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Abstract

Neural networks are usually considered as powerful tools for extracting rules from a
set of data. In this paper, a novel rule-extraction algorithm based on the radial basis
function (RBF) neural network classifier is proposed for representing the hidden concept of
numerical data. The premises of each rule consist of the intervals of inputs. The premises
are adjusted in order to obtain high accuracy in the extracted rules. Simulations using Iris
data set demonstrate that our approach leads to more accurate and compact rules compared
to other methods for extracting rules from RBF neural networks. Comparisons between
our algorithm with rule-extraction algorithms based on MLP and decision trees are made.

1 INTRODUCTION

As an important aspect of data mining, extracting rules to represent the concept of data have
been explored widely. The extracted rules help to not only describe the information of data but
also predict future trends or build classification systems [4]. Many rule extraction techniques
have been developed based on neural networks [11][19][21]. Despite the merits of neural networks
for various applications, there still exist difficulties for determining the training parameters and
efficient network architecture. The task of extracting concise, i.e., a small number of, rules from
a trained neural network is usually challenging due to the complicated architecture of a neural
network.

Many rule-extraction algorithms are proposed based on multi-layer perceptron (MLP) neural
networks. Currently there are three main schemes for concise rule extraction. The first is to



preprocess data [3][6][25] before presenting to a neural network. In most cases, redundant or
irrelative attributes exist in data sets and preprocessing aims at removing them before train-
ing a neural network. The second scheme is to prune redundant hidden neurons or weights
[1]]4][5][14][15][19][20][21][22][23] during training of a neural network. In the third scheme, rule
selection is carried out after training a neural network and forming the initial rules. Genetic
algorithm is often involved [11][12] to select concise rules without reducing accuracy of the rules.

RBF neural networks have been implemented in various pattern recognition problems, such
as speech recognition, signal recognition, and function approximation [1][13][17][18]. Its kernel
function is responsive to only a subset of patterns within the receptive field of the kernel function,
which makes extracting rules from the RBF neural network easier compared to other types of
neural networks. Real world applications of the RBF neural network in knowledge discovery
have been reported.

The architecture of an RBF neural network is simple, and it can represent the global and local
concept of data at the same time. Some research work has been carried out in extracting rules
based on RBF neural networks. In [3][8], redundant inputs are removed before rule extraction.
Huber [10] selects rules according to importance; however, the accuracy is reduced with pruning.
McGarry [14][15] [16] extracts rules from RBF neural networks by considering the parameters of
Gaussian kernel functions and weights which connect hidden units to the output layer. However,
when the number of rules is small, the accuracy is low. When the accuracy is acceptable, the
number of rules becomes large.

In this paper, a novel method is proposed to extract rules from the RBF neural network. First,
the architecture of the RBF classifier is simplified through a modification in training the RBF
neural network (Section 2). The weights connecting hidden units with output units are simplified
(pruned) subsequently. Then the interval for each input in the premise of each rule is adjusted in
order to obtain a high rule accuracy (Section 3). We show that our method leads to a compact
rule set with desirable accuracy (Section 4).

2 A SIMPLIFIED RBF CLASSIFIER

Typically, an RBF neural network has three layers, i.e., the input layer, the hidden layer
with Gaussian activation functions, and the output layer. The activation of a hidden unit is
determined by the distance between the input vector and the center vector of the hidden unit.
The weights connecting the hidden layer and the output layer can be determined by the linear
least square (LLS) method [2][24], which is fast and free of local minima, in contrast to the
multilayer perceptron neural network.

Besides the centers, widths and the weights connecting hidden nodes and the output nodes,
the number of hidden units is an important parameter for determining an RBF neural network.
Both the dimensionality and the distribution of the input patterns affect the number of the
hidden units. It is desirable for an RBF classifier to have a small number of hidden units, and at
the same time, a low classification error rate. We now discuss the effect of overlapped receptive
fields of Gaussian kernel functions of the RBF neural network on the number of its hidden unit.

