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  Abstract: In this paper , we first review three chaotic neural network models, and then propose a novel approach to chaotic

simulated annealing. Second, we apply all of them to 10-city travelling salesman problem ( TSP) , respectively . The time evolu-

tions of energy functions and outputs of neurons for each model are given. The features and effectiveness of four methods are dis-

cussed and evaluated according to the simulation results. We conclude that propo sed neural network with simulated annealing

have more powerful ability to obtain global minima than any other chaotic neural network model.
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  摘要: 首先评述了三种混沌神经网络模型, 然后提出了一种新的混沌模拟退火算法.其次将四种方法分别应用

于 10个城市的旅行推销商问题. 文中给出了每一模型神经元输出和能量函数随时间演变过程曲线. 根据仿真结

果,讨论了四种方法的特性与效果. 其结论为:提出的模拟退火神经网络比其它网络模型更能获得全局最小解.
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1  Introduction

 Many combinatorial optimization problems arising

f rom science and technology are often diff icult to solve

ent irely. Hence a great number of approximate algo-

rithms for solving them have been developed[ 1, 2] . Hop-

f ield and Tank f irst applied the continuous- time, cont inu-

ou-s output Hopfield neural network ( CTCO-HNN ) to

solving TSP[ 3] , thereby initiating a new approach to opt-i

mization problems
[ 4, 5]

. However, using the CTCO-HNN

to solve TSP suffers from several shortcomings.First , the

network is often trapped at a local minimum in the com-

plex energy terrain because of its gradient descent prop-

erty . Second, a CTCO-HNN may converge to an infeas-i

ble solution. Third, sometimes, a CTCO-HNN does not

converge at all within presribed iteration [ 6] .

 In a number of methods proposed to overcome the

shortcomings of CTCO-HNN, chaotic neural networks

are shown to be powerful tools for escaping from local

mininma. Based on chaotic property of biological neu-

rons[ 7] , Chen and Aihara proposed chaotic simulated an-

nealing ( CSA) to illustrate the features and effectiveness

of a transiently chaotic neural network( TCNN) in solv-

ing optimization problems[ 8] . By adding a negative self-

coupling to a chaotic neural network and gradually re-

moving it, they used the transient chaos for searching and

self-organizing. Chen and Aiharaps approach significantly

increased the probability of finding near-opt imal solu-

t ions.

 Wang and Smith presented an alternate approach to

chaotic simulated annealing [ 9] . After analyzing the dy-

namics of the Euler approximation of CTCO-HNN as a

function of the discretization time step, they suggested

that starting from the Euler approximation of the CTCO-

HNN w ith a large initial time step $t , where the dynam-i
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cs are chaotic, and then gradually reducing the time step

$t , the system be assured to converge and to minimize

the CTCO-HNN energy funct ion. This approach elim-i

nates the need for diff icult choice of any other system

paramerter.

 Hayakawa et al proposed another approach for TSP by

adding chaotic noise to the discret ized CTCO-HNN
[ 10]

.

The purpose is to help the network escaping from local

minima more ef ficient ly than mere white noise. The ef-

fect of the structure and distribution of chaotic noise on

the performance of the neural network system was also

discussed.

 In this paper, we f irst review the above three chaotic

neural network models, and then we propose a novel ap-

proach to chaotic simulated annealing. By adding chaotic

noise to each neuron of the discrete- time, cont inuous out-

put Hopfield neural network( DTCO-HNN) and gradually

decaying it , the proposed neural network is initially

chaotic but eventaully convergent, therefore has richer

and more flexible dynamics compared to the HNN. Sec-

ond we apply all of them to 10-city TSP, respectively.

Third the features and effectiveness of the four methods

are discussed and evaluated according to simulation re-

sults. The results show that the proposed network has

more powerful ability to obtain global minima than other

networks when applied to TSP.

2  Chaotic neural network models

 In this section, three chaotic neural network models

are reviewed in detail, and then the proposed chaotic

neural network is given.

