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Abstract - Many difficult combinatorial optimization problems 
arising from science and technology are often difficult to solve 
exactly. Hence a great number of approximate algorithms for 
solving combinatorial opthintion problems have been developed 
[lo], [IS]. Hopfield and Tank applied the continuowtime, 
continuous-output Hopfield neural network (CTCGH?W) to TSP, 
thereby initialing a new approach to optimbtion problem. But 
Hopfield neural network is often trapped in local minima because of 
its gradient descent property. A n u "  of modifications have been 
done on Hopfield neural network for escaping h m  local minima. 
As so k, incorporating chaos into the Hopfield neural network his 
been proved to be successful approach to improve the Convergent 
prope~ty of the HNNs. In this paper, we fim review three chaotic 
neural network models, and then propose a novel approach to 
chaotic simulated annealing. Second, we apply all of them to 10 city 
TSP, nspcctively. 'Ibe time evolutions of e n q  functions and 
outputs of ncurang for each model arc given. "be features and 
effcaiveness of four mahods ate discussed and evaluated according 
to the simulation results. We conclude that proposed neural network 
with simulated annealing bas more powerful ability to obtain global 
minima than any other chaotic "I network model when applied 
to difficult combinatorial opthimion problems. 
Keywords: Neural Networly Transient Chaos, Simulated 
Annealing, Combinatorial optimization Problem, TSP 

I .  INTRODUCl'ION 
Since Hopfield and Tank first applied their CTCO-HNN [8] 

to solving the TSP, the H N N s  [6], [7] have been shown to 
provide po- tools for a wide variety of combinatorial 
optimization problems. However, using the CTCO-HNN to 
solve TSP suffers from several shortcomings. First, the 
network can often be trapped at a local minimum on the 
complex energy terrain. Second a CTCO-HNN may 
converge to an infeasible solution. Third, sometimes, a 
CTCO-HNN does not converge at all within prescribed 
iteration [13]. 

Chaotic neural networks have recently received attention 
due to the potential capability for information processing [4], 
[12]. In a number of methods proposed to overcome the 
shortcomings of CTCO-HNN, chaotic neural networks are 
shown to be powerful tools for escaping from local minima 
when applied to difficult combinatorial optimization 
problems. Based on chaotic property of biological neurons, 
Aihara et a2 [l] proposed a chaotic neural network (CNN) 
which includes relative refractoriness in the model. Yamada 
et al [ 141 solved TSP using CNN model. They found that the 
relative refractoriness in CNN improves optimization by 
escaping fkom local minima. Based on the CNN model, Chen 
and Aihara proposed chaotic simulated annealing (CSA) to 
illustrate the features and effectiveness of a transiently 
chaotic neural network (TCNN) in solving optimization 
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problem [2]. By adding a negative self-coupling to a chaotic 
neural network and gradually removing it, they used the 
transient chaos for searclidg and self-organizing. Chen and 
Aihara's approach significantly increased the probability of 
finding near-optimd solutions. 

Wang and Smith presented an alternate approach to chaotic 
simulated annealing [lo]. After analyzing the dynamics of the 
Eder approximation of C T c e H "  as a W o n  of the 
discretization time step. They suggested that starting from the 
Eder approximation of the CTCO-HIW with a large initial 
time step At, where the dynamics are chaotic, and then 
gradually reducing the time step At, the systembe assured 
to converge and to "izc the CTCO-HNN energy 
fbnction. Since in the limit of A t + O  , the system 
approaches the CTCO-HNN, which is stable and minimizes 
the CTCO-HNN energy function. This approach eliminates 
the need for diflicult choice of any other system pa". 

Hayakawa et al [SI proPCwed another approach for TSP by 
adding chaotic noise to the discretized CTCO-HNN. The 
purpose is to help the network escaping b m  local "a 
more efficiently than mere white noise. The effect of the 
structure and distriiution of chaotic noise on the performance 
of the neural network sy?em was also discussed in their 
paper. 

In this paper, we first review the above three chaotic neural 
network models, and then we propose a novel approach to 
chaotic simulated annealing. By adding chaotic noise to each 
neuron of the discrete-time, continuous output Hopfield 
neural network (DTCO-H") and gradually decaying it, we 
propose a chaotic neural network which is initially chaotic 
but eventually convergent, therefore has richer and more 
flexible dynamics compared to the K". Second we apply 
all of them to 10 city TSP, respectively. Third the features and 
effectiveness of four methods are discussed and evaluated 
according to simulation results. The results show th? the 
proposed network has more powerfuI ability to obtain global 
"a than other networks when applied to TSP. 

