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Abstract 
We propose a two-stage training for the multilayer 
perceptron (MLP). The first stage is bottom-up, where 
we use a class separability measure to conduct hidden 
layer training and the least squared error criterion to 
train the output layer. The second stage is top-down, we 
use a criterion derived from classification error rate to 
further train the network weights. We demonstrate the 
effectiveness of the proposed training algorithms with 
computer simulations. 

1. Introduction 
The multilayer perceptron (MLP) has been widely 
studied and applied in pattern recognition (e.g., [1]-
[11]). There are many ways to improve the effectiveness 
of training and classification accuracy. For example, 
Bischel and Seitz [6] proposed a bottom-up training 
procedure by using a minimum class entropy criterion, 
in contrast with the traditional back-propagation (BP) 
algorithm, which is a top-down procedure. Juang and 
Katagiri [7] used a new cost function, called minimum 
classification error (MCE), to train the MLP. 
In the present paper, we propose a new approach to the 
training of the MLP classifier.  The network has a single 
hidden layer with a wavelet-like nonlinearity as the 
activation function. The output layer consists of c nodes, 
where c is the number of classes for the problem under 
consideration, with sigmoid nonlinearity. Training starts 
from bottom-up: the weights connecting the input layer 
to the hidden layer is trained first by using a interclass 
distance criterion as the cost function, followed by a 
least mean error (LME) procedure to train the weights 
connecting the hidden layer to the output layer. This 
initial training stage will be described in Section 2. 
Based on the initial training result, we then use a top-
down procedure similar to the BP algorithm but with a 
cost function derived directly from the definition of 
classification error rate. This procedure is described in 
Section 3. In Section 4, we present computer 
simulations on a three-class problem to demonstrate the 
proposed training algorithm. Finally, conclusions and 
discussions are presented in Section 5. 

2. Stage 1: Bottom-Up Training 
We consider a feedforward network consisting of a 

single hidden layer with H nodes and an output layer 
with c nodes, where H will be determined by training 
and c is the number of classes specified by the 
problem at hand. We train the network to perform a 
classification task in such a way that an input pattern  

t
nxx )( 1L=x  is classified to class i if the output 

from output neuron i is the largest among all output 
neurons. That is, we use the following decision rule:  
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is the output of output neuron i, g(.) denotes sigmoid 
function and yj is the output of hidden neuron j.  
We observe that the hidden layer in the network acts 
as a feature extractor. The input to hidden neuron j is  
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and the output of hidden neuron j is 
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where f (.) is the activation function, which will be 
discussed shortly. 
To train a feature extractor, we need a proper class 
separability measure. There exist two types of 
separability measure in the pattern recognition 
literature [8]. One is the probability measure, in 
which the entropy criterion is included. The other is 
the interclass distance measure. From the viewpoint 
of statistics theory, the former is considered to be 
more reliable. From a practical point of view, 
however, the latter is more convenient. Among the 
measures belonging to the interclass distance 
category cited in [8], we choose the following 
measure 
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as the objective function, where 
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is referred to as the total scatter matrix in the feature 
space, and 
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is the within-class scatter matrix.  
We propose a new activation function as follows, 
which very similar to the derivative of a spline 
function or a wavelet [9] 
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In the initial training stage, we first find the maximum 
of objective function (2.5) by a gradient method. We 
can compute the gradient vector by using the sample 
mean within a batch to replace the ensemble expectation 
and then modify the connection weights by using either 
gradient descent method or conjugate gradient method. 
This is repeated until convergence.  
At this training stage, only the weights connecting the 
input nodes to the hidden neurons are involved. Thus 
the initialization problem is much less complex 
compared to that of training the entire network. We 
simply assign all weights to be random number within 
(-0.5, 0.5) and the offsets within (-1.5,1.5) as their 
initial values.  
Once hidden layer training is completed, the output 
layer training reduces to a single layer perceptron 
problem. If linear neurons were used in the output layer 
the least mean-squared error solution can be obtained 
[8]. If sigmoid neurons are used, a gradient descent 
procedure could be performed; however, since the two 
types of output neuron result in almost the same 
partition boundaries and the training results will be 
refined further in our top-down procedure, we treat the 
output neurons as if they were linear. 
3. Stage 2: Top-Down Training 
From the discussions in the previous section, we realize 
that the resulted classifier is essentially a single layer 
per ceptron, but it operates in the feature space in which 
the classes are best linearly separated. Thus it can be 
regarded as a promising start point to seek a better 
solution when we retrain the networks by the back-
propagation (BP) algorithm.  
However the conventional BP algorithm is conducted 
by the LME criterion, which is not directly related to 
the classification error. In an earlier paper an 
improvement was carried out by Do-Tu et al for the 
two-class problem [10]. In this paper, we attempt to 
generalize the method to the case of multi-class problem 
and nonlinear discriminant functions.  
The classification error rate (CER) for a given partition 
is 
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where Ω  j is the decision region for ωj by rule (2.1), we 
introduce an indicator function: 
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where u(.) is the unit step function. Obviously we have 
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so that we can rewrite (3.1) as  
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This cost function is directly related to the definition of 
CER, contrasted with the MCE criterion defined in [7]. 

