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Abstract: In this paper, we {irst review three chaotic neural network models, and then propose a novel approach to chaotic

simulated annealing. Second, we apply al of them to 16 city travelling salesman problem (TSP), regpectively. The time evolu-

tions of energy functions and outputs of neurons for each model are given. The features and effectiveness of four methods are dis-

cussed and evaluated according to the simulation results. We conclude that proposed neural network with simulated annealing

have more powerful ability to obtain global minima than any other chaotic neural network model.
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1 Introduction

Many combinatorial optimization problems arising
from science and technology are often difficult to solve
entirely. Hence a great number of approximate alge-
rithms for solving them have been developed'? . Hop-
field and Tank first applied the continuous- time, cont inu-
ous-output Hopfield neural network ( CTCO-HNN) to
solving TSP ¥ thereby initiating a new approach to opti-
mization problems[ “>I However, using the CTCO-HNN
to solve TSP suffers from several shortcomings. First, the
network is often trapped at a local minimum in the com-
plex energy terrain because of its gradient descent prop-

erty . Second, a CTCO- HNN may converge to an infeast
ble solution. Third, sometimes, a CTCO-HNN does not
converge at all within presribed iteration'® .

In a number of methods proposed to overcome the

shortcomings of CTCO-HNN, chaotic neural networks

Received date: 1999— 12— 30; Revised date: 2000— 07— 19.
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are shown to be powerful tools for escaping from local
mininma. Based on chaotic property of biological new
rons ", Chen and A ihara proposed chaotic simulated an-
nealing (CSA) to illustrate the features and eff ectiveness
of a transiently chaotic neural network( TCNN) in solw
ing optimization problems'® . By adding a negative seli-
coupling to a chaotic neural network and gradually re-
moving it, they used the transient chaos for searching and
self-organizing. Chen and Aihara s approach significantly
increased the probability of finding nearoptimal solwe
tions.

Wang and Smith presented an alternate approach to
chaotic simulated annealing!”’. After analyzing the dy
namics of the Euler approximation of CTCO-HNN as a
function of the discretization time step, they suggested
that starting from the Euler approximation of the CTCG-
HNN with a large initial time step At, where the dynami-
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cs are chaotic, and then gradually reducing the time step
A, the system be assured to converge and to minimize
the CTCO-HNN energy function. This approach elim+
nates the need for difficult choice of any other system
paramerter.

Hayakawa et al proposed another approach for TSP by
adding chaotic noise to the discretized CTCO- HNN'
The purpose is to help the network escaping from local
minima more efficiently than mere white noise. The ef-
fect of the sructure and distribution of chaotic noise on
the performance of the neural network system was also
discussed.

In this paper, we first review the above three chaotic
neural network models, and then we propose a novel ap-
proach to chaotic simulated annealing. By adding chaotic
noise to each neuron of the discrete-time, continuous out
put Hopfield neural network( DTCO-HNN) and gradually
decaying it , the proposed neural network is nitially
chaotic but eventaully convergent, therefore has richer
and more flexible dynamics compared to the HNN. See-
ond we apply all of them to 10-city TSP, respectively.
Third the features and effectiveness of the four methods
are discussed and evaluated according to simulation re-
sults. The results show that the proposed network has
more powerful ability to obtain global minima than other
networks when applied to TSP.

2 Chaotic neural network models

In this section, three chaotic neural network models
are reviewed in detail, and then the proposed chaotic
neural network is given.

2.1 Chaotic simulated annealing with decaying
self-coupling

Chen and Aihara s transiently chaotic newral network

is described as follow s:

w(t) = fOni(0) = T (1

yi(t+ )= kyi(t)+ af Zﬂjxj(l)+]i)—zi(t)(xi(l)— lo),

(2)
Zi(t+ 1): (1_ B)Zi(t), (l: 1725 A n)a

(3)
where x;(¢): output of newon i; y;(t): internal state
of neuron i; wij: connection weight from neuron j to

neuron i, wi = awji: 1;: input bias of newron i; a: pos:

tive scaling parameter for neuronal inputs; k: damping
factor of nerve membrane, 0 Sk K1; zi(t): selffeed
back connection weight ( refractory strength) 20, B:
damping factor of zi(t), 0< B< 1; lo: positive param-
eter; € steepness parameter of the output function,
e> 0.

