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ABSTRACT

The channd-assignment problem (CAP) in  cdlular
radio networks is known to beong to the class of NP
complete optimization  problems. Many heurigtic
techniques including Hopfield neura networks (HNN)
have been devised for solving the CAP.  However,
HNNs often suffer from locd minima On the other
hand, a recently proposed transently chaotic neura
network (TCNN) has been successfully used in solving
travelling the sdesman problems (TSP). The transient
chaotic neurodynamics can prevent the network from
being trgpped in locd minima and can search for the
globaly optima or near-optima efficiently. In this paper
we show that the TCNN can adso be a usgful tool for
tackling the CAP.

1. INTRODUCTION

With the growth in demand for celular mobile services
and the limited alocation of spectrum for this purpose,
the problem of optimad assgnment of frequency
channds is becoming incressingly important. The
channd assgnment problem (CAP) is to assgn the
required number of channds to esch region in such a
way that interference is precluded and the frequency
oectrum is used efficiently. Efficiently finding a vdid
channel assignment is known to be very difficult: the
CAP belongs to the class of NP-complete problems [1].
On the other hand, mary heurigtics techniques including
Hopfiedd neural networks (HNN) have been devised for
solving the CAP [27]. However, the HNNs are often
trgpped in locd minima[3,8].

Recently Chen and Aihara proposed a trandently
chaotic neurd networks (TCNN) by modifying a
chaotic neurd network which Aihara et a proposed
ealier. Ther experiments on the TSP showed that the
TCNN can obtan quite good solutions much more
easly [9].

2. CHANNEL ASS GNMENT PROBLEM

Suppose there are N codls (or regions) and the number
of channds available is given by . The channd
requirements for cdl | ae gven by D,. The

condraints specify the minimum disance in the

frequency domain by which two channds must be
separated in order to guarantee an  acceptably low
sgnd/intaference ratio each region. These minimum
digances ae dored in a N - N Symmetric

compatability matrix ¢ .

The channd assignment problem is then as follows:

minimize  severity of interferences
subjectto  demand constraints

gveny .M ,C D -

Assume X, , to be the neuron output which represents

odl j is assigned to channel K, as shown in Figure 1.
Suppose  that X =1, (G, i =10 N :
k1 =1,, M) menstha cdlsin cdls jand i have

been assigned channds k and | , respectively. One way
to meesure the degree of interference caused by such
assignments is by an dement in a cost tensor
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Figure 1. Matrix of neuronsto solvethe CAP

doman between chands kand 1) [7]. The
inteference cost should be a its maximum when
k =|and decresses until the two channds are far
enough that no interference exigts.

The cost tensor Pcan be generated recursvey as
follows:
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where c, is dement of N~
compatability matrix ¢ .

N Symmetric

Then the CAP can be formulaed to minimize the
following cost:
minimize
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j=1 k=1 i=1 1=1

subject to

X, 1{03%, "j=1..,N
"k =1.., M (6)
where  isthe channel requirementsfor cell ; .

3. TRANSEENTLY CHAOTIC NEURAL
NETWORKS

Since the optimization process of the TCNN is
determinigtically chaotic ratha than stochastic, the
TCNN is dso cdled a cheotic dmulaied anneding
(CsA), in contrast to the conventiona stochastic
smulaed anneding (SSA). The CSA  usss dow
damping of negaive df-feedback to  produce
successive  hifurcations so  that the neurodynamics
eventualy converges from drange dtractors to a sable
equilibrium point.

The TCNN is defined below:

1
Xjk(t) = W (7)
Vi (t+D) =ky, ®+a( @ A Wi +1,0- Z O 1) - 1)
i=Lit jl=1l1k
G)
z,(t+1) =(1- b)z, (1) (i =1...n) ©

where

X =output of neuron j, k ;

Y ~inputfor neuron j k ;

Wia = Wigges Wige = 05 g. . éML:’ijn Xy + 1y =-TE /X,
connection weight fr(lJ;nLanetJ_rt)n j, k toneuron i | ;

| =input bias of neuron j k ;

jk
K =damping factor of nerve membrane (O£ k £ 1);
a =positive scaling parameter for inputs;
z,,(t) =self-feedback connection weight o refractory
strength(z(t) 3 0);
b =damping factor of thetime dependent (O£ b £1);
Iy = positive parameter;

€ =geepness parameter of the output function (€ >0);
E =energy function.

Conddering (4) and (5), we can define a computationd
energy a a sum of the tota interferences and

constraints;
W N M W N M N M
E :_1é. (é. Xjk - Dj)2 +—2é é. Xjké é Pj,i,(|k-||+1)xil
j=1 k=1 j=1 k=1 i=1 1=1
(10)

W, and w, ae the coupling parameters corresponding

to the condrants and severity of interferences,
respectively, where D, is the channd requirements for

cdl j-P isthe cost tensor.

Connection weight w,,, can be obtaned smilarly as in

the HNN, the network dynamics of the TCNN for the
CAPisasfallows:

Yik t+1= kyjk ®- ij(t)(xjk(t) - 1)
(11
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4, SSIMULATIONRESULTS

In this section, we use the data set EX1 and EX2 to test
the performance of TCNN on solving the CAP. These
data sts have been used by many researchers
previoudy [7].

