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Abstract - Chaotic simulated annealing (CSA) has recently been proposed and successfully used in
solving combinatorial optimization problems by Chen and Aihara. In comparison with the Hopfield-
Tank approach, CSA significantly improves the network's ability to find solutions of good quality and
even global minima. However, CSA still uses a penalty term to enforce solution validity like the Hopfield-
Tank approach. There exists a conflict between solution quality and solution validity in the penalty
approach. In addition, the relative magnitude of the penalty term often needs to be determined by trial-
and-error. In this paper we incorporate augmented Lagrange multipliers into CSA, obtaining a method
that we call augmented Lagrange chaotic simulated annealing (AL-CSA), which eliminates the need of
the penalty term and guarantees solution validity, and at the same time maintains CSA's solution quality.
We demonstrate this method with the 10-city Traveling Salesman Problem.

1. Introduction

Following Hopfield and Tank’s seminal work on solving combinatorial optimization problem with neural
network, a lot of efforts have been made to improve the solution quality and solution validity [1-4]. Recently,
Chen and Aihara proposed a chaotic simulated annealing (CSA) method that can harness the advantage of both
chaotic neurodynamics and conventional convergent neurodynamics [5-7]. They reported that the CSA has
richer dynamics and higher ability of searching for globally optimal or near-optimal solutions. Their
experimental studies demonstrate the effectiveness of the CSA and obtain good solutions for TSPs with a set of
parameters chosen [5-7] much more easily compared to the Hopfield-Tank approach [1]{2].

However, in CSA there still exists a difficulty in obtaining solutions of good quality and valid solutions
simultaneously, and one still needs to perform time-consuming, trial-and-error work to choose the relative sizes
between the terms that represent solution quality and solution validity. From the optimization viewpoint, the
original Hopfield-Tank approach and its modified versions, as well as CSA, essentially belong to the penalty
method for constrained real optimization. In order to converge to a feasible solution with the penalty method,
the weighting factor for the penalty term must be sufficiently large. However, as the penalty term becomes
stronger, the role of the original objective function becomes relatively weaker. Solutions found in this way are
affected more by the penalty terms and hence are less favorable in terms of the original objective. Furthermore,
when the penalty term is too larger, the problem becomes ill-conditioned. This is a typical problem with the
penalty method and explains why it is difficult to obtain good quality solutions and valid solutions
simultaneously with Hopfield-type networks [11].

Li [t1] introduced an augmented Lagrange method to Hopfield-Tank approach (ALH) and showed its
superiority over the existing Hopfield-type neural networks in solution validity and solution quality. However,
the ALH is similar to Hopfield-Tank-type methods in that it carries out a gradient decent in the energy
landscape and may therefore often be trapped in local minima. In addition, the convergence time was long [11].

In this paper we incorporate augmented Lagrange multipliers into the CSA to overcome the difficulties in the
CSA and the ALH [8-11], obtaining a method that we call AL-CSA. With the Lagrange multipliers, the
constraints are satisfied exactly without the need of penalty terms. This not only avoids ill-conditioned problems
but also effectively eliminates the unfavorable influence of the penalty terms on solution quality. With the CSA,
the convergence time is shortened because of the efficient searching ability of chaotic dynamics.
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2. The Augmented Lagrange (AL) Method
A combinatorial optimization problem can be converted into the following constrained minimization:

minimize E(x) M
subjectto ¢, (x)=0, k=1..K @

where x = (x,x,,....x,)" € R, E:R" = R>E(x) is the energy function, C:R" - R¥.C=(C,.C,....C,)" are real
functions that represent some equality constraints and take the value of zero when the constraints are satisfied.
E and ¢ are assumed to be twice continuously differentiable. An augmented Lagrange function can be formed:

La(x,,l)=E(x)+Zlka(x)+%Zak[ck(x)]2 3)
k k
where j=(A,4,...4,)" are Lagrange multipliers. g, >0 are finite weighting factors. The introduction of the

quadratic term S a,[C, (0 with ¢, (x) =0 doesn’t alter the location of the saddle point. In fact, this term can
k k
k

effectively stabilize the system.

Then the first-order necessary conditions of optimality can be expressed as a stationary point (x*,1") of £ (x,2)

over xand A. Thatis,
VL) = V() +VC(x")A +aC(x) =0 4)
V,L(xA)=C(x")=0 5)

The n+ k unknowns, xl*,x;,...,x',, and 17,4, A" ¢ can be solved by the equation (4-5).

2 e

3. Chaotic Simulated Annealing (CSA)

Chen and Aihara recently proposed a transiently chaotic neural network (TCNN) by modifying a chaotic neural
network which Aihara et al proposed earlier [4][5]. In contrast to the conventional stochastic simulated
annealing (SSA), the optimization process of the TCNN is deterministically chaotic rather than stochastic, the
TCNN is also called chaotic simulated annealing (CSA). The CSA uses slow damping of the negative self-
feedback to produce successive bifurcations so that the neurodynamics eventually converges from strange
attractors to a stable equilibrium point.

