesis) of a certain event [8]-[10]. The ability of a WSNleployments, mainly due to the mathematical tractability.
to perform such detection and decisions is crucial for veio practice however, it's very unlikely that the sensors woloéd
applications, for example the detection of the presence distributed in space in a spatially homogenous way, bueatst
absence of a target in a surveillance system, detection aofhon-homogeneous behaviour is more likely to occur, see
missiles, detection of chemical, biological or nuclearnphs [25], [26].
and many more [11]-[13]. It is therefore imperative for the To address these two practical aspects of random deploy-
WSN to be accurate in detecting a valid event (high detectiafent of inhomogeneous spatially deployed sensor networks,
rate) while maintaining as low as possible false detection ( new models and algorithms for event detection need to be
false alarm). developed. In addition, it is important for network design®

For example, in [14] the problem of distributed detectionnderstand how different parameters would affect the perfo
was considered, where the sensors transmit their local deance of the WSN before they deploy the WSN, (i.e., number



of sensors, region of deployment, level of inhomogeneity ofsed as a guide to choosing the appropriate series exp%msion

the deployment etc.) in order to obtain the optimal detectidVe will illustrate the implications of not choosing the aeat

performance. It is therefore important to study the averageries expansion via simulations. Importantly, the athars

performance of a network before a decision is made. we develop only require deriving the first four cumulants
At the heart of distance based algorithms in WSN undend moments to obtain good detection performance and are

random spatial deployment lies the understanding of thieerefore of low computational complexity.

distance distribution. Such quantities have been derivettu ~ We summarize our three key contributions as follows.

spatial deployment such as Poisson Point Process (PPP) anfl \we extend the distance distribution results of [27], [28]
Binomial Point Process (BPP) [27]-{30]. In [27], sensoms ar o pojsson Point Process and Binomial Point Process
uniformly randomly distributed following a BPP. The autkor to the inhomogeneous deployment case (presented in
analyzed various properties of such networks including the  Thegrem 1). These results are required in order to
distance distribution, moments of distance etc. In [28% th develop the optimal detection algorithm we derive.
authors considered a more general distribution, namely thez) We develop three different types of Askey-orthogonal
PPP and provided analysis of the distance distributions for polynomial expansion methods to approximate the
such ne_tyvorks. In [29] the authors discuss the deployment marginal likelihood density (presented in Section IV).
of cognitive cellular wireless networks. In [30] the author The first is based on Hermite polynomials and is known
considered distance distributions on mobile wireless gt as the Gram-Charlier series expansion; the second is
It is important to note that these papers have only tackled pased on Laguerre polynomials and is known as the
homogeneous type deployments and the practical cases -of non Gamma-Laguerre series expansion; the third expansion
homogeneous deployments have not been addressed.  that we derive for the first time is the Beta-Jacobi series
In this paper, we develop novel event detection algorithms i expansion and is based on Jacobi polynomials (presented
WSN for the case where the sensors are randomly distributed i Theorem 2 and Theorem 3).
in space and thei.r locations are ur_1kn0\(vn to the GW. Whengz) we develop a novel analysis tool to characterise the con-
the target (event) is present/active, it emits energy (sitoor ditions (Skew-Kurtosis region) at which each expansion

electromagnetic) which is measured by each of the sensors. has a positive support (presented in Section IV). The new
All the measurements from the sensors are then aggregated to oo| is of great importance as it provides a guidance as

the GW which makes the final decision whether the target is to which series expansion to use under different type of
present or absent. We assume an energy decay model in which system parameters, such as noise distribution, path-loss
the amount of energy each sensor measures falls off with  exponent parameter, SNR value etc.

distance and obeys an inverse power-law where the expanentig) we show that our proposed Beta-Jacobi series expansion

known as the path loss exponent [24]. In contrast to previous  provides better detection performance that the standard
works which assumed that the locations of the sensors are Gram-Charlier Gamma_Laguerre series expansions for

known to the GW [8], [17], [31], we assume a random spatial  djfferent practical scenarios.
deployment. That means that the distance from the target to
the sensors is now a random variable.

To obtain the optimal decision rule, the likelihood ratistte
(LRT) for the two hypotheses (event present/ absent) needsn this section we present the model assumptions. We begin
to be evaluated. This involves the calculation of the maginwith a formal definition of the Finite Binomial Point Process
likelihood density under each of the hypotheses. While dand Infinite Poisson Point Process followed by system model
riving the marginal likelihood under the Null hypothesis isissumptions. These processes are special cases of spattal p
trivial, the derivation of the marginal likelihood undereth process. In general a spatial point process is a randonripatte
Alternative hypothesis is not readily obtained in closed#, of points, in our case i2-dimensional space.
since it involves a multi-variate convolution which cannot One of the most useful ways to handle a spatial point pro-
be solved exactly. As such, we adopt instead a principledss is to generalise the notion of one-dimensional sgatiat
approach to approximating the marginal likelihood under thprocesses involving interval counté(a, b] to the concept of
alternative hypothesis. To do so we exploit stochastic geomegion countsN (B) which is the number of points falling
etry techniques to model the placement of the sensors [2if].a setB C Q C R%. One may then characterize a spatial
We then approximate the intractable distribution density vpoint process by two measures, the counts of points in sets,
series expansions techniques which are based on an Askey; sets whereV(B) > 0 for regionsB and the vacancy sets
orthogonal polynomial expansion. The three series expassi VV(B) = N(B) = 0 where there are no counts present. The
we develop are the Gram-Charlier, Gamma-Laguerre and Bei@o most commonly used spatial point processes are the BPP
Jacobi type series expansions. Since these expansionstdoand PPP as described below, see details in [34].
ensure positivity of the density at all points, it is impaerta pefinition 1 (Finite Binomial Point Process (FBPP) [34],
to characterise the system parameters for which the den$#g]). A Finite Binomial Point Process is defined by consid-
approximation will remain positive. This characterisatican ering a fixed number of points at random locations in a
be carried out by finding the appropriate regions in the SkeWounded regioni’ c R2. Define by Xy, ..., X, the i.i.d.
Kurtosis plane (S-K plane) which generate positive suppqgndom locations with the intensity of the number of points i
[32], [33]. This characterisation is important and shoull ba small region around any locatior denoted as\ (x). This