zi(0) should be carefully selected for the network to

be chaotic. As B~ 0, the self coupling term approaches
to zero with time evolution in the form of z(¢) =

zi(0)e B[, the system becomes a Hopfield-like network

which converges to a fixed point, and the energy function
is minimized. The speed of this annealing process is de-
termined by B.
2.2 Chaotic simulated annealing with decreas-
ing time-step
Considering the Euler approximation of the CTCO-
HNN,
yi(t+ At) =

(1= By s def Spym(e)+ L), (4)

Wang and Smith suggested that one can start from
Eq. (4) with a large initial time step At (0), where the
dynamics are chaotic, and then gradually reduce the time
step At as the network iterales, for example, by using the
exponential decaying rule,

At(t+ 1) = (1= B)A(t), (5)
where 0< B< 1. This causes the network to go through
a reverse bifurcation process as it starts with a chaotic
state and ends with a stable convergent state. The system
finally converges and minimizes the CHNN energy fune-
tion.

2.3 Discretized continuous hopfie d netwark with
chaotic noise

Hayakawa added chaotic noise to the discretized C'F-
CO-HNN to solve TSP. Their chaotic neural network
model can be defined as Eq. (4), together with

xi(t) = f(yi(t)+ AT(t)), (6)

where A is a multiplier to the chaotic noise T;(¢), and f

is a sigmoidal activation function with € = 1. Chaotic

noise with different initial values is associated with each
neuron, which can be generated from the logistic map

zi(t+ 1) = azi(t)(1- zi(t)), (7)

A normalized ,series, can be obtained as follows,



No.6 Chaotic Neural Networks and Their Application to Optimization Problems 849

()= )
ez B (8)

z

Ni(t) =

where G, is the standard deviation of the series z;(t) over
time and {z) is the average of z;. To determine the fea-
sibility of the solution at each of iteration a discretised
state variable is introduced,
J 1, iff xij > ij‘w(t)/nx n,
xd = i
F 0, otherwise.
Parameters to be adjusted are the logistic map parameter
a in Eq. (7), and the amplification factor A in Eq. ( 6).
2.4 Simulated annealing with decaying chaotic
noise
We propose a chaotic neural network model, which is

described as
yi(t+ 1= af Dyix(t)+ L)+ Y1),

(10)
together with Eq. (1) (i = 1,2, .-, n),
where
Ni(t): chaotic noise for nput toyi(¢)(0< Ti(¢) <
1); ¥: positive scaling parameter for chaotic noise. Oth
er parameters have the same meaning as in Egs. (1) and
(2) . The chaotic noise can be generated from the logigtic
map:
()= zi(t) = h, (11)
zi(t+ 1) = @i(t)(1- zi(t)). (12)
We let a(t) decay exponentially, so that z;(¢) is ini-
tially chaotic and evertually settle to a fixed point z
a(t+ 1) = (1= B)a(t)+ B+ao (13)
and
h=z = 1- 1 ao, (14)
where | Sao< 29,0 SB K1 With = 0, the net
work described by Egs. (10) ~ (14) reduces to the D'
CO- HNN.
3 Application of the above methods to
the travelling salesman problem
We adopt the formulation of Hopfield and Tank'! for
TSP. Namely, a solution of TSP with n cities is repre-
sented by n X - permutation matrix, where each entry
corresponds to output of a neuron in a network with n X

n lattice structure. Assume xik to be the neuron output

which represents city i in visiting order £, A computa-

tional energy function which is to minimize the total tour
length while simultaneoudy satisfying all the constraints

takes the follow ing form:

E= AE'/ .;l{kzzl’“ik_ 1)2+ ]l;( ‘;xik— 1)2}+

% ZZZ%‘HH k- 1) % ikdl, (15

= ==
where x;0= %, and xips 1= xi1. A and B are the cow
pling parameters corresponding to the constraints and the
cost function of the tour length, respectively. dj is the
distance between city i and city; .

In our simulation, we will use the Hopfield Tank orig
inal data on TSP with 10 cities.
3.1 Chaotic simulated annealing with decaying

self coupling

In Chen and Aihara s original paperm , they applied
transiently chaotic neural network to 10-city TSP. The
parameters were set as follows:

k=09, a= 0015 €= 1/250,
Io= 0.65, z(0)= 0.8,

5000 different initial conditions of y;j were generated ramn-
domly in the region [- 1, 1] for each value of B =
0. 015, 0.010, 0. 005, 0. 003. The results are summarized
in Table 1(in Tables 1~ 4, NG= the number of global
minimum, RG = the rate of global minimum, NI = the
number of iteration). The time evolutions of the discrete
energy function E?, and the output of neuron x 3 with B

= 0. 003 are shown in Fig. 1 and Fig. 2, respectively.