11. CHAOTIC NEURAL NETWORK MODELS 
In this section, three chaotic neural network models are 

reviewed in detail, and then the proposed chaotic neural 
network is given. 
A Chaotic Simulated Annealing with Decaying 
Self-Coupling 

Chen and Aihara's transiently chaohc neural network is 
described as follows: 
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z;(t+l)=(l-p)z,(t) 
where (i=1,2,--.,n) 
x,(t)  - output ofneuron i ,  

yi(t)  - internal state ofneuron i ,  

wv - 
wg = w j i ,  

I, - inputbiasof neuron i ,  
Q - positive scaling parameter for neuronal inputs, 
k - damping factor of nerve membrane, 0 5 R 5 1 ,  
zi(t) - self-feedback connection weight (rehctory 

strength) 2 0 , 
p - dampingfactorof zi(r), O < f l < l ,  
I, - positive parameter, 
E - steepness parameter of the output function, 

connection weight fiom neuron j to neuron i ,  

& > O .  
zi(0) should be carehlly selected for the network to be 

chaotic. As fl  + 0 ,  the self-coupling term approaches to 

zero with time evolution in the form of zi(r) = zi(O)e+' , the 
system becomes a Hopfield-like network which converges to 
a fixed point, and the energy function is minimized. The 
speed of this annealing process is determined by f l .  
B Chaotic Simulated Annealing niih Decreasing Tune-step 

Considering the Euler approximation of the CTCO-HNN, 

Wang & Smith [ 1 1 1  suggested that one can start from eq. 
(4) with a large initial time step At(0) , where the dynamics 
are chaotic, and then gradually reduce the time step At as 
the network iterates, for example, by using the exponential 
decaying rule, 

where 0 < /? < 1 This causes the network to go through a 
reverse bifurcation process as it starts with a chaohc state and 
ends with a stable convergent state. The system finally 
converges and minimizes the CHNN energy function. For 
asynchronous updating of eq. (4). together with a symmetric 
w , t > 0, and an increasing activation function with a 
maximum slope of p- , the network stabilizes if 
[w,, S O  and A r  I r ] .  
C Discretized Coniinuous Hopjield Network wirh Chaotic 
Noise 

Hayakawa [ 5 ]  investlgated addmg chaotic noise to the 
discretized CTCO-HNN to solve TSP. Their chaotic neural 
network model can be defined as eq. (4), together with 

A i(t + 1) = (1 - P)A r ( 5 )  

xi (I) = f ( ~ l  ( t )  + A Vi.(')) (6) 

where A is a multiplier to the chaotic noise q ( t )  whose 
amplitude is normalized to be unity, and f is a sigmoidal 
activation function with E = 1. Chaotic noise with different 
initial values is associated with each neuron, which can be 
generated fiom the logistic map 

A normalized series can be obtained as follows, 
zi(r +1) = az,(r)(l -zi(t)) (7) 

" 2  

where 0, is the standard deviation of the serieszi(t) over 
time and e z > is the average of 2,. . To determine the solution 
feasibility at each of iteration a discretised state variable is 
introduced, 

otherwise 
Since this system with chaotic noise is no longer 

convergent, a statistical average over a period of time should 
be employed to determine the state of a neuron, Parameters 
to be adjusted are the logistic m p  parameter a in  (7), and 
the amplification factor A in (6). 
D Simulated Annealing with Decoying Chaotic Noise 

We propose a chaotic neural network model that is 
descriid as 

a 

yi(r + 1) = a ( x  wiix,(r) + I,.) +mi(#) (10) 
i 

together witheq. (1). (i = 1,2;..,n) 
where q ( r )  - chaotic noise for input to yi(r) , 
(0  < V A t )  < 1 ). 

y -positive scaling parameter for chaotic noise, 
Other parameters have the same meaning as in (1)-(2). 

The chaotic noise can be generated fiom the logistic map: 
rl,(t) = z,(d - A  (11) 
z,(t+l) =ati(r)(l-z,(r)) (12) 

We let a(r) decay exponentially, so that z,(t) is initially 
chaotic and eventually settle to a fixed point Z* : 

and 
u(t + 1) = (1 -fl)u( t )  +f l  U, (13) 

(14) 

where 1 5 U, < 2.9, 0 I 
described by (IO)-( 14) reduces to the DTCO-HNN. 
m. 

