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ABSTRACT 
 

The channel-assignment problem (CAP) in cellular 
radio networks is known to belong to the class of NP-
complete optimization problems.  Many heuristic 
techniques including Hopfield neural networks (HNN) 
have been devised for solving the CAP.  However, 
HNNs often suffer from local minima. On the other 
hand, a recently proposed transiently chaotic neural 
network  (TCNN) has been successfully used in solving 
travelling the salesman problems (TSP). The transient 
chaotic neurodynamics can prevent  the network from 
being trapped in local minima and can search for the 
globally optima or near-optima efficiently. In this paper 
we show that the TCNN can also be a useful tool for 
tackling the CAP. 
 
1. INTRODUCTION 
 

With the growth in demand for cellular mobile services 
and the limited allocation of spectrum for this purpose, 
the problem of optimal assignment of frequency 
channels is becoming increasingly important. The 
channel assignment problem (CAP) is to assign the 
required number of channels to each region in such a 
way that interference is precluded and the frequency 
spectrum is used efficiently. Efficiently finding a valid 
channel assignment is known to be very difficult: the 
CAP belongs to the class of NP-complete problems [1]. 
On the other hand, many heuristics techniques including 
Hopfield neural networks (HNN) have been devised for 
solving the CAP [2-7]. However, the HNNs are often 
trapped in local minima [3,8]. 
 
Recently Chen and Aihara proposed a transiently 
chaotic neural networks (TCNN) by modifying a 
chaotic neural network which Aihara et al proposed 
earlier. Their experiments on the TSP showed that the 
TCNN can obtain quite good solutions much more 
easily [9]. 
 

2. CHANNEL ASSIGNMENT PROBLEM  
 

Suppose there are N cells (or regions) and the number 
of channels available is given by 

M
. The channel 

requirements for cell i  are given by 
iD . The 

constraints specify the minimum distance in the 

frequency domain by which two channels must be 
separated in order to guarantee an acceptably low 
signal/interference ratio each region. These minimum 
distances are stored in a NN × symmetric 
compatability matrix C . 
 
The channel assignment problem is then as follows: 
 

minimize     severity of interferences  
 subject to     demand constraints 
 

given N , M , C , D . 
 
Assume 

kjx ,
to be the neuron output which represents 

cell j is assigned to channel k , as shown in Figure 1. 

Suppose that ,1,, == likj xx  ;,...,1,( Nji =  

),...,1, Mlk = means that calls in cells j and i  have 

been assigned channels k and l , respectively. One way  
to measure the degree of interference caused by such 
assignments is by an element in a cost tensor 

,1,, +mijP ( lkm −=   is the distance in the channel 

Figure 1. Matrix of neurons to solve the CAP 
 
domain between channels k and l ) [7]. The 
interference cost should be at its maximum when 

lk = and decreases until the two channels are far 
enough that no interference exists. 
 
The cost tensor P can be generated recursively as 
follows: 
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where 
ijC is element of NN × symmetric 

compatability matrix C . 
 
Then the CAP can be formulated to minimize the 
following cost: 
 

minimize  
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where 
jD is the channel requirements for cell j . 

 
3. TRANSIENTLY CHAOTIC NEURAL 

NETWORKS 
 

Since the optimization process of the TCNN is 
deterministically chaotic rather than stochastic, the 
TCNN is also called as chaotic simulated annealing 
(CSA), in contrast to the conventional stochastic 
simulated annealing (SSA). The CSA uses slow 
damping of negative self-feedback to produce 
successive bifurcations so that the neurodynamics 
eventually converges from strange attractors to a stable 
equilibrium point. 
 
The TCNN is defined below:  
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where 
 

jkx  =output of neuron kj, ; 

jky  = input for neuron kj , ; 
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       connection weight from neuron kj,  to neuron li, ; 

jkI = input bias of neuron kj , ; 

k  =damping factor of nerve membrane ( 10 ≤≤ k ); 
α   = positive scaling parameter for inputs; 

)(tz jk =self-feedback connection weight or refractory  

          strength )0)(( ≥tz ; 

β = damping factor of the time dependent ( 10 ≤≤ β ); 

0I = positive parameter; 

ε  =steepness parameter of the output function (ε >0); 
E =energy function. 
 
Considering (4) and (5), we can define a computational 
energy as a sum of the total interferences and 
constraints: 
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1W and 
2W are the coupling parameters corresponding 

to the constraints and severity of interferences, 
respectively, where 

jD is the channel requirements for 

cell j . P is the cost tensor. 

 
Connection weight 

jkilW can be obtained similarly as in 

the HNN, the network dynamics of the TCNN for the 
CAP is as follows: 
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4. SIMULATION RESULTS 
 

In this section, we use the data set EX1 and EX2 to test 
the performance of TCNN on solving the CAP. These 
data sets have been used by many researchers 
previously [7]. 
 
