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Abstract 

  By adding chaotic noise to each neuron of the discrete-time, continuous-output Hopfield neural network 

(DTCO-HNN) and gradually reducing the noise, we propose a neural network that is initially chaotic but eventually 

convergent, and thus has richer and more flexible dynamics compared to the HNN. We apply the proposed network 

to the Traveling Salesman Problem (TSP) and find that results are highly satisfactory. That is, the transient chaos 

enables the network to escape from local energy minima and to find global minima in 100% of the simulations for 

4-city and 10-city TSP, as well as near-optimal solution in every run for 48-city TSP.  

Index Terms: Neural Networks, Transiently Chaotic Noise, Combinatorial Optimization Problem, TSP.  

1.  Introduction 

  Combinatorial optimization problems arising from science and technology can be described as a search for the 

best solutions. Because a number of interesting combinatorial optimization problems is difficult to find exact 

solutions due to their NP hardness, many researchers have been paying much attention to approximate or heuristic 

algorithms[1], [2]. 

  Since Hopfield and Tank applied a continuous-time, continuous-output Hopfield Neural Network (CTCO-HNN) 

[3] to solving the traveling salesman problem, the HNNs [4], [5] have been recognized as powerful tools for 

combinatorial optimization problems. However, using HNNs to solve the TSP suffers from several shortcomings. 

First, the network can often be trapped at a local minimum on the complex energy terrain. Second, a HNN may not 

converge to a valid tour. Third, a HNN sometimes does not converge at all within a prescribed number of iteration 
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[6]. 

  Chaotic neural networks have recently received attention due to the potential capability for information processing 

[7], [8]. In a number of methods proposed to prevent the HNN from being trapped at local minima, chaotic neural 

networks have been shown to be powerful approaches.  Based on chaotic properties of biological neurons[9] Chen 

and Aihara recently proposed "chaotic simulated annealing" to illustrate the features and effectiveness of a 

transiently chaotic neural network (TCNN) in solving optimization problems [10]. By adding a negative 

self-coupling to a Hopfield-like neural network and gradually removing it, they used the transient chaos for 

searching and self-organizing. Compared to other neural network methods [11], [12], the Chen--Aihara approach 

significantly increased the probability of finding near-optimal solutions. However, the Chen--Aihara method requires 

that a number of network parameters must be subtly adjusted so as to guarantee the convergence of the TCNN and its 

minimization of the energy upon the removal of the transient chaos [13]. 

     Wang and Smith presented an alternate approach to chaotic simulated annealing [14]. Starting from the Euler 

approximation of the CTCO-HNN with a large initial time step t∆ , where the dynamics are chaotic, and then 

gradually reducing the time step t∆ , the system is guaranteed to converge and to minimize the CTCO-HNN energy 

function. Since in the limit of 0→∆t , the network approaches the CTCO-HNN. This approach eliminates the need 

for difficult choices of any other system parameter. 

  Hayakawa et al [15] proposed another approach for TSP by adding chaotic noise to the discretized CTCO-HNN. 

Since the system with chaotic noise does not converge, a statistical average over a period of time is used to 

determine the state of a neuron. Because this technique has hill-climbing features, the rate of reaching global 

optimization is lower.  

   In this paper we add chaotic noise to each neuron of DTCO-HNN and gradually reduce the noise. As the chaotic 

noise approaches zero, the network becomes the DTCO-HNN, thereby stabilizing and minimizing the energy. We 



 3 

apply our method to Travelling Salesman Problem and find that results are remarkably good: the network is very 

likely to find global optimal solutions or near-optimal solutions after transiently chaotic searching. 

2. Chaotic Simulated Annealing with Decaying Chaotic Noise 

   The chaotic neural network that we propose in this paper is defined as follows: 
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where  ),,2,1( ni =  

−)(tvi  output of neuron i ,  

−)(tui  internal state of neuron i , 

−ijw  connection weight from neuron j  to neuron i , jiij ww = ,  

−iI input bias of  neuron i ,  

−γ  positive scaling parameter for the chaotic noise, 

−α  positive scaling parameter for neuronal inputs,  

−)(tiη  chaotic noise for neuron i , 

−ε  gain of the output function, 0>ε . 

  The chaotic noise can be generated from the logistic map: 
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  We let )(tai  decay exponentially so that )(tzi  is initially chaotic and eventually settles to a fixed point *z :  
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where 9.21 0 ≤≤ a . 10 << β  is a decay rate. 