I1 . With q, = 0 , the network 

APPLICATION OF THE ABOVE METHODS TO 
THE TRAVELLING SALESMAN PROBLEM 

We adopt the formulation of Hopfield and Tank [8] for TSP. 
Namely, a solution of TSP with n cities is represented by 
n x n -permutation matrix, where each entry corresponds to 
output of a neuron in a network with n x n lattice structure. 
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Assume x, to be the neuron output which represents to 
visit city i in visiting order k . A computational energy 
function which is to minimize the total tour length while 
simultaneously satisfying all constraints takes the following 
form: 

I 

NG 4946 
RG 98.9% 
NI 81 

where x,,, = x,,, and xm+l = x i l .  A and B are the coupling 
parameters corresponding to the constraints and the cost 
function of the tour length, respectively. d,, is the distance 
betweencity i andcity j .  

In our simulation, we will use the Hopfield-Tank original 
data on TSP with 10 cities [8]. 
A Chaotic Simulated Annealing w€th Decaying 
SevXoupling 

In Chen and Aihara’s original paper [2], they applied 
transiently chaotic neural network to IO-city TSP. The 
parameters were set as follows: 

k = 0.9 a = 0.015 E = x50 
I ,  = 0.65 ~ ( 0 )  = 0.8 

5000 different initial conditions of y, were generated 
randomly in the region [-1,1] for each value of 
f l =  0.015, 0.010, 0.005, 0.003. The results are summarized 
in Table 1 (in Tables 1 4 ,  NG= the number of Global 
Minimum, RG= the Rate of Global Minimum, NI= the 
Number of Iteration). The time evolutions of the discrete 
energy function Ed and the output of neuron xu with 
fl  = 0.003 are shown in Fig. 1 and Fig.2, respectively. 
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Fig. 1 Time evolution of the discrete energy function for IO city TSP 
with Chen and Aihara’s Method. 
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Fig. 2 Time evolution of thc neuron output x23 or 10 city TSP 
with Chen and Aihara’s Method. 

Table I .  Results of 5000 Diffemt Initial Conditions for Each 
Value of fl on IO city TSP with Chen and Aihara’s Mahod. 
[ 6 I 0.015 I 0.010 1 0.005 I 0.003 1 

B Chaor& Simulated Annealing with Decreasing Thne-srep 
We apply Wang and Smith‘s CSA with decreasing time 

step to lOtity TSP. In order to decrease the influence of the 
gradient term ay& on chaotic neurodynamics at the early 

stage of the simulation, we multiply it by a coefficient a. 
The initial time step At(0) and the annealiig factor fl  
should be carefully adjusted. The parameters we choose are 
as follows: 

Ar(0) = 2 t = 0.5 a = 0.015 
We only adjust the parameter /3. Fig3 and Fig.4 show the 

time evolutions of the discrete energy function and one 
typical neuron state corresponding to an optimal solution for 
fl  = 0.001 . Table 2 shows the feasibility and performance 
variation with different annealing fsctors. 

Table2. Rcsultp of 100 Di&mrt Initial Conditiorrp for Each 
‘value of fl  on IO city TSP with Waag aad Smith’s Mcthod. 
Is I 0.010 I 0.005 I 0.001 1 1 1 1  

225 %5 
1 1 1  

225 %5 
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the maximum number of iterations. In order to determine the 
solution feesibility the visiting fnquency to the optimal 
soIiltionsistested: 

I 

NG so00 
RG 1003c 
M 19 

(16) "btr of steps staying at the tptimai solution 
total step par = 

I I 

so00 I 5000 I 5000 

8 1  350 I 1022 
100% I 100% I 100% 

Pm is calculated for the last I000 steps of 2000 
iterative steps of computer runs. Because Hayakawa et uf did 
not give the time evolutions of the discretized energy 
function and the output of neuron xu, we produce them in 
Fig. 5 and in Fig.6, the feasibility measure in Table 3. The 
logistic map parameter is chosen to be 3.81 and 3.93 since 
they belong to the chaotic region of the logistic map and were 
found to have good optimization ability on TSP. 

a4 

10: 

XW.RMT ' 
: 
. . I .  . - ....... ..-. .I.. 

I t I 
Fig. 5 Time cvdution of the discsc& eacrgy function fbs IO city TSP 

with Hayakawa et ai's Method. 

'A I 0.05 0.5 5.0 
NG 10 70 32 
RG I 0% 70% 32% 
M 2000 2000 2000 

Fig. 6 Time evolution of the neuron output x71 for 10 city TSP 
with Hayakawa et al's Method 

D Simulated Annealing with Decaying Chaotic Noise 

section I I  , D. The parameters are set as follows: 
We analyze IO-city TSP using our approach described in 

a =0.015 y =0.1 E = xso a(0) = 3.9 

a, = 2.5 h = l - & o  =0.6 

We vary only f l  to investigate the dynamics of our chaotic 
neural network model. The results obtained are summarized 
in Table 4. Fig. 7 and Fig. 8 show up the rime evolutions of 
energy function E" , and the output of neuron .rZ3 , 
respect ively. 
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IV. DISCUSSION 
In this section, we illustrate the properties and optimization 

ability of chaos in neural networks by analyzing the results 
obtained by solving the 1 O-city problem. 