Il. SYSTEM MODEL AND PROBLEM FORMULATION



produces a probability density of eacty; given by

A= ifxzeW,
z) =< AW ’ 1
fx(@) {0, otherwise, @
where\(W) denotes the area d¥'. Each random poin; is
uniformly distributed in/ so that for a bounded s&® ¢ R?
on has the distribution
B
Pr(X; € B) = / fx(z)dx = MBOW)
B

GG )

In this paper we will consider a general case involvin
an inhomogeneous version of the finite domain spatial BF
(inhomogeneous FBPP). The distribution of the points wi
have a density'x () given by the decaying power law, relative
to the center ofi¥’ which is specified to be a disc in our

applications. Therefore it will have a form given according

Frl) = {x"l (x), fzeW 3)

0, otherwise,

with reference to the center &¥.

Inhomogeneous Binomial point process=1 Inhomogeneous Poisson point process:1
1

Fig. 1: Realisations from Homogenous BPP deployment (top
left), Non-homogenous BPP deployment (bottom left), Ho-
mogenous PPP deployment (top right) and Non-homogenous
PPP deployment (bottom right) .

The second point process to be considered will be on an an IPPP deployment (Definition 2) in Zadimensional
infinite domain and will be considered to be a PPP defined region.

according to Definition 2.

Definition 2 (Infinite Poisson Point Process (IPPP) [35])

Consider a locally compact metric spad® C R? and

measureA on W which is finite on every compact set and

contains no atoms. Then the spatial PPPIdhwith intensity
measureA is a point process oMl such that

« for every compact seB C W, the countN(B) is
distributed according to a Poisson distribution witf{ B)
mean; and

o if By,...,B, are disjoint compact sets, then

N(B;),...,N(B,,) are independent.

a) For FBPP deploymentyp sensors are deployed
in a circle with radiusR.

b) For IPPP deployment, an unknown random number
of sensors are deployed in a circle with radids
Note that for the case of IPPP, the number of points
Np is not fixed.

The spatial density of the sensors is given X(k) =
x VY, v#0.
4) The unknown random location of thé&-th sensor
(k= {15"' 7N}) is Xy, = [Xlwyk]'
The amount of energy thé-th sensor measures is

5
In the examples considered in this paper we will utilise one  jnyersely proportional to the Euclidean distance between

of two possibilities:

« Homogeneous IPPP (HIPPP), wharis constant.

« Non-homogeneous IPPP (NIPPP), wheis not constant.
Without loss of generality, we also assumigx) = x
is a power law withv > 0.

the source and the sensor and is given\bER,;a/Q.
The random variabl&;, represents the random distance
between thek-th sensor and the source. This distance
is defined as the minimum radius of the ball with
centerxg, that contains at least points in the ball,

The difference between the FBPP and the IPPP is that .., R = inf{r : {Ru), R, -+, Ruy} € Bx, (1)}

the number of point: within set V, is a known constant
under FBPP, and is eandom unknowrunder IPPP. Fig. 1

By, (r) is the ball with radius- and center ak,.

s

6) Each sensor transmits its observation over a perfect

presents realisations from homogenous BPP, inhomogeneous channel to the GW via a shared medium. The observed
BPP, homogenous PPP and inhomogeneous PPP, respectively. Signal at the GW in thé-th time slot(l = {1,---, L})

A. Wireless Sensor Network Operation Model

We now present the system model for the wireless sensor

network.

1) The source is present() or absent ;). UnderH,,
the source transmits constant powéy, and underH,,
the source does not transmit any powgs & 0).

2) The location of the source (if present) is assumed known
Xs = [x0,yo]. We assume without loss of generality, that

it is located at the center of circle of radiis

is a linear combination of all the signals given by:

Ho: Y, =W,

N;
Hi:Yi=) VRR 4w,
k=1

where; is the i.i.d additive Gaussian noigé(0, oy, ).
The parametet is the path-loss coefficient.

