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Abstract. In this paper, we investigate the effectiveness of wavelet Multi-Layer Perceptrons 
(MLP) neural network for temporal sequence prediction. It is essentially a neural network with 
input signal decomposed to various resolutions using wavelet transform.  Wavelet transform can 
expose the time-frequency information that is normally hidden. We show that wavelet MLP 
network provides prediction performance comparable to the conventional MLP.  After the less 
important inputs are eliminated, the wavelet MLP shows more consistent performance for different 
weight initialization in comparison to the conventional MLP. 

1. Introduction 

In many instances, the desire to predict the future is the driving force behind the 
search for laws to explain certain phenomena.  Example range from forecasting 
weather and Newton’s laws of motion. 
 
The oldest and most studied method, a linear autoregression (AR) is to fit the data 
using the following [1]: 
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where 
y(k) actual value of the time series 
a(i)  weightage 
e(k) prediction error 

 
predicted value of  y(k) 

 
This AR model forms y(k) as a weighted sum of past values of the sequence.  This 
model can provide good performance only when the system under investigation is 
linear or nearly linear.  However the performance may be very poor for cases in which 
system dynamics is highly nonlinear. 
 
Neural network has demonstrated great potential for time-series prediction where 
system dynamics is nonlinear.  Lapedes and Farber [2] first proposed using MLP for 
nonlinear signal prediction.  It led to an explosive increase in research activities in 
examining the approximation capabilities of MLP [3]-[6]. 
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Neural networks are developed to emulate the human brain that is powerful, flexible 
and efficient.  However, conventional networks only process the signal on its finest 
resolution.  It is however not the case for human brain.  For example, the retinal 
image is likely to be processed in separate frequency channels [8]. 
 
The introduction of wavelet decomposition [7]-[11] provides a new tool for 
approximation.  Inspired by both the MLP and wavelet decomposition, Zhang and 
Benveniste [12] invented a new type of network, call a wavelet network.  This has 
caused rapid development of a new bred of neural network model integrated with 
wavelets.  Most researchers used wavelets as radial basis functions that allow 
hierarchical, multi-resolution learning of input-output maps from experimental data 
[13]-[16].  Liang and Page [17] proposed a new learning concept and paradigm for 
neural network, called multiresolution learning based on multiresolution analysis in 
wavelet theory. 
 
In this paper, we use wavelets to break the signal down into its multiresolution 
components before feeding them into a MLP.  We show that the wavelet MLP neural 
network is capable of utilizing the time-frequency information to improve its 
consistency in performance. 

2. WAVELET 

Wavelet theory provides a unified framework for a number of techniques that had 
been developed independently for various signals processing application, e.g., 
multiresolution signal processing used in computer vision; subband coding, developed 
for speech and image compression; and wavelet series expansions, developed in 
applied mathematics.  In this section, we will concentrate on the multiresolution 
approximation that is utilized in the presented model. 

2.1  Multiresolution [10][11] 

Wavelet ψ can be constructed such that the dilated and translated family 
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where   (mother wavelet) is an orthonormal basis of L2(R), where L2(R) denote the 
vector space of square-integrable, one-dimensional function f(x), and let Vj denote a 
close subspace in L2(R). Orthogonal wavelets dilated by 2j carry signal variations at 
the resolution 2j. Thus wavelet can be used to compute the approximation of signal at 
various resolutions with orthogonal projections on different spaces {Vj}j∈ Z.  Each 
subspace contains the approximation of all function f(x) at resolution 2j.  The 
approximation of signal at resolution 2j+1 contains all information necessary to 
compute the signal at the lower resolution. Thus they are a set of nested vector 
subspace, 
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Therefore when computing the approximation of function f at resolution 2j, some 
information about f is lost.  As the resolution increases to infinity, the approximate 



 

 

signal converges to the original signal. When the resolution approaches zero, the 
signal vanishes. If Pvj denotes the orthogonal projection operator from L2(R) onto Vj 
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On the other hand when the resolution 2j approaches +∞, the signal approximation 
converges to the original signal: 
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(5) guarantee that the original signal can be reconstructed using decomposed signals 
at lower resolution.   

2.2 Signal Decomposition 

A tree algorithm can be used for computing wavelet transform by using the wavelet 
coefficients as filter coefficients.  Assume that vector sm represents the sampled signal 
f at finest resolution 2m. Lowpass filter L is employed to produce a coarser 
approximation at resolution 2m-1. Thus 

sj-1=Lsj  j=1,2,….,m (6) 

The detail signal dj at resolution 2j is obtained by applying a highpass filter H to sj. 
That is 

dj-1=Hsj  j=1,2,…,m (7) 

Thus the process can be repeated to produce signals at any desired resolution (Fig.1).  
 

 
Fig. 1. Decomposition Process 

The signal can be reconstructed using two synthesis filter L* and H* (the transposed 
matrices of L and H, respectively).  Thus reconstruction is given by (Fig. 2). 

sj=L*sj-1+H*dj-1 (8) 

 
Fig. 2. Reconstruction 

Therefore, any original signal can be represented as 
mmm ddddssf +++++== −1100 L  (9) 



 

 

3. WAVELET MLP NEURAL NETWORK 

Fig.3 shows the Wavelet MLP Neural Network used in this paper.  The input signal is 
passed through a tapped delay line to create short-term memory that retains aspect of 
the input sequence relevant to making predictions.  This is similar to time lagged 
MLP except that the delayed data is not sent directly into the network.  Instead it is 
decomposed by wavelet transform to form the input of the MLP.  Fig. 4 shows an 
example of two level decomposition of the tapped delay data x.  Data x is 
decomposed to coarser (CA1) and detailed (CD1) approximation. The coarser (CA1) 
is further decomposed into it coarser (CA2) and detailed (CD2) approximations. 

