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Abstract

Recent reports show that chaotic simulated annealing
(CSA) can be successfully used to find the global
optimum or near optimum with a set of parameters
carefully chosen. However, CSA still uses a penalty
term to enforce solution validity us in the Hopfield-
Tank approach. This penally method exhibits a conflict
between solution quality and solution validity in the
penalty approach. In addition, the relative magnitude
of the penalty term aoften needs to be determined by
trial-and-error. To overcome this disadvantage, we
proposed a method which we call augmented Lagrange
chaotic  simulated annealing (AL-CSA). .Simulation
results on 48-ciry Traveling Salesman Problem (TSP)
show that this method can maintain CSA’s good
solution quality while avoiding the need of penalty
terms. Furthermorve, convergence time s shorter
compared to CSA. The influence of Lagrange
multipliers on the process of searching for global
minimum is also demonstrated.

1. Introduction

Recently, Chen and Athara proposed a chaotic
simulated anncaling (CSA) method that can harness the
advantage _of both  chaotic neurodynamics and
conventional convergent ncurodynamics [1-3]. They
reported that the CSA bas richer dynamics and higher
ability of scarching tor globally optimal or ncar-
optimat ~ solutions.  ‘Their  experimental  studics
demonstrate the effectivencss of the CSA and obtain
good solutions for TSPs with a set of parameters
chosen [1-3) much more easily compared to the
Hopficld-Tank approach [4]]5].

However, in CSA there still exists a difficulty in
obtaining solutions of good guality and valid solutions
simultancously. In addition, one sull nceds to perform
ume-consuming, triad-and-crror work (o choose the
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relative sizes between the terms that represent solution
quality and solution validity. This is because that CSA
still belongs to the penalty method for constrained real
optimization. In order 1o converge to a feasible solution
with the penalty method, the weighting factor for the
penalty term must be sufficiently large. However, as
the penalty term becomes stronger, the role of the
original objective function becomes relatively weaker.
Solutions found in this way are affected more by the
penaity terms and hence are less favorable in terms of
the original objective. Furthermore, when the penalty
term is too larger, the problem becomes ill-conditioned.’
Our previous experiments on traveling * salesman
problem (TSP) showed that CSA’s solution quality is
quite sensitive to the choice of penalty terms, especially
when the number of cities becomes larger [20]. As the
number of citics in the TSP becomes larger, it becomes
more difficult for the network to find valid tours.

To completely avoid the ill-conditioned problems and
effectively eliminate the unfavorable influence of the
penalty terms on solution quality, we incorporate
augmented Lagrange multipliers into  thc CSA,
obtaining a method that we call augmented Lagrange
chaotic simulated annealing (AL-CSA), following Li
[11} who used Lagrange in the Hopfield-Tank approach
to solve optimization problems. With the Lagrange
multiplicrs, the constraints are satisfied exactly without
the need of penalty terms. We apply the AL-CSA to
solve 48-USA-city TSP [10]. Tn the AL-CSA, the
influence of the penalty terms changes dynamically, the
Lagrangian ncurons lead the dynamic trajectory into
the feasible  solution region.  Furthermore,  our
experiments show that the convergence time hecomes
shorter than that of CSA. The influence of the
Lagrangian multipliers on the process of searching is
also demonstrated in the end.

2. Augmented Lagrange-Chaotic Simulated
Annealing (AL-CSA)



A combinatorial optimization problem can be
converted into the following constrained minimization:

minimize  E(x) (1)
subject o ¢ (x)=0.  k=1.K (2)
where  x=(y.x,..x,) € RE:R" = R.E(x) Is the

energy function, C:R" = R* .C=((,C,...
functions that represent some equality constraints and
take the value of zero when the constraints are satisfied.
£ and ¢ are assumed to be twice continuously
differentiable. An augmented Lagrange function can be
formed:

¢, are real

L(x.A)= E(x)+ AA(.](.\HL a,1C (0] 3)
' 2&

where 2 =4 A,...A,)" are Lagrange multipliers. 4, >0

are finite welghtmg factors. The introduction of the

quadratic term 2 IRTORESE with ¢, (x)=¢ does not
¥

alter the location ‘of the saddle point. In fact, this term
can effectively stabilize the system.