We proceed by presenting the optimal decision rule for

3) Consider a WSN consisting of sensors with locatiorthke event detection. We then derive the various components
following either a FBPP deployment (Definition 1) orrequired in order to evaluate the optimal decision rule.
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B. Optimal Event Detection Decision Rule where 8 (z,a, B) 1= —L—2°"1 (1 —2)" " is the 8 distri-

. ~ B(a,p) " .
The optimal decision rule is a threshold test based on thgtion andl’ (n) := (n — 1)! is the Gamma function. For both
likelihood ratio [36]. We consider a frame-by-frame deimat cases, the support dt;, is Z;, € R™.
where the length of each frame s The decision rule is then

given by: Proof. See Appendix A. 0
p(Y1.L|xs, Ho) Ho Corollary 1. WhenN — +oo and R — +oo, the non-

A(Y;. )& 2 2ms 2 > , 4 : 2—v

(Yi.r) p Vi, H1) 2! (4)  homogenous BPP converges to a IPPP. Sipee (r/R)° ™",

then R = rp~ 7. Also, N = [, A(r)dr = 2= R2™". We

where the threshold/ can be set to assure a fixed systerﬂavep _ (T/R)27V — 20" The densityf, is given by:
= —_ k .

false-alarm rate under the Neyman-Pearson approach or can N(Ez-v)!
be chosen to minimize the overall probability of detectiomme fr, (r|xs, H1)
Rt e A W E L EV LG LT
as g yp L 1:L[Rsy Tk )y — Y 4L NS oo r F(N_k+1)l-\(k)
L _ (27T)k T(Q—l/)k—l exp [ — 2777'2_1/
p(Vip|xe, He) = [ [ p(Vilxs, M) T(k)(2 — v)k—1 21
=1 k—1 )
. o . 1 [[icog (N —14)
This decomposition is useful as it allows us to work on a * N NE
lower dimensional space, resulting in efficiency gains for t o)k 9y 2= NE
algorithm we develop and requiring no memory storage for = —( ) S A il O(—=)
(k)2 —v)k—1 2—v NFk

data.

_ (27r)k 2kt exp (_ 27Tr2—1,) |

IIl. EVENT DETECTIONALGORITHM UNDER RANDOM L(k)(2 —v)t 2-v

POINT PROCESSSENSORDEPLOYMENT Next, based on the result in Theorem 1, we derive the
ensity distribution of each of the elements in the observa-
on under the alternative hypothesis. This involves the
non-linear transformation of the random distance, namely

The optimal decision rule in (4) involves calculating th(?
marginal likelihood under each hypothesis(Yi.r|xs, Hi), !
k = 0,1. The marginal likelihood undet#, can be easily a2
calculated as it follows a Normal distribution. The marginafzk (r=/%xs, Ha). _ ,
likelihood under the alternative hypothesis(Y;|x,, H1), is -€mma 1. The densityfz, (z[xs, 1) = fz, (r*/2[xs, H1)
not attainable in closed form because it involves solving thS 9iven by:

(N +1)-fold convolution as we will show in this section (see 1) BPP deployment:
5)). We will therefore develop a novel approximation of the
(5)) P bp 2(2,V)F<k+é:_Z)F(NB+1)

marginal likelihood under the alternative hypothesis,eoas Fa (2[%0, Ha) =
T aR r(k)r(NB+§:5+1)

on an Askey-orthogonal polynomial expansion. In partigula
we will derive the Gram-Charlier, Gamma-Laguerre and Beta- )
. . . —2/a —v
Jacobi type series expansions. _ 5 ((z / > et 1’_’/,NB —k+ 1) zm2/e1,
We begin with obtaining the distribution of the distance R 2—v
between thek-th sensor and the source location, denoted
by fr, (r|xs, H1). We derive this density for both BPP and 2) !PPP deployment:

IPPP deployments. To achieve that we extend the earlier (2m)* 2
work of [27] who derived the distance distribution for the fz, (zlxs,n = Np, Ha) = W (E)
homogeneous case, to the inhomogeneous case. 9
Theorem 1. The density of the Euclidean distance between x 77 2/e(@=rk) =1 oy ( T 22/0‘(2”)> .
the k-th sensor and the sourc®), is given by: 2-v

1) BPP deployment: For both cases, the support &, is Z;, € (R=%/2, ).

2-1)T (k: n %:—5) T (Np+1) Proof. See Appendix B. O
Fry (rlxs, Ha) = RT (k)T (N 1-v Now that we have derived the density and distribution of
Bt + 1) ! . .
each of the elements ilf;, we need to derive the density of

. (L)qu . 1— Y Np_ k1) the term> p, Vo Zy.. We express this random sum bfas
R 2—v an N-fold convolution of Zy, k € {1,..., N}, given by

2) IPPP deployment:

Fr () = <N () = / f2m 14— 0) 2y, (w)duw,
fR;,,., (7"|X5,TL:NP,H1) e

5

(2m)" 272 . : ©
= —Hr@*”k*l exp (— ) , wherex represents the convolution operation. Each of these
I'(k)(2-v) 2-v convolution integrals is intractable and cannot be solved



analytically in closed form. To approximate the marging} (y) is the normal density and, is ther-th cumulant oné
likelihood Y; we will utilise a series expansion approach |f we include only the first two correction terms to the
presented in the next section. normal distribution we obtain th&ram-Charlier A series
presented next.
IV. PROBABILITY DENSITY APPROXIMATION VIA SERIES Lemma 2 (Gram-Charlier A Series ExpansionJhe fourth
EXPANSION METHODS order approximation of a probability distributionfy (y), via

In order to evaluate the marginal likelihood in (5), we derivt"® Gram-Charlier A series is given by

novel approximation for the marginal likelihood. We deyglo 1 (y — K1)?
three different series expansion methods for representiag  / (#) ~ VoL (_27,{%)
marginal likelihood using orthogonal basis functions [32] . Y — K1 K Y — K1 ©)
[33]. We will show how these expansions are applicable % (1+—3H3( ) 51l 4( ))7
under different scenarios. The series expansion we ugliee 2
based on a kernel density multiplied by polynomials, knowwhere Hz(y) = y* — 3y and Hy(y) = y* — 6y® + 3 are the

as Askey polynomials [38]. Typical Kernel densities in@udHermite polynomials, ane, x2, x5, 4 are the first, second,
Gaussian density basis, Gamma density basis and Betayderibitd and fourth cumulants of’.

basis. The respective Askey polynomials [38] are Hermite As mentioned before, it is important to characterise the
polynomials, Laguerre polynomials and Jacobi polynomialegions in the S-K plane which yield positive support of the
These series expansions for the scalar case can be gelgerickinsity. This is presented in the following Lemma.