   With 0)( =tiη , the network described by eqs. )4(~)1(  reduces to the DTCO-HNN. We will show that the 

transient chaos induced by the decaying chaotic noise is very useful in preventing the network from being trapped in 

local minima. In our model, the chaotic noise is assigned to each neuron, and the noise generators for the neurons 

operate with the same rule but different initial conditions. 

3. Application to the Travelling Salesman Problem 

  To verify and illustrate the features and effectiveness of the proposed approach of simulated annealing with chaos, 

we apply it to TSP in this section. In the Travelling Salesman Problem, the salesman is to visit all n  cities once and 

only once, returning to his starting point after travelling the minimum total distance.  

  We adopt the formulation of Hopfield and Tank [3] for TSP, namely, a solution of TSP with n cities is represented 

by the output of an nn×  network, with 1=ikv  signifying that the salesman visits city i  in order k . A 

computational energy function used to minimize the total tour length while simultaneously assuring that all 

constraints are satisfied takes the following form: 
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where ini vv =0  and 11 iin vv =+ . A  and B  are positive parameters corresponding to the constraints and the tour 

length, respectively. ijd  is the distance between city i  and city j . 

  This energy can be cast into a general energy expression  
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if we choose the weight between neuron ik  and neuron jl  as 

              )()]1()1([ 11 −+ +−−+−−= lklkijijklklijikjl BdAw δδδδδδ  (9) 

and the input bias to neuron ik  as 



 5 

              AI ik =                         (10) 

where 1=ijδ  if ji =  and 0=ijδ  otherwise.  

  The chaotic discrete dynamics of the neural network for TSP can be obtained from eqs. (1) ～ (5):  
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  Although the dynamics of equation (11) is discrete, the output ikv  from equation (12) takes a continuous value 

between 0 and 1. The corresponding energy function of equation (7) is also continuous. Since a solution to TSP 

requires the states of the neurons to be either 0 or 1, we introduce a discrete output as follows  
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  In our simulation, we calculate simultaneously the continuous energy function CE  using eq. (7) and the discrete 

energy function dE  by replacing ikv  with d
ikv  in eq. (7). 

  In the following studies, we use the same initial value of )0(a  and the same decaying rule for )(ta  in eq. (14) 

for all neurons for simplicity. The parameters in the equations (7), (11) ～ (15) are set as follows:  

 6.011           5.2a        3.9a(0)      0.004        0.015      1.0BA   
0

0 =−=======
a

hεα   (17) 

  We vary β  and γ  to investigate the dynamics of the proposed chaotic neural network model. The focus of our 

simulations is on the optimization performance (the rate of global optimization) and efficiency (the average number 
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of iterations) with various values of parameter β  and γ . We use asynchronous cyclic updating of the neural 

network model. One of iteration means one cyclic updating of all neuron states and )(ta  is decreased by one step 

after each of iteration.  

  We first analyze 4-city TSP with data originally used by Hopfield and Tank [3] with 5000 randomly generated 

initial conditions of ]1,1[ −∈iku  and )1 ,0(∈ikz  for 003.0=β  and 1.0=γ . 

  Fig.1 shows the time evolutions of the continuous energy function cE  and the discrete energy function dE . The 

shortest route or the global energy minimum is 2-3-4-1-2 (tour length=1.341768). In addition, we find that other 

representations of the shortest routes with the same energy value, such as 3-4-1-2-3 and 1-2-3-4-1 can be obtained, 

depending on the initial conditions of iku .  

   Fig.2 shows the time evolutions of the neuron output )(23 tv  and )(24 tv  which illustrate chaotic behavior 

during the first 120 iterations. They go through a reversed period-doubling bifurcation after iteration 120. As chaotic 

noise input )(tikη  becomes smaller, the neural network finally converges to a fixed point corresponding to a global 

minimum. In our simulations of 4-city TSP with 5000 different initial conditions of iku  for each of 

001.0 ,003.0 ,005.0 ,008.0 ,015.0 ,05.0=β  and 1.0=γ , the rates of reaching global optimization are all 100%. 

    We now analyze 10-city TSP with data in [3]. The system parameters are set as in eq. (17) besides β  and γ . 

The results obtained are summarized in Table 1 and 2 (GM= Rate of reaching the global minimum, NI= Number of 

iteration required for the network to converge). In Table 1, the decaying rate β  varies from a larger value of 0.1 to 

a smaller value of 0.001 and 1.0=γ . The number of iterations required for the network to converge (for the discrete 

energy function) increases as β  decreases. 5000 simulations are run for each β  and the network finds the global 

minimum (tour length=2.690670) in all simulations. In Table 2, we fix 015.0=β  and change γ  from 0.1 to 1.0. 

