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Abstract. A multivariable constrained predictive controller based on the generalised predictive control approach
is formulated. A special case of 2-input/2-output system is treated in detail and a simple solution which avoids:
the quadratic programming solution is obtained. In addition to its ability to handle directional non-linearity and
constraints systematically, the algorithm also gives an interpretation to the sequencing and range-splitting control

strategies often found in industrial controllers.
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1 Introduct'ion

Processes are normally affected by physical or oper-
ational limitations. Input constraints arise, for ex-
ample, when valves are used: the valve position can
only vary between ‘fully closed’ and ‘fully open’.
Speed and torque limits also form the input con-
straints when motors are used. Qutput constraints
occur in high precision applications when limits
need to be placed on the acceptable variations of
the output. Traditionally, the control calculations
are made under the assumption that the resulting
control action will be implemented. The inability
to implement the calculated control action due to
physical constraints usually leads to a degraded pro-
cess response. In predictive control, since future
control moves are also calculated by the algorithm,
violations of constraints on the manipulated vari-
ables can be dealt with before they occur. This may
result in a better performance and a lesser risk of
instability. Using a process model, the constrained
predictive controller can also determine when a pro-
cess output is going to exceed some acceptable limit.
Corrective action can then be taken before the limit
is exceeded.

The main motivation for developing control algo-.

rithm that can handle process constraints comes
from the chemical process industry in which con-
straints constitute an important part of most chem-
ical process control problems (Prett and Garcia,
1988). The minimisation of a performance index
subject to inequality constraints does not yield a
closed-form solution; some form of search technique
must be employed. In the case of a quadratic min-
imisation with linear inequality constraints, least
squares (Lawson and Hanson, 1974) or quadratic
programming (QP) (Fletcher, 1987) techniques are
often used. Garcia (Garcia and Morshedi, 1986)
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proposed to optimise the constrained dynamic ma-

trix control (DMC) cost function using a gradi-

ent based QP technique. Dion (Dion et al., 1991)

applied a similar idea to the generalised predic-

tive control (GPC) cost function, while Wilkinson

(Wilkinson et al., 1990) used singular-value decom--
position together with least-distance-programming
to find an admissible solution to multivariable

constrained GPC. Tsang and Clarke (Tsang and

Clarke, 1988) considered input-constrained GPC

for high speed applications and devised an efficient

search algorithm for the case when the control hori-

zon is two.

In this paper, a multivariable constrained predictive
controller based on the GPC (Clarke et al., 1987)
approach is formulated. A special case of 2-input72-
output system is treated in detail and a simple so-
lution which avoids the quadratic programming is
obtained. It is shown that the algorithm can handle
directional non-linearity and constraints systemati-
cally and it also gives an interpretation to the split-
range or sequencing control strategies often found
in industrial controllers.

2 Constrained predictive con-
trol algorithm

"The formulation of a multivariable constrained pre-
dictive control algorithm is briefly stated to provide
readers with sufficient background information for
the rest of the paper. The details can be found in
(Ling, 1992).

By minimising a moving cost of the form

p N

J = Z Z (wi(t + 7) — yi(t + 5))?

i=1j=N,
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subject to the constraints
vi(t +j) _.<_ d!l.';

where ); and v; are weightings on the control signals
and their increments respectively; v; and d,, repre-
sent the constrained variables and their respective
limits and w;, y; and u; are the set-points, outputs
and inputs of a m-input/p-output plant, the prob-
lem of constrained predictive control can be cast
into a standard optimisation problem:

Minimise the cost function
J=uTAu-2BTu+D (2)
subject to the constraints
Cu < El,

If the set of constraints on which the optimum lies
is known, the solution is given by

u=A"'B-A"'CT(CA~ICT)"(CA~ B-d)(3)

where C is the active constraints matrix, and d is
the active constraints vector.

In general, the above minimisation constitute a
quadratic program (QP) which no closed-form so-
lution is available; some form of search technique
must be employed. However, for a spécial case of
a 2-input/2-output process, and with the control
horizon in the predictive algorithm selected to be
unity (Ny = 1), the geometry of the problem can
be exploited to give a simple solution. Note that if
no constraint is active at the optimum, i.e., C and
d are null matrix and vector respectively, eqn. 3
reduces to the familiar least squares solution:

u* = A"!B, (4)

3 Two-input/two-output
plant

The motivation for studying this particular case is
that temperature controllers often have to handle
process non-linearity due to differences in heating
and cooling dynamics, and gain-scheduling PIDs
are commonly used. Another example can be found
from the heating, ventilating and air-conditioning
applications where a single PI controller is often
used to control different components in the air-
handling plant. In addition to the differences in

the dynamic characteristics of these components,
there are also operational constraints that need to
be respected while operating the plant. For exam-
ple, a minimum amount of fresh air intake must be
maintained while operating the air-handling plant.
Constrained predictive control approach can be ap-
plied to these situations. In this paper, an efficient
algorithm for the solution to this particular case is
developed. The application of this controller to an
environmental control system and the experimental
results are given in (Ling and Dexter, 1991).