Table 1 Results of 5000 different initial conditions
for each value B on 16 city TSP with Chen
and Aihara’ s method

B 0. 015 0.010 0. 005 0.003
NG 4946 4969 4998 5000
RG 98.9% 99. 4% 99.9% 100%
NI 81 119 234 398

ENERGY2.DAT

'0 50 100 150 200 250 300 350 400 450 500
f /iteration numbers
Fig. 1 Time evolution of the discrete energy function for
10-city TSP with Chen and Aihara’ s method
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Fig. 2 Time evolution of the neuron output x3 for 10-city

TSP with Chen and Aihara’s method
3.2 Chaotic simulated annealing with decreas-

ing time step

We apply Wang and Smith s CSA with decreasing
time step to 16-city TSP. In order to decrease the influ
ence of the gradient term O E/Ox;; on chaotic neurody-
namics at the early stage of the simulation, we multiply it
by a coefficient a. The parameters we choose are as fol
lows:

At(0) =2, T= 0.5 a= 0015

We only adjust the parameter B. Fig. 3 and Fig. 4
show the time evolutions of the discrete energy function
and one typical neuron state corresponding to an optimal
solution for B= 0. 001. Table 2 shows the feasibility and
performance variation with different annealing factors.

250

ENERGY.DAT
200

O - . . . - - =
0 50 100 150 200 250 300 350 400 450 500

t /iteration numbers

Fig.3 'lime evolution of the discrete energy function for
10-city TSP with Wang and Smith’s method
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t /iteration numbers
Fig.4 Time evolution of the neuron output x»3 for 10-city
TSP with Wang and Smith’s method

Table 2 Results of 100 different initial conditions
for each value B on 16-city TSP with
Wang and Smith’ s method

B 0.010 0. 005 0.001
NG 65 81 92
RG 65% 81% 92%
NI 130 225 965

3.3 Discretized continuous hopfield network
with chaotic noise

In this method, chaotic noise is added to the dis
cretized CTCOG-HNN to solve the 16 city TSP. Since the
network is no longer convergent, a satistical average
over a period of time should be employed to determine
the state of a neuron. lterations less than 1000 correspond
to the transient period. 2000 is chosen to be the max+
mum number of iterations. In order to determine the fea
sibility of the solution the visiting frequency to the opt+
mal solutions is tested:

P = (number of steps staying at the
optimal solution) / (total steps). ( 16)

P is calculated for the last 1000 steps of 2000 iters-
tive steps of computer runs. Because Hayakawa et al did
not give the time evolutions of the discretized energy
function and the output of neuron x;, we produce them
in Fig. 5 and Fig. 6, the feasibility measure in Table 3.
The logistic map parameter is chosen to be 3.81 and
3. 93 since they belong to the chaotic region of the logis-
tic map and are found to have good optimization ability
on TSP.

Table 3 Results of 100 different initial conditions

for each value A on 16-city TSP with
Hayakawa et al’ s method

A 0.05 0.5 5.0
NG 10 70 32
RG 10% 70% 32%
NI 2000 2000 2000
185 i
154 - -
124 em T
T 9 e 4 g em——

G 500 1000 1500 2000
! /iteration numbers
Fig. 5 Time evolution of the discrete energy function for

10-city TSP with Havakawa ct al’s method
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Fig. 6 Time evolution of the neuron output x7; for 10-city
TSP with Hayakawa et al’s method
3.4 Simulated annealing with decaying chaotic

noise
We analyze 10-city TSP using our approach described
in Section 2.4. The paramelers are set as follow s:
a= 0.015 vy= 0.1 €= 1/250,
a(0) =39 ao= 2.5 h= 1-1/ao= 0.6
We vary only B to investigate the dynamics of our
chaotic neural network model. The results obtained are
summarized in Table 4, Fig. 7 and Fig. 8 show the time
evolutions of energy function E”, and the output of new
ron x 23, respectively.
Table 4 Results of 5000 different initial conditions
for each value B on 10-city TSP with
He and Wang’ s method