6K5 K2 Ko

expressed as follows: Lemma 3 (Positive density conditions [32]:)The Gram-
- Charlier A series expansion yields positive values for the
F@) =g (14> dH; () |, (6) density/y(y) only if ~
J=1 S (g) =-24 I;Iizz(;;)7
whereg (y) is the kerneld; is the j-th weight andH; (y) is k(j) =722,

the j-th order basis function. All of these series expansion S B y - ~ B
methods use the basic properties of orthogonality betweWhereY = = andd (y) = 4H; (§) — 3Hz (§) Ha (7) -
density functions and polynomials. This property guaresite This region characterizes the positive density regions for
the integration of density to be equal to one [32], [33]. Eadhe Gram-Chalier series in terms of the Skew and Kurtosis
of these series expansion has different properties anerelift properties of the approximated distribution. The suppdrt o
supports. An important aspect of these expansions is tia@ Gram-Charlier expansion isc R.

they do not ensure positivity of the density at all pointsr (fo

example, it can be negative for particular choices of Sketw ag. Gamma-Laguerre Series Expansion

Kurtosis). It is therefore important to characterize theslees

that produce the "envelope” for the density approximation i robability distribution, fy-(y), by utilising the orthogonality

which it will remain positive. This characterization can b(get cen the Gamma. density kernel and the Laguerre polyv-
carried out by finding the appropriate regions in the Skew- W sty gu boly

Kurtosis plane (S-K plane) which generate positive supp ?mlals in order to obtain an gﬁlCleqt series ex_panS|0n.[33]
1321, [33]. n contrast to the Gram-Charlier series expansion where the

Hermite polynomials have support on the entire real line, th

we will denye three SEries expansion methons, which wi Iaguerre polynomials only have support on the positive real
be used for different practical scenarios (eg. differerstesy line y € R+

parameters). The first two are the Gram-Charlier and Gamma—Instead of directly working withy, we first rescale it to
Laguerre series expansions. We then develop a new series y 9 '

RV. 7 by 7 = by, whereb = 4. and seta = Zlu&

The Gamma-Laguerre series expansion approximates a

expansion which we term the Beta-Jacobi series expansior"l’. i : Varly Varfy]*
Denoting the density of as f;, we expressfy as follows:
A. Gram-Charlier Series Expansion ~ - a
eres Bxp o _ @) =9@a) Y ALY @),
The Gram-Charlier series expansion utilises a Gaussian n=1

kernel,g (y), and Hermite polynomialsi; (x), as basis func- \ynere the kernel is the Gamma density, ig(7:a) =

tions. These ponno_mlaIs are defined in terms of the devieati ga*;exp*y' with shape = a and scalels and the orthonormal
of the normal densityy () as follows: a)

polynomial basis (with respect to this kernel) is given bg th

d’g(y) 0 H 7 Laguerre polynomials (in contrast to Hermite polynomials i
d*y (=1 Hs () 9 (v) (7) the Gaussian case of the Gram-Charlier expansion), defsed a
The Gram-Charlier series expansion is given by: L,ﬂf“) (@) = (=1)" 21 exp (—) ddl (ac”*“’l exp (733)) .
o0 r ‘/LJL
_ 1 (y — r1)? rr —d" (g (y)) : .
fy(y) = N exp < 22 Z T dy Next we characterise the S-K region of the Gamma-

r=1 Laguerre series expansion in which it yields positive suppo

(8) These results are based on those derived in [33].
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Lemma 4 (Positive density conditions:) The Gamma- Theorem 3 (Positive density conditions:)The Beta-Jacobi
Laguerre series expansion yields positive values for tmsitle series expansion yields positive values for the denitfx)

fx(x) if: if:
s (x) = =g (ua(x) B2 + Bz) forz € [0, +00) s(z) = *B%l (pa(z) B2 + Bfﬁ)]co/r z 67[1*17+1)
T (N L
where By, By, By, B, Bl and B, are defined in [33]. where By, B, Bs, B}, B}, B are defined in Appendix D.
Proof. See Appendix D O
C. Beta-Jacobi Series Expansion Remark 1. To use the three series expansions above, we have

In this section we develop a novel series expansion tHatcalculate the first four cumulants and moments of the model
is based on the Beta kernel. This new expansion is relevader IBPP and IPPP, which will be presented this in the next
for cases wheré&” has a bounded suppojt, b]. To achieve Section.
this, we construct the series based on a Beta kernel (instead
of Gamma or Normal kernels as before) and the Jacobi V. CALCULATION OF THE MOMENTS
polynomials. Itis important to note that the Jacobi polym&  ag mentioned earlier, the series expansions we developed
are only orthogonal of-1, 1]. Hence, we need to transformyqq ires the cumulants af under the alternative hypothesis.

Y so that it also has suppdrt1,1]. This is achieved via the 14 gptain the cumulants we need to calculate the Moment
transformation Generating Function (MGF) of the observativfi#;, given

x=_2 (Y—“+b). a0
b—a 2

My, 3, (t) = Mz, (t) Mz, (t)--- Mz, (t) Mw, ().