211  Chaotic simulated annealing with decaying

self-coupling

 Chen and Aiharaps transiently chaotic neural network

is described as follow s:

xi ( t ) = f ( yi ( t ) ) =
1

1+ e- y
i
( t ) / E, (1)

yi ( t+ 1)= kyi ( t )+ A( 6
n

j

w ij xj ( t )+ Ii )- zi ( t )( xi ( t )- I0) ,

(2)

zi ( t + 1) = (1 - B) zi ( t ) ,  ( i = 1, 2, ,, n) ,

(3)

where x i ( t ) : output of neuron i ; yi ( t ) : internal state

of neuron i ; w ij : connection weight from neuron j to

neuron i , w ij = wj i ; Ii : input bias of neuron i ; A: pos-i

t ive scaling parameter for neuronal inputs; k : damping

factor of nerve membrane, 0 [ k [ 1; zi ( t ) : self- feed-

back connection weight ( refractory strength) \0; B:

damping factor of zi ( t ) , 0< B< 1; I0: positive param-

eter; E: steepness parameter of the output function,

E> 0.

 z i (0) should be carefully selected for the network to

be chaotic. As B y 0, the self-coupling term approaches

to zero with time evolution in the form of zi ( t ) =

z i (0) e
- Bt
, the system becomes a Hopfield- like network

which converges to a fixed point, and the energy function

is minimized. The speed of this annealing process is de-

termined by B.

212  Chaotic simulated annealing with decreas-

ing time-step

 Considering the Euler approximation of the CTCO-

HNN,

yi ( t + $t ) =

(1 -
$t
S
) y i ( t ) + $t ( 6

n

j

w ij xj ( t ) + Ii ) . (4)

 Wang and Smith suggested that one can start from

Eq. ( 4) with a large initial time step $t ( 0) , where the

dynamics are chaotic, and then gradually reduce the time

step $t as the network iterates, for example, by using the

exponential decaying rule,

$t ( t + 1) = (1- B) $( t ) , (5)

where 0 < B< 1. This causes the network to go through

a reverse bifurcation process as it starts with a chaotic

state and ends with a stable convergent state. The system

finally converges and minimizes the CHNN energy func-

t ion.

213  Discretized continuous hopfield network with

chaotic noise

 Hayakawa added chaotic noise to the discretized CT-

CO-HNN to solve TSP. Their chaotic neural network

model can be def ined as Eq. ( 4) , together with

xi ( t ) = f ( yi ( t ) + AGi ( t ) ) , (6)

where A is a multiplier to the chaotic noise Gi ( t ) , and f

is a sigmoidal activation function with E = 1. Chaotic

noise with different initial values is associated with each

neuron, which can be generated from the logistic map

zi ( t + 1) = azi ( t ) ( 1- zi ( t ) ) , (7)

A normalized series can be obtained as follows,
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Gi ( t ) =
zi ( t ) - 3z4t

Rz
, (8)

where Rz is the standard deviation of the series zi ( t ) over

time and3z4 is the average of zi . To determine the fea-

sibility of the solution at each of iteration a discretised

state variable is introduced,

x
d
ij =

1, iff xij > 6
n

i
6
n

j

x ij ( t ) / n @ n,

0, otherwise.

(9)

Parameters to be adjusted are the logist ic map parameter

a in Eq. ( 7) , and the amplification factor A in Eq. ( 6) .

214  Simulated annealing with decaying chaotic

noise

 We propose a chaotic neural network model, which is

described as

y i ( t + 1) = A( 6
n

j

w ij xj ( t ) + Ii ) + CGi ( t ) ,

(10)

together with Eq. ( 1) ( i = 1, 2, ,, n) ,

where

 Gi ( t ) : chaotic noise for input to y i ( t ) (0< Gi ( t ) <

1) ; C: posit ive scaling parameter for chaotic noise. Oth-

er parameters have the same meaning as in Eqs. ( 1) and

( 2) . The chaotic noise can be generated from the logistic

map:

Gi ( t ) = z i ( t ) - h, (11)

z i ( t + 1) = az i ( t ) (1- z i ( t ) ) . (12)

 We let a( t ) decay exponentially, so that zi ( t ) is in-i

tially chaotic and eventually settle to a fixed point z
*
:

a( t + 1) = (1 - B) a( t ) + B# a0 (13)

and

h = z
*
= 1 - 1/ a0, (14)

where 1 [ a0< 219, 0 [ B [ 1. With Gi = 0, the net-

work described by Eqs. ( 10) ~ ( 14) reduces to the DT-

CO-HNN.