EX1:
N=4M=11,D" =(111,3)
and the compatability matrix is given by:
& 4 0 00

g g
C:Q4 5 0 1—
0 0 5 27
go 1 2 5%

N=5M =17,D7 = (2,2,2,4,3)

the compatability matrix is asfollows:

585 4 0 0 1¢
¢4 5 0 1 0=
C:‘éo 0 5 2 1°
¢oO 1 2 5 2=
€1 0 1 2 5%

In our smulation, the updating scheme is cyclic and
asynchronous. It means that dl neurons are cydlicdly
updated in a fixed order. Once the state of a neuron is
updated, the new doate information is immediately
avalable to the other neurons in the network
(asynchronous). The initid neuron inputs are generated
randomly between [-1,1].



The results presented in Table 1, aso includes results
given in ref[7], i.e, GAMSMINO-S (labdled GAMS),
the traditiona heuristics of <teepest descent (SD),
smulated anneding (SA), HNN, hill-dimbing Hopfield
network (HCHN) and sdf-orgenizing neural network
(SONN).

EX1 EX2
GAMS Minimum 2 3
SD Aveaage 06 11
Minimum 0 0
SA Aveage 00 01
Minimum 0 0
HNN Aveaage 02 18
Minimum 0 0
HCHN Aveaage 00 08
Minimum 0 0
SONN Average 04 24
Minimum 0 0
TCNN Aveage 00 00
Minimum 0 0

Tablel. Resultsof TCNN and other techniques

The results of TCNN in Table 1 are obtained with a set
of network parameters asfollows:

k=0.9;e =1/250;1, =0.50;Z(0) = 0.10;
a = 0.0045;b = 0.001;W, =1,W, = 0.02

Teble 1 shows that dl techniques except for
GAMS/MINO-5 ae dle to find interference free
assgnments  (minimum=0). However, TCNN can obtain
interference  free assignments every case both in EX1
and EX2, dthough SA and HCHN are quite competitive
with these. The averages of TCNN listed in the above
table are caculated after 1000 runs with randomly
generated initiad States.

For EX2, we plot the congrant energy term

ECMZV_;[%'(%XM DY and the optimization (interference)
j=1 k=1

energy term W, g_
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OPT _CAP
- 2
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in Figure 2 (eq. 10). For comparison, we aso plot the
corresponding  condraint  energy  term  optimization
(distance) energy term Do

Eopr_tsp =m;e-é_1 a1é1(&,1+ Xg 1) % A
in the 4-city TSP[9,16] in Figure 3.

Furthermore, we show the three input terms for EX2
respectively in Figure 4 (eg. 11): the sngle neuron term
yjk(t +l) = ijk (t) - ij(t)(xjk(t) - Io) , the constraint term

e
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(a) Constraint energy term

e e

(b) Optimization (interference) energy term

Figure 2. Thetwo energy termsfor CAP

(a) Condtraint energy term

(b) Optimization (distance) energy term
Figure 3. Thetwo energy termsfor 4-city TSP



g and theinterference
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For comparison, we dso plot the three corresponding ot e
terms for the 4-city TSPin Figure5. ‘
From Figures 2 and 4, for both energy and input, the i
optimization terms for the CAP ae much smaler
compared to condraint terms and the single neuron term e e ww wm me e ww mno aw a 1e

(for input), whereas Figure 3 and 5 show that the
optimization terms in the case of the 4-city TSP are
comparable with the condraint terms and the singe as
neuron term (for input). However, our experiments
show that the smal optimization terms in CAP ill =M
maeke contribution to the globd optimd searching: In
EX1, while w =1,when w,{ [0.002 ,0.027 ] CN
assure globa optima for adl smulaions. In EX2, while 2 B
w, = 1,00y w, 7 [0.01,0.027 | CandosO. e

(a) Single neuron term

It is interesting to notice that the time evolution
processes in the CAP are quite different from those in
the 4-city TSP [9]. Clear bifurcations are present in the
4-city TSP (Figs. 3 and 5), but absent in the CAP (Figs. (b) Constraint term
2and 4).

5. CONCLUSONS

The results obtained in this paper indicate that Chen and
Aihards trandently chaotic neura networks (TCNN)
can be successfully used in solving channel assignment i o
problems (CAP). Experiments on two CAP's show that
the optimal solutions can aways be found esch cese
with a st of parameters chosen in the TCNN. This
result is better than those of other techniques. Our
further analyses show tha the dynamic characteristics AT BTN ARSI R
of the TCNN in the CAP's are quite different from those (c) Optimization (inter ference) term

of the 4city TSP: (1) the optimization terms in the TSP

ae comparable in magnitude with the condtraint terms Figure4. Thethreeinput termsin the CAP
and the single neuron term (for input), while in the

CAPs the optimization terms are quite smaler than the : ; :
other two terms, (2) the clear bifurcations cannot be st el
observed in the chaotic searching for optima in the Tl
CAPsasthosein the 4-city TSP [9,16]. P e

The avility of the TCNN on solving large size CAPs i
will be afocusin our future work.
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(a) Single neuron term



(b) Condraint term

(c) Optimization (distance) term

Figure5. Thethreeinput termsin the4-city TSP
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