
Training the Multilayer Perceptron Classifier with a Two-Stage Method

Lipo Wang

School of Electrical and Electronic Engineering
Nanyang Technological University

Block S2, Nanyang Avenue
Singapore 639798

URL: http://www.ntu.edu.sg/home/elpwang/
Email: elpwang@ntu.edu.sg

Abstract
We propose a two-stage training for the multilayer
perceptron (MLP). The first stage is bottom-up, where
we use a class separability measure to conduct hidden
layer training and the least squared error criterion to
train the output layer. The second stage is top-down, we
use a criterion derived from classification error rate to
further train the network weights. We demonstrate the
effectiveness of the proposed training algorithms with
computer simulations.

1. Introduction
The multilayer perceptron (MLP) has been widely
studied and applied in pattern recognition (e.g., [1]-
[11]). There are many ways to improve the effectiveness
of training and classification accuracy. For example,
Bischel and Seitz [6] proposed a bottom-up training
procedure by using a minimum class entropy criterion,
in contrast with the traditional back-propagation (BP)
algorithm, which is a top-down procedure. Juang and
Katagiri [7] used a new cost function, called minimum
classification error (MCE), to train the MLP.
In the present paper, we propose a new approach to the
training of the MLP classifier. The network has a single
hidden layer with a wavelet-like nonlinearity as the
activation function. The output layer consists of c nodes,
where c is the number of classes for the problem under
consideration, with sigmoid nonlinearity. Training starts
from bottom-up: the weights connecting the input layer
to the hidden layer is trained first by using a interclass
distance criterion as the cost function, followed by a
least mean error (LME) procedure to train the weights
connecting the hidden layer to the output layer. This
initial training stage will be described in Section 2.
Based on the initial training result, we then use a top-
down procedure similar to the BP algorithm but with a
cost function derived directly from the definition of
classification error rate. This procedure is described in
Section 3. In Section 4, we present computer
simulations on a three-class problem to demonstrate the
proposed training algorithm. Finally, conclusions and
discussions are presented in Section 5.

2. Stage 1: Bottom-Up Training
We consider a feedforward network consisting of a

single hidden layer with H nodes and an output layer
with c nodes, where H will be determined by training
and c is the number of classes specified by the
problem at hand. We train the network to perform a
classification task in such a way that an input pattern

t
nxx)(1L=x is classified to class i if the output

from output neuron i is the largest among all output
neurons. That is, we use the following decision rule:
 }{,)(

,,1
j

cj
ii gMaxgD

⋅⋅⋅=
== ωx (2.1)

where

)('

1

'
ij

H

j
iji ywgg θ+= ∑

=

 (2.2)

is the output of output neuron i, g(.) denotes sigmoid
function and yj is the output of hidden neuron j.
We observe that the hidden layer in the network acts
as a feature extractor. The input to hidden neuron j is

jk

n

k
jkj xws θ+= ∑

=1

 (2.3)

and the output of hidden neuron j is

)(jj sfy = (2.4)
where f (.) is the activation function, which will be
discussed shortly.
To train a feature extractor, we need a proper class
separability measure. There exist two types of
separability measure in the pattern recognition
literature [8]. One is the probability measure, in
which the entropy criterion is included. The other is
the interclass distance measure. From the viewpoint
of statistics theory, the former is considered to be
more reliable. From a practical point of view,
however, the latter is more convenient. Among the
measures belonging to the interclass distance
category cited in [8], we choose the following
measure

)det(/)det(,, ywytd SSJ = (2.5)

as the objective function, where

 }))({(,
t

yt ES µµ −−= yy (2.6)

is referred to as the total scatter matrix in the feature
space, and
 }))({(,

t
iiiiyw EPS µµ −−= ∑ yy (2.7)

is the within-class scatter matrix.
We propose a new activation function as follows,
which very similar to the derivative of a spline
function or a wavelet [9]