3  Application of the above methods to

the travelling salesman problem

 We adopt the formulation of Hopf ield and Tank [ 3] for

TSP. Namely, a solution of TSP with n cities is repre-

sented by n @ n-permutation matrix, where each entry

corresponds to output of a neuron in a network with n @

n lattice structure. Assume xik to be the neuron output

which represents city i in visiting order k . A computa-

t ional energy function which is to minimize the total tour

length while simultaneously satisfying all the constraints

takes the follow ing form:

E =
A
2
{ 6

n

i= 1

( 6
n

k= 1

x ik - 1) 2+ E
n

k= 1

( E
n

i = 1

x ik - 1) 2} +

B
2 6

n

i= 1
6
n

j= 1
6
n

k= 1

( xjk+ 1+ xjk- 1) x ikdij , ( 15)

where xi 0 = x in and xin+ 1 = x i1. A and B are the cou-

pling parameters corresponding to the constraints and the

cost function of the tour length, respectively. dij is the

distance between city i and city j .

 In our simulation, we will use the Hopfield-Tank orig-

inal data on TSP with 10 cities.

311  Chaotic simulated annealing with decaying

self- coupling

 In Chen and Aiharaps original paper
[ 8]

, they applied

transiently chaotic neural network to 10-city TSP. The

parameters were set as follows:

k = 019,  A= 01015,  E= 1/ 250,

I0 = 0165,  z (0) = 018,

5000 different initial conditions of yij were generated ran-

domly in the region [ - 1, 1] for each value of B =

01015, 01010, 01005, 01003. The results are summarized

in Table 1( in Tables 1~ 4, NG= the number of global

minimum, RG = the rate of global minimum, NI = the

number of iteration) . The time evolutions of the discrete

energy function Ed , and the output of neuron x 23 with B

= 01003 are shown in Fig. 1 and Fig . 2, respectively.

Table 1  Results of 5000 different initial conditions

for each value Bon 10-city TSP with Chen

and Aihara. s method

B 0. 015 0. 010 0. 005 0. 003

NG 4946 4969 4998 5000

RG 98. 9% 99. 4% 99. 9% 100%

NI 81 119 234 398
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312  Chaotic simulated annealing with decreas-

ing time-step

 We apply Wang and Smithps CSA with decreasing

time step to 10-city TSP. In order to decrease the influ-

ence of the gradient term 5E/ 5xij on chaotic neurody-

namics at the early stage of the simulation, we multiply it

by a coeff icient A. The parameters we choose are as fo-l

lows:

$t (0) = 2,  S= 015,  A= 01015.
 We only adjust the parameter B. Fig. 3 and Fig . 4

show the time evo lutions of the discrete energy funct ion

and one typical neuron state corresponding to an optimal

solut ion for B= 01001. Table 2 shows the feasibility and

performance variation with different annealing factors.

Table 2  Results of 100 different initial conditions

for each value Bon 10-city TSP with

Wang and Smith. s method

B 0. 010 0. 005 0. 001

NG 65 81 92

RG 65% 81% 92%

NI 130 225 965

313  Discretized continuous hopfield network

with chaotic noise

 In this method, chaotic no ise is added to the dis-

cretized CTCO-HNN to solve the 10-city TSP. Since the

network is no longer convergent , a statistical average

over a period of time should be employed to determine

the state of a neuron. Iterations less than 1000 correspond

to the transient period. 2000 is chosen to be the max-i

mum number of iterat ions. In order to determine the fea-

sibility of the solution the visiting frequency to the opt-i

mal solutions is tested:

P os = ( number of steps staying at the

optimal solution) / ( total steps) . ( 16)

 Pos is calculated for the last 1000 steps of 2000 itera-

t ive steps of computer runs. Because Hayakawa et al did

not give the time evolutions of the discretized energy

function and the output of neuron xij , we produce them

in Fig . 5 and Fig. 6, the feasibility measure in Table 3.

The logistic map parameter is chosen to be 3181 and

3193 since they belong to the chaotic region of the logis-

t ic map and are found to have good optimization ability

on TSP.

Table 3  Results of 100 different initial conditions

for each value A on 10-city TSP w ith

Hayakawa et al. s method

A 0. 05 0. 5 5. 0

NG 10 70 32

RG 10% 70% 32%

NI 2000 2000 2000
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314  Simulated annealing with decaying chaotic

noise

 We analyze 10-city TSP using our approach described

in Section 214. The parameters are set as follow s:

A= 01015,  C= 011,  E= 1/ 250,

a(0) = 319,  a0 = 215,  h = 1 - 1/ a0 = 016.