We now present our novel Beta-Jacobi density series eXp?fEIculating the MGF of each of the elements, as presented

sion, see discussions ”? [39]'_ ) . in Lemma 1 for BPP and IPPP, involves the following:
Theorem 2 (Beta-Jacobi density series expansiohe Beta-
1) IBPP deployment:

Jacobi series expansion is given by:
Mz, ()= gy, [exp(t)] = [wib)z 2/ exp(tz)

0—1 n—1 d
fX(x) _ (l‘ + 1) (1 — l‘) Z aiPL‘(n*LG*l) (l‘),

B(6,m)20+n1 i=0 L2/ —v
- x B ( ) k+—— N;—k+1]dz,
where the coefficientsg;, and the Jacobi polynomials, R l—v
P07 (1), are given by: where
: S B(0,n) (20460 +n—1)d! o(9 - T (k+122) T(Np +1)
o= Yo ) FOA IR e 2 L e
=0 B rr (Vs + 3224 1)
<3 Tl+otitm-1) <m> (—1)m 2) IPPP deployment:
= I'(t—m+1)T(n+m)ml2m\ j (2m)*
pla-10-1) (2) = T'(n+1i) Mz, (t) =Ej(z,) [exp(tZ)] = /4F(k)(2 — )R-l
' r 0+i—1
. (77% +i=1) N o <2) (A P 2 —2/a2=0))g,
XZ F'n+0+i+m-—1) <x1> a 2—v
e T=—m+ )T (p+m+1)ml \ 2 Solving both integral directly is difficult. Instead, an éclent
) solution can be obtained by calculating theth moment for
Proof. See Appendix C. 00 Z, and then deriving the MGF based on the moments.

Theorem 4. The m-th moment ofZ;, is given by:
1) BPP deployment:

The distribution ofY is obtained from the distribution of
X via the transformation

2 2(y+a —ma/2 F(NB+1)F(k_%) _ _ma
fy(y) = b an ( §)+a ) _ 1) ) (11) E[Z"] = R TR (Np— 532, +1) k= 5525 ¢ Z<o
00, otherwise

wherefx (x) is given in Theorem 2. The values éfn need to

be chosen in order to find a good approximatioXofWe find

approximate values of, n through K-S curve as mentioned {<V_+2)2<°;+2> (k= 53%57) L
E[Z}"] =

2) IPPP deployment:

below. pr T(k) ) - 2(?,7_:2) ¢ Z<o

Next we find the Skew-Kurtosis conditions to guarantee o0 otherwise
positive density: Proof. See Appendix E O



Based on the moments, we can calculate the cumulants 7. .
moments. o

Lemma 5. The first four cumulants o¥|xs, H1, xi, ¢ =

0.2r " x

°
b

First Moment
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Second Moment
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Third Moment
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Forth Moment
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(a) Homogenous BPP deployments. The parameters useg: 100, o =
0.5, N = 10,v = {0,0.5}.
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+ (12E [Z,J (E [Zk])2 -6 (E [Zk])4) . (b) Non-homogeneous BPP deployments. The parameters u8ed=
100, = 0.5,v = {0,0.5}

The Moments can be expressed as polynomials of cumulaptg;. 2: Comparison of the theoretical results of the firstrfou
moments per Theorem 4 and the corresponding Monte Carlo
simulation results under BPP type deployment.

of the results which are based on the results derived in

H1 = K1,

2
Mo = Ko + K7,

3
p3 = K3 + 3Kk + K1, Theorem 1, Lemma 1, Theorem 4 and Lemma 5.
fha = kg + drgry + 362 + 6rokT + K] 2) Positivity regions of the estimated densitywe char-
) acterise the regions at which the density has positive
Proof. See Appendix F. . support, based on Lemma 3, Lemma 4 and Theorem 3.

We then show the implications of not choosing the
correct series expansion.

3) Detection performance we present the detection and
false alarm probability via Receiver Operating Charac-
teristics (ROC) curves under different scenarios.

Now that we have derived the four cumulants and moments,
we use the series expansion methods in Section IV to ap-
proximatepy; (y|xs, H1) and derive the LRT in (4). Finally,
the Event Detection algorithm under FBPP is presented in

Algorithm 1.
The simulations setting is as follows: the results are ob-

Algorithm 1 Event Detection in Sensor Networks with Rantained from50, 000 realizations for a given parameter set of
dom Deployment N,ou,v, Py, R,a. The additive noise is assumed to be i.i.d
Input: Y;, v, Ng, R, v, @, 0w Gaussian distributed at each sensor.
Output: Binary decision H{1, Ho)
1) ‘({“,alculate the first four moments according to Theorem Moments calculation
2) Calculater; andy; according the Lemma 5. Figs. 2-3 present comparison of theoretical moments (The-
3) Perform S-K region analysis to assess the approp®kem 4) and Monte Carlo simulations for BPP and PPP,
ateness of each of the series expansions accordingréspectively. For both cases we consider both homogeneous

Lemma 3, Lemma 4 and Theorem 3. and non-homogenous deployments. For both BPP and PPP ho-
4) Choose the series expansion for which the S-K point isogeneous deployments, the results show perfect agreement
inside the K-S region. For non-homogenous PPP, the result slightly disagrees Thi

5) Evaluate the series expansion chosen in Section IV isodue to the generation of non-homogenous PPP. Specifically
find py, (y|xs, H1) according to (6).