)1()1()(22 −−+= ttghttghtf (2.8)
In the initial training stage, we first find the maximum
of objective function (2.5) by a gradient method. We
can compute the gradient vector by using the sample
mean within a batch to replace the ensemble expectation
and then modify the connection weights by using either
gradient descent method or conjugate gradient method.
This is repeated until convergence.
At this training stage, only the weights connecting the
input nodes to the hidden neurons are involved. Thus
the initialization problem is much less complex
compared to that of training the entire network. We
simply assign all weights to be random number within
(-0.5, 0.5) and the offsets within (-1.5,1.5) as their
initial values.
Once hidden layer training is completed, the output
layer training reduces to a single layer perceptron
problem. If linear neurons were used in the output layer
the least mean-squared error solution can be obtained
[8]. If sigmoid neurons are used, a gradient descent
procedure could be performed; however, since the two
types of output neuron result in almost the same
partition boundaries and the training results will be
refined further in our top-down procedure, we treat the
output neurons as if they were linear.
3. Stage 2: Top-Down Training
From the discussions in the previous section, we realize
that the resulted classifier is essentially a single layer
per ceptron, but it operates in the feature space in which
the classes are best linearly separated. Thus it can be
regarded as a promising start point to seek a better
solution when we retrain the networks by the back-
propagation (BP) algorithm.
However the conventional BP algorithm is conducted
by the LME criterion, which is not directly related to
the classification error. In an earlier paper an
improvement was carried out by Do-Tu et al for the
two-class problem [10]. In this paper, we attempt to
generalize the method to the case of multi-class problem
and nonlinear discriminant functions.
The classification error rate (CER) for a given partition
is

 ,)|(∑ ∫∑=
Ω≠ jij

dip
i iPE xx ω (3.1)

where Ω j is the decision region for ωj by rule (2.1), we
introduce an indicator function:

 ∏
≠

−=
ij

jii xgguZ))()((x (3.2)

where u(.) is the unit step function. Obviously we have

otherwise

x
Z i

i

Ω∈
=

0
1

)(x (3.3)

so that we can rewrite (3.1) as

∑ ∑=∑ ∫∑=
≠≠ ij

jiij
ij

ii ZEPdZpPE })({)()|(xxxx ω

 (3.4)

This cost function is directly related to the definition of
CER, contrasted with the MCE criterion defined in [7].

When we attempt to minimize it by gradient descent
method, we need to calculate the derivative of the
unit step function, which is a δ-function. As shown in
[10], this difficulty can be overcome by a window
technique, namely by replacing the unit step function
in (3.2) with

 τταα dhtu ∫=)()((3.5)

where)(⋅αh can be any function satisfying

)()(lim
0

tth δαα
=

→
 (3.6)

so that

)()(lim
0

tutu =
→ αα

 (3.7)

We can derive the following learning rule for the
weight change by using gradient descent: if a training
sample belonging to class s is present to the network,
we have

sigggguggh

sigggguggh

sik
sskiqs

sq

sik
iikisi

i =∏ −−−∑−

≠∏ −−−
=

≠≠

≠

,

,'

)1()()(

)1()()(

αα

αα

δ

 (3.8)
and modify '

jjw

jijjjj yww '''' δη−= (3.9)

where η’ is the learning rate.
The modification of the hidden layer weights wj k can
be done in a way similar to the BP algorithm, namely

kj

jk

x
w
E

δ=
∂
∂ (3.10)

where

jst

i
iijj t

f
w =∂

∂
∑=)('' δδ (3.11)

and

 kjjjjk xww ηδ−= (3.12)
It has been proven [10] that if the learning rate and
window parameter satisfy certain condition such as

 r/0ηη = ; r/'
0

' ηη = ; 2/1
0 / rαα= (3.13)

where r denotes the training count, this stochastic
approximation procedure will converge.

4. Computer Simulations
Let us consider a two-dimensional, three-class
problem (c=3 and n=2). The classes are distributed
with equal a priori probability and the following
class probability density functions:

),(5.0),(5.0)|(1
)2(

11
)1(

11 µµω ∑+∑= NNP x

),(5.0),(5.0)|(2
)2(

22
)1(

22 µµω ∑+∑= NNP x
),()|(333 µω ∑= NP x

where),(µ∑N denotes a normal distribution with
covariance matrix Σ and mean vector µ . The
parameters are specified as follows:

 ∑ 






=)1(

1 20
01 ∑ 








=)2(

1 20

01

 ∑ 







=
)1(

2 10
02 ∑ 








=

)2(

2 10

02

 ∑ 







=
3 5.00

05.0

and

 ()t3,3)1(
1 =µ ()t3,3)2(

1 −−=µ

 ()t3,3)1(
2 −=µ ()t3,3)2(

2 −=µ

 ()t0,03 =µ

Without the third class in the middle, the problem
reduces to a typical XOR problem. Hence this is a
multi-class classification problem more difficult than an
XOR problem. We generated 1000 samples in total as
training set and another 1000 as test set.
Table 1 shows the experimental results for H = 3, 4, and
5 (the numbers of hidden neurons). For each H, 10
independent simulations were carried out.
Table 2 shows the results for 10 independent runs for
using sigmoid neurons in the hidden layer, with the
same network with the same procedure described above,
are listed in. One can see that the results are not as good
as the results showed in Table 1.
To show the importance of the initial bottom-up
procedure, let us start the training described in Section 3
with initialization of all connection weights to be small
random numbers with 5 hidden nodes (H=5). Table 3
lists the error counts of 10 runs. The results were also
not as good.
If we adopt sigmoid neurons in the hidden layer and
train the same network with the same procedure
described above, the results for 10 independent runs are
listed in. One can see that the results are not as good as
the results showed in Table 1.

5. Conclusions and Discussions
In this paper, a two-stage training procedure is proposed
to make the overall design of the MLP classifier more
effective. The initial training can be considered as an
initialization strategy for final training. During the
initial training, an interclass distance measure is used
for hidden layer training and an MLE criterion for
output layer training. We derive a new CER cost
function directly from the classification error rate to

 H =3 H = 4 H = 5
 1 301* 227 203
 2 322 219 185
 3 302 360 327
 4 291 209 238
 5 496 191 215
 6 221 276 205*
 7 437 285 315
 8 220 317 288
 9 215 199 309
 10 322 264 239
 Average 310 254.7 252.4

 Table 1. Error counts with the proposed algorithm.

 Simulation No. Error count
1 298
2 432
3 346
4 337
5 532
6 235
7 318
8 552
9 447
10 298
Average 379.5

 Table 2. Error counts (no bottom-up stage)
conduct our final training in a way similar to the BP
algorithm. Computer simulations demonstrated the
effectiveness of the above methods.
As a general design approach, the proposal needs to
be examined by more real-world classification
problems, which is subject to our future studies.

References
[1] C. M. Bishop, Neural Networks for Pattern

Recognition, Oxford University Press, Oxford,
U.K., 1995.

[2] R. P. Lippmann, "An Introduction to computing
with neural nets", IEEE ASSP Mag. 4, 2, 4-22
(1987).

[3] Y. LeCun, et al, "Back propagation applied to
handwritten zipcode recognition", Neural
Computation, 1, 4 (1990)

[4] N. Morgan, H. A. Bourlard, "Neural network for
statistical recognition of continuous speech",
Proc. IEEE, 83, 5, 741-770 (1995).

[5] R. Chellappa, et al, "Guest Editorial: Application
of artificial neural networ k to image
processing," IEEE Trans on Image Processing,
7, 8 (1998).

[6] M. Nischel & P. Seitz, "Minimum class entropy:
a maximum information approach to layered
networks", Neural Networks, 2, 133-141 (1989)

[7] B. H. Juang & S. Katagiri, "Discriminative
learning for minimum error classification ",
IEEE Trans. SP, 40, 12 (1992).

[8] P. A. Devijer & J. Kittler, Pattern Recognition: a
Statistical Approach, PHI, (1982).

[9] S. Mallat & S. Zhong, "Characterization of
signals from multiscale edge", IEEE Trans.
PAMI, 14, 7, 710-732 (1992).

[10] Hai Do-Tu & M. Installe, "Learning algorithms
for nonparametric solution to the minimum
error classification problem", IEEE Trans on
Comput. 27,7,648-659 (1978).

[11] D. E. Rumelhart & J.L. McClelland (Eds),
Parallel Distributed Processing: Explorations
in the Microstructure of Cognition. Vol.1:
Foundations. MIT Press (1986).