For a two-input/two-output plant, if the con-
strained predictive control algorithm is formulated
for the case of unit control horizon (N, = 1} and
for simplicity, only input amplitude constraints are
considered, then some of the quantities involved in
eqn. 2 reduces to

T
C—,___{l()—l 0},

01 0 -1
d = [@5 uy up)7, and
u = [u(t) w(t)]”

We shall also denote the matrix A in eqn. 2 by

Al [ a1 ap ]

azy dasz

Geometrically, the problem is depicted in figure 1.
On the u;(t)-uz(t) plane, the constraints form a
rectangular feasible region. The contours of J =
constant are a family of ellipses. The centre of the
ellipse family is given by the unconstrained opti-
mum u*. If u* is in the feasibility region, the solu-
tion is simply uf = o where ul denotes the con-
strained optimum. Otherwise, the objective of the
constrained optimisation is to find the smallest el-
lipse that touches the feasibility boundary. This
problem has been considered by Tsang and Clarke
(1988); however, the solution given only ensures
that the first control signal is calculated correctly.
This is sufficient for a single-input/single-output
problem because of the receding horizon implemen-
tation. In the present situation, it is required that
both the control signals are calculated correctly.
Such a solution can be obtained by considering the
following cases:

3.1 Only one constraint is violated

- In this case, ut is given by minimising J along the

line PQ or RS as shown in Fig. 2a and 2b, depending
on which constraint is being violated, and clipping
u1(t) or ua(t) if necessary.

Minimising J along a line can be interpreted geo-
metrically as finding a tangential point of an ellipse
that touches the line PQ or RS. The solution can be

Vol. 1 — 346




5

found be selecting an appropriate C and d in equa-
tion 3. For example, to minimise along line RS, we
have C' = [1 0], d = %1. From eqn. 3, yields

]

and after clipping

ul —
[ u«i% J ) [Sat(uzfu_z_,ﬁa) } ! (5)

where

5y
uj = e (vl ~ )

z, fe<z
z, fz>7F
z, otherwise

sat(z,z,%) =

The remaining three cases can be arrived at in a
similar manner and it can be shown (Ling, 1992)
that the solutions to the various cases of constraint
violations are all similar to equation 5.

3.2 Both constraints are violated

The method described for the one constraint viola-
tion case will still give the correct optimum if u!
is on the line PQ or RS (Fig. 2c). If ul is on
one of the corners of the feasibility region, then
any of the above minimisation will result in both
u1(t) and us(t) violating the constraints and clip-
ping them will bring the solution to the correct cor-
ner (Fig. 2d).

3.3 The total solution

Combining all the possible cases of constraint vi-
olations, the total solution for this special case of

~ 2-input systems can be described by F ig. 3.

Remark 1 Although only input amplitude con-

straints has been considered in arriving at the solu-.

tion, rate consiraints can .also be handled in a sim-
tlar manner. In addition, for the case of unity con-
trol horizon (N, = 1), both rate and amplitude con-
strainis can be handled simultaneously. Note that
the constraints are now time-varying, depending on
the past inputs to the plant.

4 Interpretations

The constrained predictive controller described ear-
lier can also be considered as a scheduling con-
troller, where the operating condition is divided into
two regions and the scheduling strategy is implicitly
prescribed by the model. This allows, for example,
handling separately different dynamics of the cool-
ing and heating elements in the loop.

4.1 Split-range or sequencing con-
troller

A split-range or sequencing controller arises when a
two-input/one-output plant

Al Hy(t) = Bi(g~Hw(t) + 32(q—1)uz(t) N

with Bz = kB; and no weighting is placed on the
control increments is considered. Here, we need at
least either one of the weightings on the control sig-
nals, A\; or Az, to be nonzero in order to have an
unique solution. '

Let H; and Hj be vectors of step response coeffi-
cients of %L and %1 respectively. Then from eqn. 4,
for the case of Ny, = 1, the unconstrained optimum
is
._ 1 [ 2HT - '
u ‘EE[MIC_HT (w—f + Gua). (6)

where det = kA HT Hy + M HT Hy + A As.

Suppose we choose A; = 0, Ay # 0, i.e. assuming
that the cost of u; is negligible compare to that of
us, then

X HT .
1= 2l w4 G
" T, W TG
u; = 0
asi _ —]CHTHl ~ l
ain  kK2HTH +); &

if A\, < K2HT H,

Hence, Fig. 3 simplifies to Fig. 4 and the resulting
controller structure can be interpreted as a split-
range or sequencing strategy .commonly found in
industrial controllers. The derivation also shows
that u is independent of Ay and the value of Ag
should be chosen small so that the approximation
Az & szirHl holds.

An intuitive explanation for the logic of a split--
range or sequencing controller is as follows: When-
ever a single controlled variable responds to two
manipulated variables, there is opportunity for op-
timisation. If one of the manipulated variables were
free, then it can be maximised, which will in turn
minimise the other. Therefore, only when the max-
imum usage of the free variable is still insufficient
to meet the control demand then will the second
variable be used; hence the sequencing logic. The
derivation also showed how the differences in gains
can be accounted for in the scheduling logic. In
many plant situations, neither of the input vari-
ables is free; there exist some combinations of the
two which will provide the necessary output at a
minimum cost. This optimum can be found by the
general procedure described where neither A1 nor
Az is zero.
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5 Conclusions

In this paper, a constrained predictive control ap-
proach to the design of a controller is presented.
For the special tase of 2-input/2-output systems,
a simple solution is obtained which is suitable for
implementation on a low-cost dedicated hardware.
In addition to the ability to handle non-linearity
and constraints systematically, it also gives an in-
terpretation of the split-range or sequencing control
strategy often found in industrial controllers. This
controller has been applied to environment congrol
systems and experimental results suggest that sig-
nificant cost savings on operating the air-handling
plant can be achieved.
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Figure 1: The geometry of the problem of the case
of Ny = 1.
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Figure 2: Various cases .of constraint wiolations
(Nu = 1).
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Figure 3: A total solution to two-input amplitude

constrained optimisation, N, = 1.
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Figure 4: Input constrained GPC as a split-range
controller
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