6) CalculateA(Y;) via (4) and compare to the thresheld Remark 2. Given A\(z) = z~%, within W, the expected

number of pointsE [W] is calculated below:

R
_ 2,
VI. SIMULATION RESULTS EW] = /W A(z)dz :/ o~ 2mady = +2R i

0 v
We present the performance of the proposed algorithms e
via Monte Carlo simulations. In particular we present theccording to [40], pdf ofz is shown asy(x) = =

E[W]
followings: ©+2)  Given a smalle, the range ofg(z) is given by

TRV+2
. . . v 2
1) Moment calculation accuracy the series expansmns&?ﬁz, ZW(ELQ)}- One way to generate the non-homogenous

we develop are based on fourth order moments aBdPP is to usethe accept and reject method. The procedure to
cumulants. Hence it is important to verify the accuracgenerate NFBPP is below:
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(b) Non-homogeneous PPP deployments. The parameters uged= (b) PDF estimation via Gram-Charlier, Gamma-Laguerre aeBacobi and
100, = 0.5, = {0,0.5} . ) Monte Carlo simulation.. . . o )
Fig. 3: Comparison of the theoretical results of the firstrfourig. 4: Effect of critical region on marginal likelihood esg-

moments per Theorem 4 and the corresponding Monte Catilon as a function of the critical region
simulations under PPP type deployments

1) Generate N, points within W, N, should be large
enough. ) '
2) Within theseNg, randomly selectsV points with prob-
ability 2%

The value ofe will affect the approximation of theoretical
moments. The smaller, the better the approximation, how-
ever, the more difficult to generate the points inside théreg
In the simulation we seleet= 0.5. (a) Skew-Kurtosis curves

)

Kurtosis
Kurtosis

Skew : Skew Skew

G- Gram—Chalie]
Monte Carlo

B. Comparison of Critical Region

When the sensors are located close to the center of -
region, the empirical sample density and estimated dedsity
not agree. This is because those points close to the cet

Probability density function

may violate the probability density because they will résu s eghuve Slpper segon
in an inaccurate sample mean. Therefore, we remove a sn..... g Y Y
hole around the center. We useto represent the radius of (b) PDF estimation vs. Monte Carlo simulation

the hole, which we call critical region. Figure 4a shows thEld- 5: Gram-Charlier series expansion for two differerg-sy
effect of removing those points for different critical regi €M parameters presented in Table I.
sizes. In particular, we vary € {0.1,0.5,1,5}. We also 1) Gram-Charlier series expansiorin Fig. 5 we plot the
compare the accuracy of series expansion methods withaes# K curve and PDF Gram-Charlier series expansion estimatio
to differentr. Fig. 4b clearly shows the effect thahas on the for three different sets of system parameters. The three set
approximation for all three series expansion methods. big 4f system parameters generate three different Skew-Kartos
showS the probability density function (PDF) for differentvalues, represented by the red dot in each of the figures. In
values ofr. From extensive numerical experiments, we hauwbe left figure, the S-K point falls at the region that satisfie
found that the choice = 5 yields accurate approximationsthe conditions in Lemma 3, while the other two do no satisfy
for a range of moments and will be used in all simulations.the condition, which results in poor estimation of the PDF.
This illustration shows the ability of the Gram-Charlieriss
C. Marginal likelihood estimation via series expansion angxpansion to accurately approximate the true distribution
S-K region depending on system parameters. It is clearly shown that for

As discussed in Section IV, we use the Skew-Kurtosis curl@¥ SNR case, the approximation is good, but for high SNR
to characterise regions where each of the series expangi@fe. the approximation has a negative PDF approximation.
would yield a positive PDF, given set of system parameters.2) Gamma-Laguerre series expansidn:Fig. 6 we plot the
It is therefore a useful tool which helps choose which seri&K curve and PDF Gram-Charlier series expansion estimatio
expansion to use. In this section, we present several examgbr three different sets of system parameters. In contrést w
to show how this will affect the approximation under eackram-Charlier series expansion, it is clearly shown that fo
series expansion. The different sets of parameters arermiees high SNR, the approximation is good. However, for low
in Table 1. SNR, the approximation is not very accurate. This is because



Gram Charlier Gamma Laguerre Beta Jacobi
Parameters Set1 Set2 Set3 Set1 Set2 Set3 Set1l Set2 Set3
R 100 100 100 100 100 100 100 100 100
Py 1 1 1 1 1 1 1 1 1
N 50 10 10 10 10 10 10 10 10
o 2 2 1.5 2.5 1.7 3 2.5 1.7 3
v 0 0 0.6 0 0 0 0 0 0
ow 0 0 0.4 1 0 0.4 1 0 0.4
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S Beta—Jacobi S Beta—Jacob)
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1 Fig. 8: ROC curves for the three series expansions for differ
1 values of path-loss exponent= {2,2.2,2.4}.

| of high and low SNR to show the direct effect of the S-K curve
4 S et Do | has on the performance of the series expansions.
; A tiegauws SupeoR Rejarens, | : Fig. 8 presents the ROC curve for high SNR, = 0.01
and various values of the path-loss exponent {2,2.2,2.4}.
It can be seen from the ROC curves that Gram-Chalier
parameters in Table I. expansion performs the worst while our Beta-Jacobi expansi
. . " erforms best in these three cases. The S-K curves under each
Gamma-Laguerre series expansion only has positive suppJégse is also plotted. It can be seen from these figures that
3) Beta-Jacobi series expansioin Fig. 6 we plot the S- e Sk points are located outside the region for the Gram-
K curve and PDF Beta-Jacobi series expansion estimation {ajier expansion, while inside the region for Beta-Jacobi
three d|fferfant §ets_ of system parameters. For all threescasand Gamma-Laguerre expansions. The reason for the poor
the approximation is accurate. The only draw back for Betgg tormance of Gram-Chalier is that the scenario is of high
Jacobi estimation is the small fluctuations around the il \R values. When the additive noise variance is very small,

Probabity densty functon

. (b) PDF estimation vs. Monte Carlo simulation
Fig. 7: Beta-Jacobi series expansion for three differestesy

the density. it is difficult for Gram-Chalier to approximate the marginal
likelihood under the alternative hypothesis since the eupp
D. Event detection performance comparison is quite narrow.