There are two kinds of overlaps, one is the overlap between different classes, the other is the
overlap between clusters of the same class. Overlapped receptive fields of different clusters can
improve the performance of the RBF classifier in rejecting noise when tackling with noisy data



[13]. However, when tackling with noise free data, the overlap between different classes will lead
to lower accuracy in classification. The degree of overlaps between different classes is measured
by the parameter 6, i.e., 6 is the ratio between in-class and out-class patterns in a cluster. The
other overlap is the overlap between clusters with the same class label. The overlap between
clusters with the same class label can decrease the number of hidden units and reduce the effect
of noise too.

By allowing for large overlaps between clusters for the same class, we can further reduce the
number of clusters substantially. This will lead to more efficient construction of RBF networks,
i.e., the number of hidden units will be reduced. The experimental results will be shown in
Section 4.

3 A METHOD FOR EXTRACTING RULES
Each hidden unit of the RBF neural network is responsive to a subset of patterns (instances).
The weights connecting the hidden unit with output units can reflect for which output the hidden

unit serves. Our rule extraction algorithm is directly based on the widths, centers of Gaussian
kernel functions, and weights connecting hidden units and the output layer.

First, we determine the corresponding output unit which each hidden unit serves for by sim-
plifying the weights between hidden units and output units. Assume there are m hidden units
and n output units. Consider the weight matrix , which is a m *n array. The maximum value of
each row j (j=1, ... m) of matrix W is selected, and other points in the row are set to be zero.
Thus, the new W reflects the corresponding output which each hidden unit mainly serves for.

In the symbolic rules which represent the concept of data, the IF part of one rule is composed
of the suitable interval of each attribute. Assume that the number of attributes is V. Then the
procedure to obtain the If part of symbolic rules is as follows.

center(j,1) is the jth item of the center of the ith kernel function, Wi (7) is the width of the ith
kernel function, and W;(7) is the width of the ith interval. RunM is the Maximum cycle number
of the implementation. ErrorP is the pre-defined rule extraction error. ErrorR is the error rate
of rules extracted.

DO{

1. Initialize:

set L=0, n=0, n;=1, ErrorR=1, Error=FErrorR, Run=0, and Sign=1.
2. Calculate width:

set L=L+1, i=L, W;(i) = n; * Wk(4).

3. Obtain the interval:

set n=n+1, j=n, and

Upper(j,i) = center(j,1) + Wi (i);
Lower(j,1) = center(j,i) — Wy(i);

4. If j<R, go to 3, else if i<m, n=0, go to 2.
5. Check the rule extraction error:

obtain the error of rule extraction, ErrorR, by using the obtained intervals.



6. Update parameters:
n;=n;+Sign*0.025, Run=Run+1, if Run >2 and if ErrorR>Error, Sign=-Sign, Error=ErrorR;
} While Run < RunM and ErrorR> ErrorP

Compared with the technique proposed by McGarry [14][15][16], we can obtain a higher ac-
curacy with concise rules. In [14][16], the input intervals in rules are expressed in the following
equations:

Xupper = Wi +0; — S ) (1)
Xlower = Wy — 0} + S y (2)

where S is feature “steepness”, which was discovered empirically to be about 0.6 by McGarry.
Obviously the empirical parameter may not be suitable to all data sets. The experimental results
are shown in the next section.