EX1: 
 

)3,1,1,1(,11,4 === TDMN  
 

and the compatability matrix is given by: 
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5210

2500

1054
0045

C
 

EX2: 
 

)3,4,2,2,2(,17,5 === TDMN  
 

the compatability matrix is as follows: 
 

         























=

52101

25210

12500

01054

10045

C
  

 

In our simulation, the updating scheme is cyclic and 
asynchronous. It means that all neurons are cyclically 
updated in a fixed order. Once the state of a neuron is 
updated, the new state information is immediately 
available to the other neurons in the network 
(asynchronous). The initial neuron inputs are generated 
randomly between [-1,1].  



 
The results presented in Table 1, also includes results 
given in ref.[7], i.e., GAMS/MINO-5 (labeled GAMS), 
the traditional heuristics of steepest descent (SD), 
simulated annealing (SA), HNN, hill-climbing Hopfield 
network (HCHN) and self-organizing neural network 
(SONN).  
 

  EX1 EX2 
GAMS  Minimum 2 3 
SD Average 

Minimum 
0.6 
0 

1.1 
0 

SA Average 
Minimum 

0.0 
0 

0.1 
0 

HNN Average 
Minimum 

0.2 
0 

1.8 
0 

HCHN Average 
Minimum 

0.0 
0 

0.8 
0 

SONN Average 
Minimum 

0.4 
0 

2.4 
0 

TCNN Average 
Minimum 

0.0 
0 

0.0 
0 

 
    

  Table 1.  Results of TCNN and other techniques 
 
The results of TCNN in Table 1 are obtained with a set 
of network parameters as follows: 
 

          ;10.0)0(;50.0;250/1;9.0 0 ==== ZIk ε  

         02.0,1;001.0;0045.0 21 ==== WWβα  
 

Table 1 shows that all techniques except for 
GAMS/MINO-5 are able to find interference free 
assignments (minimum=0). However, TCNN can obtain 
interference free assignments every case both in EX1 
and EX2, although SA and HCHN are quite competitive 
with these. The averages of TCNN listed in the above 
table are calculated after 1000 runs with randomly 
generated initial states.  
 
For EX2, we plot the constraint energy term 
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in Figure 2 (eq. 10). For comparison, we also plot the 
corresponding constraint energy term optimization 
(distance) energy term 
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in the 4-city TSP [9,16] in Figure 3. 
 
Furthermore, we show the three input terms for EX2 
respectively in Figure 4 (eq. 11): the single neuron term 

))()(()()1( 0Itxtztkyty jkjkjkjk −−=+ , the constraint term  

 
 

 
(a) Constraint energy term 

 
 (b) Optimization (interference) energy term 
 

Figure 2. The two energy terms for CAP 

 (a) Constraint energy term 

  (b) Optimization (distance) energy term 
 

Figure 3. The two energy terms for 4-city TSP 
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For comparison, we also plot the three corresponding 
terms for the 4-city TSP in Figure 5.  
 
From Figures 2 and 4, for both energy and input, the 
optimization terms for the CAP are much smaller 
compared to constraint terms and the single neuron term 
(for input), whereas Figure 3 and 5 show that the 
optimization terms in the case of the 4-city TSP are 
comparable with the constraint terms and the single 
neuron term (for input). However, our experiments 
show that the small optimization terms in CAP still 
make contribution to the global optimal searching: In 
EX1, while 11 =W , when ]027.0,002.0[2 ∈W  can 

assure global optima for all simulations. In EX2, while 
11 =W , only ]027.0,01.0[2 ∈W  can do so. 

 
It is interesting to notice that the time evolution 
processes in the CAP are quite different from those in 
the 4-city TSP [9]. Clear bifurcations are present in the 
4-city TSP (Figs. 3 and 5), but absent in the CAP (Figs. 
2 and 4).  
 
5. CONCLUSIONS 
 

The results obtained in this paper indicate that Chen and 
Aihara’s transiently chaotic neural networks (TCNN) 
can be successfully used in solving channel assignment 
problems (CAP). Experiments on two CAP’s show that 
the optimal solutions can always be found each case 
with a set of parameters chosen in the TCNN. This 
result is better than those of other techniques. Our 
further analyses show that the dynamic characteristics 
of the TCNN in the CAP’s are quite different from those 
of the 4-city TSP: (1) the optimization terms in the TSP 
are comparable in magnitude with the constraint terms 
and the single neuron term (for input), while in the 
CAPs the optimization terms are quit e smaller than the 
other two terms; (2) the clear bifurcations cannot be 
observed in the chaotic searching for optima in the 
CAPs as those in the 4-city TSP  [9,16]. 
 
The ability of the TCNN on solving large size CAPs 
will be a focus in our future work. 
 

   (a) Single neuron term 

   (b) Constraint term 

       (c) Optimization (interference) term 
 

  Figure 4. The three input terms in the CAP 
 

 
(a) Single neuron term 



  
(b) Constraint term 

 (c) Optimization (distance) term 
 

Figure 5. The three input terms in the 4-city TSP 
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