B 0.1 0.015 0.003 0.001
NG 5000 5000 5000 5000
RG 100% 100% 100% 100%
NI 19 82 350 1022

28
ul ENER.DAT
20 - )

0 50 100 150 200 250 300 350 400 450 500

1 /iteration numbers
Fig. 7 Time evolution of the discrete energy function for

10-city TSP with He and Wang’s method

X23

—

0 50 100 150 200 250 300 350 400 450 500
¢ /iteration numbers
Fig. 8 Time evolution of the neuron output x23 for 10~city

TSP with He and Wang's method

4 Discussion

In this section, we illustrate the properties and opt+
mization ability of chaos in neural networks by analyzing
the results obtained above.

With Chen and Aihara s method applied to 10-city
TSP, one can see from Fig. 2 that chaotic behavior of
state sustains during the first 260 iterations. After the us
stable wandering of the state ceases , the state has a little
fluctuation and then tends to converge to a stable and op-
timal solution. The state transition from the inherent in-
stability to order has the effect of chaotic wandering in
search of the global minima. As shown in Table 1 the
rate of global optimization is 98. 8% for B = 0. 015,
100% of the rate of global optimzation is also realized
by simulations with a smaller B = 0. 003, which corre-
sponds to a slower annealing schedule. This can be inter
preted as a prolonged chaotic search due to a lengthened
region of instability. However, the tradeoff is the i
creased number of iterations required for convergence.

Fig. 4 shows how a neuron state follows its path con
tributing to an optimal solution by using Wang and
Smith s CSA with decreasing time-step. Initially it osci+
lates between O and 1, but starts to visit intermediate vat
ues when iteration is between 200 and 350. The two
branches finally merge together towards 1, which corre-
sponds to a global minimum. The result suggests a search
of the global minimum through chaotic dynamics. The
corresponding wandering of the energy among local min-
ima can be observed in Fig. 3. Finally the discrete energy
function is globally mmnimized. In general, this method
requires fewer parameters to be adjusted, but the difficut
ty arises when choosing an effective annealing rate B.

Since the discretized Hopfield network with chaotic
noise is not convergent, no single stable stale is attained
by the neuron states. A typical neuron state iteration co
responding to an optimal solution is llustrated in Fig. 6.
Although noisy, the state tends to have a denser distribe
tion around the value of 1, except that at the beginning 0
is often visited. The final state of this neuron is 1 ae-
cording to Eq. (16). Because of the noisy nature of the
network a discretized energy is used. In Fig. 5, a transient
region exists for iteration < 1000 where the energy a+
tains nor-optimal values. When iteration > 1000, the en

ergy dramatically drops to a global, minimum and stays
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around that value with occasional jumps to a local mint-
mum. A maximum of 7/10 feasibility is obtained as
shown in Table 3.

We can see from Table 4 that B can vary from a larger
value of 0. 1 to a smaller value of 0. 001. When a larger
B(= 0.1) is used the neural network converges average
with 19 iterations ( for the discrete energy function).
Among 5000 cases, 100 percent are to global minima
(tour length= 2. 690670) . When B gets smaller, the rate
of global optimization minima is 100 percent, too. But
the number of iterations is greatly increased for B =
0.001. The only difference for different B is that the
number of iterations is different.

5 Conclusions

We have introduced four methods of incorporation
chaos into the Hopfield network for combinatorial opt
mizations. Two such methods, namely Chen and Aihara s
CSA with a decaying self coupling term and Wang and
Smith s CSA with decaying time-steps, make use of
chaotic amealing schemes analogous to the traditional
simulated amealing. Both have features like chaotic wan-
dering and transitions from instability to a stable sate,
which are found to have a novel ability to improve the
optimization performance of the network. Existence of
chaos and convergence to a stable solution in both meth
ods are well established by the respective proofs. The
Hopfield network with chaotic noise has the least number
of adjustable parameters and is relatively efficient, but
lacks convergence properties and is the least capable of
reaching for an optimal solution.

Different from the first three methods, our method is
to add chaotic noise to each neuron of DTCO-HNN and
then gradually decay it. The network finally converges to
optimal solution. The main feature of our method is that
it is more efficient, the rate of optimization is higher than
any other method and the parameter can be easily chosen

when applied to 16 city TSP.
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