We find the rate of reaching the global minimum is still 100 percent for different γ . As  γ  gets larger, the system 

becomes more chaotic and needs more iteration to converge to the global minimum.  
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  Finally, we apply the proposed approach to ATT48-city TSP [16]. The parameters are set as follows: 

1.445B           1.0A             1.5            0.5        0.2a        3.9a(0)       0.004        0.015  0 ======== γεα h  

In our simulation, we use Pseudo-Euclidean Distance. The edge weight type ATT corresponds to a special 

“Pseudo-Euclidean” distance function [16].  

  The decaying rate β  in ATT48 city TSP has two values, i.e. when 9.3)(0.3 ≤≤ ta , we choose 

4
1 105.0 −×== ββ ; when  0.3)(0.2 ≤≤ ta , we adopt 12 )10~2( ββ =  to speed up the convergence of the system. In 

the following simulation we employ 4
12 100.48 −×== ββ . The results with 200 different initial conditions are 

summarized in Table 3, where the number of iteration is 20236. The simulation results show that 22% of the 

solutions converge to the best tour length (=10628). While 73% solutions converge to near-optimal routes. 

  In the end of this Section we list our results and Chen & Aihara's results in Table 4 for comparison in Section 4. 

4.  CONCLUSIONS and DISCUSSIONS 

  We have proposed an alternative approach to simulated annealing using decaying chaotic noise for solving 

combinatorial optimization problems. The dynamics of our model is composed of two combined dynamics. Chaotic 

dynamics at early stage is used to search for finding a valley involving globally optimal solutions. At later stage, the 

network stabilizes. Compared with other models mentioned in section I in terms of optimization performance, 

computational efficiency and ease of choosing parameters, our new model has many advantages: 

  1. The rate of global optimization of our approach is higher than that of other approaches [10], [15]. 

  2. The parameters like γ  and β  can be easily chosen because the performance is insensitive to their choices 

(Table 1 and 2), although the number of required iterations increases as chaos parameter γ  increases or as the 

decaying rate β  decreases. 

  3. The computational cost is smaller. If the same decaying rate β  in our method is chosen as that in Chen & 

Aihara's method, the computational cost of our method is a little smaller than that of Chen & Aihara's method. But 
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because the decaying rate β  in our method can be chosen much larger than that in other method (Table 4), we can 

say the computational cost of our method is much smaller. 

    Compared with other methods, our method has a high feasibility, good robustness and not problem-specific. 

Like Chen and Aihara's method, Our method has a transiently chaotic simulated annealing property. γ  stands for 

the strength of chaotic noise, and parameter β  can be considered as a damping speed parameter of chaotic noise, 

which controls the simulated annealing speed. 

    Why is the proposed method so effective? In our model, all noise generators operate with the same initial value 

of )0(a and the same decaying rule of )(ta  for all neurons. That means chaotic noise signals have the same 

distribution and is mutually correlated. Further more, the chaotic noise within each neuron has short time correlation, 

as opposed to white noise with no correlation. It has been suggested that correlation in chaotic noise may play an 

important role for the network system to find the best solution [15]. However, the effect of the distribution and 

correlation of the noise signal on the performance of the neural network system will be the subject of future research.   

  The proposed method offers a robust and efficient approach to global optimization, as shown in our experiments 

on TSP. Applying the approach to other difficult combinatorial optimization problems will also be studied in the 

forthcoming papers. 
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Table 1.   
 

                     β  

  0.1  0.05 0.015 0.008 0.003 0.001 

GM 100% 100% 100% 100% 100% 100% 

NI  19  33  80  138  350 1022 

 

Table 2.   
 

                     γ  

  1.0  0.8  0.6 0.45  0.3  0.1 

GM 100% 100% 100% 100% 100% 100% 

NI  175  159  139  119  93  80 

 

Table 3.   
 

Route Length  Number (%) 

  10628    22% 

  10835    63% 

  10926    10% 

  11298    5% 

       

Table 4.   
 

TSP  β    He & Wang’s  
   Method 

Chen & Aihara’s           
method 
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 city 

 TSP 

  GM  NI   GM   NI 

 0.1 100%  19  --  -- 

 0.05 100%  33  --  -- 

 0.015 100%  80  98.9%  81 

 0.010 100%  112  99.4%  119 

 0.005 100%  208  99.9%  234 

 0.003 100%  350  100%  398 
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 TSP  
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