 We vary only B to investigate the dynamics of our

chaotic neural network model. The results obtained are

summarized in Table 4, Fig . 7 and Fig. 8 show the time

evolutions of energy function Ed
, and the output of neu-

ron x 23, respectively.

Table 4  Results of 5000 different initial conditions

for each value Bon 10-city TSP w ith

He and Wang. s method

B 0. 1 0. 015 0. 003 0. 001

NG 5000 5000 5000 5000

RG 100% 100% 100% 100%

NI 19 82 350 1022

4  Discussion

 In this section, we illustrate the properties and opt-i

mization ability of chaos in neural networks by analyzing

the results obtained above.

 With Chen and Aiharaps method applied to 10-city

TSP, one can see from Fig. 2 that chaotic behavior of

state sustains during the f irst 260 iterations.Af ter the un-

stable wandering of the state ceases , the state has a little

fluctuation and then tends to converge to a stable and op-

t imal solution. The state transition from the inherent in-

stability to order has the effect of chaotic wandering in

search of the global minima. As shown in Table 1 the

rate of global optimization is 9818% for B = 01015,
100% of the rate of global optimzation is also realized

by simulations with a smaller B= 01003, which corre-

sponds to a slower annealing schedule. This can be inter-

preted as a prolonged chaot ic search due to a lengthened

region of instability. However, the tradeoff is the in-

creased number of iterat ions required for convergence.

 Fig. 4 show s how a neuron state follows its path con-

tributing to an optimal solution by using Wang and

Smithps CSA with decreasing time-step. Init ially it osci-l

lates between 0 and 1, but starts to visit intermediate va-l

ues when iteration is between 200 and 350. The two

branches finally merge together towards 1, which corre-

sponds to a global minimum. The result suggests a search

of the global minimum through chaotic dynamics. The

corresponding wandering of the energy among local min-

ima can be observed in Fig . 3. Finally the discrete energy

function is globally minimized. In general, this method

requires fewer parameters to be adjusted, but the diff icu-l

ty arises when choosing an effective annealing rate B.

 Since the discretized Hopfield network with chaotic

noise is not convergent, no single stable state is attained

by the neuron states. A typical neuron state iteration cor-

responding to an optimal solution is illustrated in Fig. 6.

Although noisy, the state tends to have a denser distribu-

t ion around the value of 1, except that at the beginning 0

is often visited. The final state of this neuron is 1 ac-

cording to Eq. ( 16) . Because of the noisy nature of the

network a discretized energy is used. In Fig. 5, a transient

region exists for iteration < 1000 where the energy at-

tains non-opt imal values.When iteration > 1000, the en-

ergy dramatically drops to a global minimum and stays
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around that value with occasional jumps to a local min-i

mum. A maximum of 7/ 10 feasibility is obtained as

shown in Table 3.

 We can see from Table 4 that Bcan vary f rom a larger

value of 011 to a smaller value of 01001. When a larger

B( = 011) is used the neural network converges average

w ith 19 iterations ( for the discrete energy function ) .

Among 5000 cases, 100 percent are to global minima

( tour length= 21690670) . When Bgets smaller, the rate

of global optimization minima is 100 percent, too. But

the number of iterations is greatly increased for B =

01001. The only difference for different B is that the

number of iterations is different.

5  Conclusions

 We have introduced four methods of incorporat ion

chaos into the Hopfield network for combinatorial opt-

mizations. Two such methods, namely Chen and Aiharaps

CSA with a decaying self-coupling term and Wang and

Smithps CSA with decaying time-steps, make use of

chaotic annealing schemes analogous to the tradit ional

simulated annealing . Both have features like chaotic wan-

dering and transitions from instability to a stable state,

which are found to have a novel ability to improve the

optimization performance of the network. Existence of

chaos and convergence to a stable so lution in both meth-

ods are well established by the respective proofs. The

Hopfield network w ith chaotic noise has the least number

of adjustable parameters and is relatively eff icient , but

lacks convergence properties and is the least capable of

reaching for an optimal solution.

 Different f rom the f irst three methods, our method is

to add chaotic noise to each neuron of DTCO-HNN and

then gradually decay it. The network finally converges to

optimal solution.The main feature of our method is that

it is more efficient, the rate of optimization is higher than

any other method and the parameter can be easily chosen

when applied to 10-city TSP.
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