We now present the detection performance of the algorithmsFig. 9 presents the ROC curve for low SNR, = 0.4 and
via Receiver Operating characteristics (ROC) for différss  various values of the path-loss exponent {1.9,2.1,2.3}. In
ries expansion methods. We select two representativesesnathis case our Beta-Jacobi expansion outperforms the Gamma-
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=09 209 209
20 20g 20y . . . . ..
4u 4u 40 Proof. We begin by calculating, as defined in Definition 1.
ggz ;z&wufﬂh ggz — e gg; —mmissnn | AccOrding to [27], assume tha; (z, ) is contained within
2 amma-Laguerte seres expansion 03 =0 Ganma 5 n B —B-Gama-La 5| . . - . .
B [omtmnn i /ﬂ Firomm | ot | W and W is circle with RadiusR. We then obtain that
RS S " ol v v [ e
0010203 0405080708091 0 01020304 05060708091 0 01020304 050607080971
Fa\sea\armpmh:mﬂhy Fa\sea\mmproLhZD\\\w Felse alam probatilty p= / Y (JJ) dx _ f ba(z,r) )\(CC )d:C
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i i i J5 z7 " 2mady logr — loge
% 1t 9 —J0= =7 _ _ v=2
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o v . wheree — 0F.
fu ; { Next, utilizing the results in [27], we can find the general
¥ ¥ -5 Yo . . . . . . . .
u expression for distribution distribution under inhomogeuns
f I P : deployment. The procedure is same except that we use the
03 03 0% 0% 038 04 042 Q106 0 0% 01 05 02 05 03 0 05 0 0 02 0B . . .
Sen Sen S expression forp from the above equation. For BPRp is
N w———————— finite number. Fod PP P, N is asymptotically}-oc. we obtain
WY .1 ) 0 the following:
L S : Jos/ BPP deployment:
3 J 3
¥ ¥ ¥
I 0l g Np— 1
dp (1 —p)Ne—Fph

T (B 1) = G BN, R 1R
2 v (L—p)" Tt
R B(Np—k+1Lk
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Fig. 9: ROC curves for the three series expansions for differ

values of path-loss exponeat= {1.9,2.1,2.3}. 9_,T (k + éiﬁ) I'(Np +1)

Laguerre expansion and is comparable with the Gram-Chalier R (k)T (NB N S 1)

expansion. The system parameters &e: 20, v = 0.6, 0, = 5 v

0.4, R = 100. « is changing froml.9 to 2.3. It is shown that % 5((£) ok 1-v Np—k+1)
R ’ 2—v’ ’

Gamma-Laguerre performs the worst for these cases. This is
because when the support of the marginal density has negaffypp deployment:
values, which the Gamma-Laguerre can not obtain. The same
interpretation can also be found in the S-K curves. 2—v(l— p)kapkflJréi—Z

ng-, (T|X87N:NP7H1): R B(N—k—f—l,k')
_2-p(1—p)V R (N 1)
R F(N—k:+1)F(k)

VIlI. CONCLUSIONS

We developed new event detection algorithms in Wireless
Sensor Networks under two types of random spatial deploy-
ments. We formulated the problem as a binary hypothesis
testing problem and designed optimal decision rule for & Woroof. We utilize the results for transformation of random
derived the marginal densities under two hypothesis. We usgyriables [] to obtain:
low complex and high accurate series expansion methodsgpp deployment:
approximate the marginal density under alternative hygsith
We showed the various series expansion methods are ptactica fal2) = —f (¢_1 (Z)) do~" (2)
and suitable for different practical scenarios. We alsoduse . dz

APPENDIXB
PROOF OFLEMMA 1

extensive simulation results to generate the Receiverdpgr 22— v) T (k: + %:—”) I(Ng +1)

Curves (ROC) under different set of parameters. We verified = z 2 a1
the optimality of the series expansion methods and show the Ra I'(k)T (NB + =L 4 1)
Skew-Kurtosis Curves for each method. Our schemes provided

_ 2—v
- 2/

1—v
k+——, Np—k+1
R ) ' +2—1/’ B +1)

useful benchmark for other centralized and distributeeswh % 5(<
designs.



IPPP deployment deployment: andp; = E[X],pu2 =E [X?]. .