 
Fig. 3. Model of Network (WD=Wavelet Decomposition 

Furthermore, we are looking into possibility of discarding certain wavelet-
decomposed data that is of little use in the mapping of input to output.  The mapping 
is expected to be highly nonlinear and dependent on the characteristic of individual 
signal. 
 
Let  
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represent the importance of input xi 
 
where 
 
wij weightage of the of input i to neuron j 
n    number of hidden neurons 
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serves as indicator of the relative importance of inupt xi. 
 
where  
 

'
is  normalized input strength 

max(si)  maximum of s1, s2,…. sI, I is the number of inputs 
 



 

 

Input point having small '
is  will be considered to be trivial and maybe discarded 

without affecting the prediction performance.  

Fig. 4. The two level decomposition to form input to the neural network 
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Fig. 5. (a) the first 8 data points of Mackey-Glass (b) decomposed by Daubechies1 wavelet 

4. Simulation 

The Mackey-Glass time-series prediction is frequently used as a benchmark in time-
series studies. 
The Mackey-Glass time-delay differential equation is defined by 

)(1.0
))(1(
)(2.0)(

10 tx
tx
tx

dt
tdx −

−+
−=
π
π  

(12) 

 
The MLP used in our simulations consists of a input layer, a hidden layer of two 
neurons and one output neuron, and is train by backpropagation algorithm using a 
Levenberg-Marquardt for fast optimization [18].  All neurons use conventional 
sigmoid activation function; however, the output neuron employed a linear activation 
function as frequently used in forecasting applications. 
 
In order to compare our result, the normalized mean squared error (NMSE) is used to 
assess forecasting performance. The NMSE is computed as 
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where 
 



 

 

)(tx actual value of the time series 
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^

tx predicted value of x(t); 
2σ  variance of the time series over the predicting duration. 

N is the number of elements 
 
The data is divided into three sections, the training, validation and testing.  The 
training data is of length 220, follow by validation and testing data, each of length 30. 
Validation NMSE is evaluated every 20 epochs.  When there is an increase in the 
validation NMSE, training stops.  Test data is used to test the generalization 
performance of the network and has not been seen by the network during training or 
validation. 
 
Early stopping by monitoring validation error often shows multiple minima as a 
function of training time and results are also sensitive to the weight initialization [6]. 
In order to have a fair comparison; simulation is carried out for each network with 
different random weight initialization over 100 trials. The 50 lowest NMSE is kept for 
calculations of mean and standard deviation, which are then used for comparisons.  
 

 
Fig. 6. Distribution of relative importance of 20 inputs for the wavelet MLP network with decomposition level one 
in one of the simulations, which is similar to the results in other simulations 

The simulations indicate that the input points 1,4 and 5 is consistently less important 
than other inputs (Fig.6). Simulations are re-run after these less important inputs are 
eliminated.  This results a network of size  17:2:1 (17 inputs, 2 hidden neurons and 1 
output neuron). We denote this wavelet MLP Neural Network (FNN) by (17:2:1) = 
(20:2:1) - [1,4,5]. Simulations are done on other network sizes to reduce the number 
of inputs when possible. 
 
 
 
 
 
 

Table 1. Result of the three networks on different architecture of network 

 Normalized Mean Square Error (NMSE) 
Architecture Type Mean Standard 

Deviation 
Minimum 

Conventional MLP 0.063 0.016 0.0047  
20:2:1 Wavelet MLP 0.054 0.0026 0.036 

Conventional MLP 0.043 0.0093 0.0069 
Wavelet MLP 0.045 1.38 x 10-6 0.045 

 
17:2:1 

(20:2:1)-[1,4,5] 0.027 8.051 x 10-6 0.027 



 

 

Conventional MLP 0.021 0.0107 0.0017  
12:2:1 Wavelet MLP 0.032 0.0030 0.013 

Conventional MLP 0.015 0.0078 0.0017 
Wavelet MLP 0.032 0.0029 0.017 

 
11:2:1 

(12:2:1)-[7] 0.021 0.00064 0.017 
 
Table 1 shows that wavelet MLP network provides prediction performance 
comparable to the conventional MLP.  After less important inputs are eliminated, the 
wavelet MLP shows more consistent performance for different weight initialization to 
the conventional MLP.
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Fig. 7. Result for network size 17:2:1 on Mackey Glass time series prediction (a) MLP with test and validation 
NMSE=0.0028 and 0.0481, respectively. (b) Wavelet MLP with decomposition level one, verification and test 
NMSE=0.0068 and 0.0450, respectively. (c) Wavelet MLP (17:2:1) = (20:2:1) -[1,4,5], test and validation 
NMSE=0.0126 and 0.0273, respectively. Dotted line is the actual data, whereas continuous line is the predicted 
data. 

 

5. CONCLUSION 

In this paper, we used a wavelet MLP, consisting of a wavelet decomposition layer 
and a conventional MLP, for time series prediction.  We analyzed the relative 



 

 

importance among the input wavelets.  After less important wavelets are eliminated, 
the modified wavelet MLP network provides a more consistent and stable network 
that is evident in its low mean and standard deviation for NMSE.  This is in contrast 
to the conventional MLP network that has large performance swing and is sensitive to 
weight initialization. 
 
However the wavelet MLP without input elimination did not show significance 
improvement over the conventional MLP.  It is suspected that different signals have 
different time-frequency compositions.  Thus the decomposition level, type of wavelet 
or decomposition type may vary significantly with signal. Therefore more work is 
required to equip the network with the ability to adapt to different signals without 
human intervention. 
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