With Chen & Aihara's method of CSA with decaying 
self-coupling applied to 10 city TSP, one can set from Fig 2 
that chaotic behavior of state sustains during the fmt 260 
iterations. After the unstable wandering of the state ceases. 
the states have a little fluctuation and then tend to converge to 
a stable and optimal solution. The state transition fiom the 
mherent instability to order has the effect of chaotic 
wandering in search of the global minima. The above 
characteristic transition, together with the proof of the 
existence of chaos in this CSA scheme by Chen & Aihara [3]. 
strongly suggest a chaotic role in the process. As shown in 
Table 1 the rate of global optimitation IS 98.8% for 
p = 0.015. 100% of the rate of global optimization is also 
realized by simulations with a smaller p =  0.003. which 
corresponds to a slower annealing schedule This can be 
interpreted as a prolonged chaotic search due to a lengthened 
region of instability. However, the tradeoff is the increased 
number of iterations required for convergence. 

Fig. 4 shows how a neuron state follows its path 
contributing to an optimal solution by using Wang & Smith's 
CSA with decreasing time-step. Initially it oscillates between 
0 and 1. but starts to visit intermediate values when iteration 
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is between 200 and 350. The two branches finally merge 
together towards 1, which corresponds to a global minimum. 
The result suggests a search of the global minimum thou@ 
chaotic dynamics. The correspondmg wandering of the 
energy among local minima can be observed in Fig.3. This 
illustrates the fact that decaying the time-step (an inherent 
quantity to the network) is fundamentally different from 
decaying the self-coupling term (an externally introduced 
quantity). In general, this metHod requires fewer parameters 
to be adjusted, but the difiiculty arises when choosing an 
effective annealing rate p .  

Since the discretized Hopfield network with chaotic noise 
is not convergent, no single stable state is attained by the 
neuron states. A typical neuron state iteration corresponding 
to an optimal solution is illustrated in Fig. 6. Although noisy, 
the state tends to have a denser disbribution around the value 
of 1, except at the beginning where 0 is often visited. The 
final state of this neuron is 1 according to (16). Because of 
the noisy MW of the network a discretized energy is used. 
In Fig. 5, a transient region exists for iteration < lo00 where 
the energy attains non-optimal values. When iteration > 1OOO. 
the energy dramatically drops to a global minimum and stays 
around that value with occasional jumps to a local minimum. 
The ability of a network with chaotic noise having a 
pexsistent attraction towards an optimal state was also 
reported. Tbo values of the logistic parameter a found to 
have high optimization ability are used, which yield a 
maximum of 7/10 feasibility as shown in Table 3. This is 
comparatively low against the other methods discussed so far. 

We can see from Table 4 that /I can be varied from a 
larger value of 0.1 to a smaller value of 0.001. When a larger 
p(= 0.1) is k e d  the neural network converges average with 
19 iterations (for the discrete energy function). Where among 
5000 cases, 100 percent are to global minima (tour 
lengtk2.690670). When fl  gets smaller, the rate of global 
optimization “a is 100 percent, too. But the number of 
iterations is greatly increased for /I= 0.001 . The only 
difference for Werent /I is that the number of iterations is 
different. 

V . CONCLUSIONS 
We have introduced four methods of incorporating chaos 

into the Hopfield network for combinatorial optimization. 
Two such methods, namely Chen & Aihara’s CSA with a 
decaying self-coupling term and Wang & Smith’s CSA with 
decaying time-steps, make use of chaotic annealing schemes 
analogous to the traditional simulated annealing. Both have 
features like chaotic wandering and transitions fiom 
instability to a stable state, which are found to have a novel 
ability to improve the optimization performance of the 
network. Existence of chaos and convergence to a stable 
solution in both methods are well established by the 

respective proofs. The Hopfield network with chaotic noise 
has the least number of adjustable parameters and is 
relatively efficient, but lacks convergence properties and is 
the least capable of reaching for an optimal solution. 
Different from first three methods, our method is to a,dd 

chaotic noise to each neuron of DTCO-HNN and then 
gradually decrease it. The network fulally converges to 
optimal solution, The main feature of our method is the fact 
that the method is more efficient, the rate of optimization is 
higher than any other method and the parameter can be easily 
chosen. 
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