Let z = ¢(r) = /2, y € (0, 00). Then In order to guarantee that(z) is positive, we obtain the
_ do=t (2 following set of equations
ka (Z) = _ka (¢ ! (Z)) L()

d
_ (2m)* (E) 5—2/a((2=1)k)—1 {BWS + Bapa + By =0, (f (x) =0) forx € [-1,1]
1

— / / I / —
I'(k)(2-—v)" ' \a Bips + Bypa+ By =0, (f' () =0)
2T _oin(2—w Solving for the Skew and Kurtosis, we obtain that:
X exp 2—2 fa@=v) )
— VvV
ps(z) = —g; (pa(z)Bs + Bs) . —1.41)
/ —1 or.x € |— +
B B3 / B’ By ) ) )
) = - B Bl — =L
APPENDIXC Ha () ( 3) ( 2B )
PROOF OFTHEOREM 2 where
Proof. To obtain the coefficients;, we need to solve the 6-1, -1
, . / / N+ (1—-=)
following expression: B| = (C33P3 + C43Py) B0, )20
_ Bl @2i+0+n -1 (i+0+n—1)i 041 p—1 ’
P@E+0)I (i+m) +Bl(:c+1_1:c)’
0—1 n—1
/ £ () P () da , J(z+ 1) (1 —2) 6+1 n-—1
B; = CyP, B _
2 ARG, )20+ 1 B z+1 1-z)’
Using the following series expansion: 9
r—1\" 1 (m (1) Taid By = a;P{ + (Cs + Ca1pus + Csopuz) P,
9 = om < j 70T, i=0 - )
7= (1) (1—2)"
and after some algebraic manipulations, we obtain that + (Cy + Carpn + Cazpa2) Py B(6,n)20+1-1
— BO,n)(2i+0+n-1)i g (01 n-1
ai—;uj TG0 TE\o 1= )
XZ TO+n+i+m-—1) mY (yymes and
T@E—m+1T(n+m)mi2m\ j ' Py=0
. /_ I'(n+1)
whereuj:]E[Xﬂ] :f_lf(:c):rjdx. O T T+ 0+i—1)
APPENDIXD " zl: Fn+60+i+m—1) z—1\"""
PROOF OFTHEOREM 3 = 2(i—m+ 1)L'(n+ m)(m — 1)! 2
Proof. We express the fourth order Beta-Jacobi series expan- O
sion as follows:
6—1 n—1 4
1 1-— 19—
flz) = @+ (-2) ZaiP,-(n LO=D) () APPENDIX E
B(0,n)20tn—1 4 '
i=0 PROOF OFTHEOREM4
= Bups + Bapua + By, Proof. 1) BPP deployment:
where We define the following change of variableX! =
B (x+ 1) (1 - x)"’l z2% _V. We now express thei-th moment ofZ,
By = (C33P5 + Cy3Py) Blo. 21 gs: R )
(+1)" (1 —a)"!
B — C P m] _ _
2 Wb g e E[Z] /w(k)ﬁ ack—i— NB E+1
(z+1)" - e\ Emelde z<£u>R—a/z
Bs = g ot (G0t Con t Coopio) By) < (o) "
_ _ 2 1 1 ma
(z+1)" (1 —2)" :cl/ e
B, ;aipi F (ot Cugnt Coapa) 1 ) o B(k+ 5:—”7 Np—k+1)
C_'B(G,n)(22’+0+n1)i!i:<m> (1) x (1—z)N?7*d
ij T(+6) g j B k— 2(72nozy) ’ —k+ 1)

Fn+6+i+m-—1)
LG —m+1)T (g+m)ml2m’
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where B (-) is the 8 function and
T (k+ ;:—g) T(Ng +1)

(k)0 (NB +lr g 1)

F(NB—i—l)F(k—

F(k)F(NBf

C = Rfma/Q

1—v

Finally we obtain that
)

+1)

— R—ma/Q

E [ZI?ZL] ma
2(2—v)

12
Using the same procedure as before, we obtain that
My, (t)

00 . am am \
CIq (e s R (2o T (k- =%
- k=1 = om 2 I'(k)

/
X UIQ/VtQ.

In order to derive cumulants and moments, first we find the
cumulant functiory (¢) under both deployments.

1) BPP deployment:

2) IPPP deployment: We express the-th moment as
follows:
o0
Blzy) = [ o fa(od:

0

_ z (27T)k /OO Zm72(27u)k/a71
aT(k)(2-v)k1 ),

x exp(— T z2/ale+2)) g,

Lexp~® dz, and using

Using the identityl (¢) = [z~
02_’__7;272/&(271/)7

the following change of variable¥ =
we obtain that

2 2m)" o
BIZET =35 : )V)k12(2—y)<

@l (k) (2
+oo

x/ exp (—z) 2" 7@ D "ty
0

(2-v *%r(kf%)
N 2 )

INC)
APPENDIXF
PROOF OFLEMMA 5

9 _ )\ 2otk
2T

Proof. 1) BPP deployments:
Using the result in Theorem 4, MGF df;, is given by:

(N +1)I (k - 2(5”3))
N (NB - n 1)

Due to the conditional independence4f, and that the

Mg, (t f1+z R me/2

rnl

mo
2(2—v)

2)

[1] A. Kottas, Z. Wang, and A. Rodrguez,

g (t) = log My, (t)

NB o0
/P t m o
= Zlog <1 + Z %R‘z’”h(l@)) + 20wt2
k=1 ’

I'(Np +1)T (k - %)
(k)T (NB - n 1)

Next we obtain the first cumulant; as follows:

_dg(t)
dt
Ny \/PTt

-

k=1

where

h(k) = R~™/?
_ma
2(2—v)

|t:()
<>+zm2 m B gy

= > VPoh(k)
k=1

= i PE[Z;].
k=1

Similarly, by taking the second, third and forth derivative
of g (t). We next find thexs, k3 and k4 as shown in
Theorem 5.

IPPP deployment:

K1, K2, k3 and k4 are in the same form as in BPP de-
ployment using the appropriate values for the moments.

O

=0 + o5 tli=o
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