The ith symbolic rule is written as follows:
IF the 1th input is within the interval (Lower(1,i),Upper(1,i))
and the 2th input is within the interval (Lower(2,i),Upper(2,i))

and

and the Nth input is within the interval (Lower(N,i),Upper(N,i))
THEN the class label is k;.
4 EXPERIMENTS

Iris and Thyroid data sets are standard examples used for testing classification methods. They
can be accessed from the UCI Repository of Machine Learning Databases. There are 4 attributes
and 3 classes in Iris data set. The four input attributes of Iris data are: sepal length, sepal width,
petal length, and petal width. The 3 classes are Setoda, Versicolor, and Virginica. There are
5 attributes and 3 classes in Thyroid data set. Each data set is divided into 3 parts, i.e.,
training, validation, and test sets. 150 patterns of Iris data set is divided into 50 patterns for
each set. There are 215 patterns in Thyroid data set: 115 patterns are for training, 50 patterns
for validation and 50 patterns for testing. We set @« = 0.1 and 6 = 7 in our experiments. The
smallest number of hidden units in constructing an RBF neural network classifier is 3 for Iris
data set. For Thyroid, at least 7 hidden units are needed.

When we use the modification in which large overlaps among clusters of the same class are
permitted, the number of hidden units is decreased and the classification error rate is maintained
or even decreased. For example, for Iris, the average classification error rate for the testing set is
unchanged compared with the result without the modification, but the number of hidden units
is reduced from 4.6 to 3.4 on average. For Thyroid, the error rate in classification even decreases
after applying the modification, and the number of hidden units is reduced from 14.4 to 8 on
average. All the results are averaged over 5 experiments.



After the learning procedure and using our proposed rule extraction method, we obtain 3
symbolic rules for Iris data set. The accuracy of the symbolic rules that we obtain through the
proposed method is 90% for Iris data set. For Thyroid data set, 7 rules are obtained, with 5
conditions in each rule, and the accuracy is 80%.

We now compare our results with other rule-extraction results based on RBF neural networks.
In [8], 5 or 6 rules are needed to represent the concept of Iris data (the accuracy is not available).
Huber [10] extracted 8 rules to represent Iris data set (the accuracy is not available). In order
to get a small rule base, unimportant rules are pruned according ranking [10]. However, the
accuracy of rules is reduced [10] at the same time. McGarry [14][15][16] extracted rules from
RBF neural networks directly from the parameters of Gaussian kernel functions and weights. In
[14], the accuracy reaches 100%, but the number of rules is large (for the Iris data set, 53 rules
are needed). In [15] and [16], the number of rules for the Iris data set is small, i.e., 3, but the
accuracy of the extracted rules is only 40% and around 80%, respectively. For Thyroid data set,
we obtain 8 symbolic rules, and there are 5 conditions in each rules. The accuracy of extracted
rules is 80%. The results of extracted rules for Thyroid data set using other methods are not
available.

Much work has been carried out in extracting rules using the MLP. Good results have been
obtained both in accuracy and numbers of rules (e.g., [9][11]). Compared with the rule extraction
techniques using MLP, the accuracy of the rules extracted from the RBF neural networks is lower,
however, the training of the RBF neural network can escape from local minima, which is very
important for large data sets. The architecture of the RBF neural network is simpler and the
training time is usually shorter in comparison with the MLP.

Decision tree, a non-neural network based approach, is popular in the rule extraction field.
Decision-tree-building algorithms can represent rules themselves, in contrast to neural networks.
However, the accuracy of prediction of decision-tree-building algorithms is usually lower than
neural networks, and it is difficult for them to tackle with dynamic data. In [26], it indicates
that the accuracy for Iris data set based on a decision-tree-building algorithm is around 97%,
the number of rules is not available. In [7], the number of rules for Iris is 7. There are records
showing that the rule extraction results based on decision tree for some data sets are better than
neural networks.

5 CONCLUSIONS

In this paper, we proposed a useful modification to train the RBF network by allowing for
large overlaps among clusters of the same class, which reduces the number of hidden units while
maintaining the classification performance. Rule extraction is carried out from the simplified
RBF classifier in order to explain and represent the concept of data in a concise way. The
weights between the hidden layer and the output layer are simplified first. Then the interval
for each input as the condition part of one rule is determined by iteration steps. Experimental
results show that our rule extraction technique is simple to implement, and concise rules with
high accuracy are obtained through the simplified RBF neural network classifiers.
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