When we attempt to minimize it by gradient descent 
method, we need to calculate the derivative of the 
unit step function, which is a δ-function. As shown in 
[10], this difficulty can be overcome by a window 
technique, namely by replacing the unit step function 
in (3.2) with 
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where  )(⋅αh  can be any function satisfying 
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We can derive the following learning rule for the 
weight change by using gradient descent: if a training 
sample belonging to class s is present to the network, 
we have 
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and modify '
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where η’ is the learning rate. 
The modification of the hidden layer weights wj k can 
be done in a way similar to the BP algorithm, namely 
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and  
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It has been proven [10] that if the learning rate and 
window parameter satisfy certain condition such as 
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where r denotes the training count, this stochastic 
approximation procedure will converge. 

4. Computer Simulations  
Let us consider a two-dimensional, three-class 
problem (c=3 and n=2). The classes are distributed 
with equal a priori probability and the following 
class probability density functions: 
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where ),( µ∑N denotes a normal distribution with 
covariance matrix Σ and mean vector µ . The 
parameters are specified as follows:   
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Without the third class in the middle, the problem 
reduces to a typical XOR problem. Hence this is a 
multi-class classification problem more difficult than an 
XOR problem. We generated  1000 samples in total as 
training set and another 1000 as test set.  
Table 1 shows the experimental results for H = 3, 4, and 
5 (the numbers of hidden neurons). For each H, 10 
independent simulations were carried out.  
Table 2 shows the results for 10 independent runs for 
using sigmoid neurons in the hidden layer, with the 
same network with the same procedure described above, 
are listed in. One can see that the results are not as good 
as the results showed in Table 1. 
To show the importance of the initial bottom-up 
procedure, let us start the training described in Section 3 
with initialization of all connection weights to be small 
random numbers with 5 hidden nodes (H=5). Table 3 
lists the error counts of 10 runs. The results were also 
not as good. 
If we adopt sigmoid neurons in the hidden layer and 
train the same network with the same procedure 
described above, the results for 10 independent runs are 
listed in. One can see that the results are not as good as 
the results showed in Table 1. 

5. Conclusions and Discussions  
In this paper, a two-stage training procedure is proposed 
to make the overall design of the MLP classifier more 
effective. The initial training can be considered as an 
initialization strategy for final training. During the 
initial training, an interclass distance measure is used 
for hidden layer training and an MLE criterion for 
output layer training. We derive a new CER cost 
function directly from the classification error rate to  
 

 H =3  H = 4  H = 5 
  1  301*  227  203 
  2  322  219  185 
  3  302  360  327 
  4  291  209  238 
  5  496  191  215 
  6  221  276  205* 
  7  437  285  315 
  8  220  317  288 
  9  215  199  309 
 10  322  264  239 
 Average  310  254.7  252.4 

  Table 1. Error counts with the proposed algorithm. 

 

 Simulation No. Error count 
1   298 
2   432 
3   346 
4   337 
5   532 
6   235 
7   318 
8   552 
9   447 
10   298 
Average  379.5 

         Table 2. Error counts (no bottom-up stage) 
conduct our final training in a way similar to the BP 
algorithm. Computer simulations demonstrated the 
effectiveness of the above methods. 
As a general design approach, the proposal needs to 
be examined by more real-world classification 
problems, which is subject to our future studies. 
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