The augmented Lagrange Chaotic Simulated Anncaling
{AL-CSA) model can be written as follows:

r'/ (’) = ""‘“—‘*I (4)
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_In the above. k,a, B,¢ are CSA’s damping factor of

nerve membrane (0 < & <1y, positive scaling parameter
factor of the self-feedback
)< p<nand  steepness
parameter of the output function, respectively.

for inputs,
connection

damping
weight

3. Solving TSP Using AL-CSA

In Traveling Salesman Problem, the cnergy function is

‘,:("_"ZZZ‘['*
ikt

distance between city 1 and city & {4][5]. We use the

following cquality constraints that were used hy
Hopficld-Tank and other researchers:

(Vi #4010 dis  the
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CS(X)=.XU.(]—XU)=O.V|,] (8)

Hence the 1otal number of constraints s
n+n+n’+n’+n’=3n"+2n. Here n is the number
of citics in the TSP.

The three terms of (5) for the TSP are as follows:

M:Zd“ (xkiﬂ +x;,) (9)
ax, t= '
Z r)C(x) PR R W ,,,12 +A(=2x) (10)

Xy 2]

Yac, ('X)BC,_.(x) =a](z.1ru —D+a 2( -D+ax,Xx ) +
< ,

12

”4":1(2'91 +age (1= x,)(0-2x,)
kxy

an

We experiment on the 48-USA-city TSP that has been
tackled by Chen and Aihara [3]. To compare the
performance with the CSA, we use a set of k,a,f,¢

that is the same as Chen and Aihara’s [3]:
k.o, B.e =090, 0.015,
I, =0.50;2(0)=0.10 .

0.00005., 0.004;

The other parameters can be chosen as follows:

A0) =1, 4 = a, =0.0003, 4, =a, =0.00000,a, =,

It should be noted that the above parameters can be
chosen quite flexibly. Our simulations show that the
AL-CSA is not sensitive to these parameters.

In the experiment, onc itcration means that all neuron
states are cyclically updated once. The neuron outputs
are discrete as used by Chen and Aihara }3].
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Figure 1. Tour lengths of 100 runs with different randomty
selected tnital network states using AL-CSA



Figure 1 shows the tour lengths of 100 runs with
different randomly selected initial network state, by
AL-CSA for the 48-USA-city TSP. The average tour
length is 10839. The average iteration steps are 12016.
As shown in Figure 1, AL-CSA can always converge to
a feasible solution, i.e.,, with 0% invalid tour. In
contrast, Chen and Aihara’s CSA produces 5% invalid
tours. It is therefore difficult to compare average tour
length with their results. If the invalid tours are not
included in averaging, their average tour length is
10805.7, which is comparable to ours. Their average
time of iterations is 25632, which is much longer
compared to ours. Hence the AL-CSA can converge
much faster than CSA when solving large TSP’s. The
Lagrangian neurons lead the dynamic trajectory into
feasible solution regions and contribute to the searching
process. Certainly this additional Lagrangian neurons
also make the network more complicated. The shortest
tour length in our experiments is 10729 {Figure 2]. Due
to the sensitivity to choice of parameters in CSA [20],
we were not able to reproduce using CSA 5% global
minimum (with tour length 10628) reported in [3].
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Figure 2. The shortest tour (10729) in our experiments
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Figure 3. Lagrangian energy evolution process in AlL-
CSA
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Figure 4. Lyapunov energy evolution process in CSA

Figure 3 shows the evolution of energyL (x,A) in

equation (3). Its behavior is apparently different from
the usual descent decreasing Lyapunov energy. Figure
4 shows the Lyapunov energy evolution process in
CSA.

4. Summary

In this paper we proposed augmented Lagrange chaotic
simulated annealing (AL-CSA), obtaining comparable
good solution quality while eliminating the need to
choose the penalty terms carefully. Our experiments
also show that the convergence time becomes shorter
than that of CSA when the city number of TSP is large.
The solution validity can always be guaranteed, which
is quite desirable for real-world applications. The
influence of Lagrangian multipliers on the process of

searching global minimum is also demonstrated in the
end.
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