The CSA model is defined as follows:

1
x, (1) = e 6)
P+ = hy, D+ 0 S wera®+1,) = 25O = 1) O
kd=1k 1#i,j
2+ =1~ B)z(r) G, j. kI =1,..,n) ®)

where
x, =output of neuron j, j; i =internal state of neuron |, j ; 1,, =input bias of neuron i, j ;

k =damping factor of nerve membrane (0< k <1); o =positive scaling parameter for inputs;
2(r) =self-feedback connection weight or refractory strength (z(r) 2 0);

p =damping factor of the time dependent (0< g <1); =positive parameter;

€ =steepness parameter of the output function ( € >0);

Wi = Wiys Wy = 0; Y wyuxg +1, =-0E/dx, : connection weight from neuron k_ / to neuron ;, j.
kJ=1k, 126, ]

4. Augmented Lagrange-Chaotic Simulated Annealing (AL-CSA)

From (3-5), it is easy to write the following dynamic equations for a saddle point of £ :
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&__aLa(x,l)__aE(x)_ aCk(x)_ aC, (x) ®)
d dx; - ox; zk A ox; 2,;‘ 2 Ce () dx;
dh_ LA _ (10)
a Ta TGW
The augmented Lagrange Chaotic Simulated Annealing (AL-CSA) can be written as follows:
- 1 11
x; (1) = 1t e v 07e an
Y8+ 1D = ky; () — 2(0)(x, (1) - lo)—a{agix) +3 A agi)--l»Za‘.Ck (x)%} (12)
ik ik i
2+ =(1-B)z(r) (13)
AG+D) =4 ) +a,C.(x, (¢ +1) (14)

In the above, k,a, B,& are CSA’s damping factor of nerve membrane (0 < k < 1), positive scaling parameter for
inputs, damping factor of the self-feedback connection weight z(r) (0< g <1)and steepness parameter of the

output function, respectively. a, is usually increased to speed up convergence. So it can be changed into ya, ,

where y is a non-decreasing factor for the penalty term. The 2, are Lagarange multipliers.

5. Solving TSP Using AL-CSA
In the Traveling Salesman Problem (TSP), the energy function [1][2] is _1
Ew=13 3T

w Xy (g +x4,)°
T T kmi

We use the following equality constraints that were used by Hopfield-Tank and other researchers:

C (x)=2x,,—1=o,v,- (15)

C, (=Y x;,-1=0,Vi (16)
7

ol (x)=Zxe,, =0,Yi,j amn
j

C‘.(x):kz!xuxkj =0,Yi, j (18)

Cs(0)=x;(1-x,)=0,Vi, (19)

Hence the total number of constraints is n+n+n? +n> +n*> =3n* + 2n. Here n is the city number of TSP, as
shown in equation (1).

The three terms of (12) for the TSP are as follows:

JE(x)
ox,

(20)

= Edu (X1 + x51)

i ki

PN @% Ayt Y, + A Y +As (- 2x;) @n
k

i 1#j k#i
aC

(3
ox,

300 2D 0 (F 5y D4, (Foxy Dy, (Foxa ) +aury (Exyp)? +asx, (1-x,)1=2,)
k ij i j

i 1] ki

(22)
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We experiment on Hopfield-Tank’s 10-city TSP that has been widely tackled by other neural network
algorithms [1,2]. To compare the performance with the CSA, we use a set of k,o, B, similar to Chen and

Aihara’s [7]:
k,a, B,e =0.99, 0.01, 0.015, 0.004; 1, =0.65,z(0)=0.8-

The other parameters can be chosen as follows:

2,0)=0; 7 is increased from 0.1 to 10 (or 100) according to y —1.01y -

a,=a, =005 a,=a,=000001, a5 =0;
It should be noted that the above pararheters can be chosen quite flexibly. The simulation results show that the
AL-CSA is not sensitive to these parameters, especially the initial values.

In the experiment, one iteration means that all neuron states are cyclically updated once. The neuron outputs are
discrete as used by Chen and Aihara [7].

As shown in Table 1, AL-CSA converges on average in 450 iterations when g =0.015. Among the 5000 cases
with different initial conditions of Yy generated randomly in the region {-1,1]. 4952 cases converge to global

minima (tour length=2.691), the other 48 cases to local minima such as tour length=2.74, 2.78, etc. There are no
infeasible solutions.

Table 1 Results of 5000 different cases for different ¥ with AL-CSA

- Yy —10 Y — 100
Global minima 4952 (99.04%) 4963 (99.26%)
Local minima 48 ( 0.96%) 37  ( 0.74%)
Infeasible solutions 0 0
Average iterations for convergence 458 451

y — 10 means y is increased from an initial value to 10.

Table 2 Results of 5000 different cases for different 8 with CSA

B =0.015 B =0.010
Global minima 4946 (98.9%) 4969 (99.4%)
Local minima 31 (0.6%) 13 (03%)
Infeasible solutions 23 (0.5%) 18 (0.3%)
Average iterations for convergence | 81 119

Compared with Chen and Aihara’s CSA [7] (see Table 2), AL-CSA needs more iterations to converge. But AL-
CSA can ensure a feasible solution found while the rate of global minima is still comparable with CSA. By the
augmentd Lagrange method introduced, the time-consuming trial-and-error process for finding penalty
parameters can be avoided.

In addition, the self-feedback z(0) in CSA needs to be chosen carefully, since the constraint weights are fixed
[21]. On the contrary, the Lagrange multipliers }, are time-dependent and the performance of AL-CSA

depends on the choice of z(0) less sensitively compared to CSA.

Compared with Li’s ALH [11], in which the average iteration times are over 10000, the AL-CSA converges
much faster, because chaotic dynamics can perform efficient searching.

6. Summary

In this paper we incorporate augmented Lagrange multipliers into Chen and Aihara’s CSA, obtaining a method
that we call augmented Lagrange chaotic simulated annealing (AL-CSA). AL-CSA eliminates the need of the
penalty terms and guarantees solution validity. Our simulations on the Hopfield-Tank’s 10-city TSP show that
AL-CSA can also maintain the CSA’s solution quality at the same time.
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The AL-CSA network is more complicated than the CSA because of the additional Lagrange neurons.
However, it is these auxiliary neurons that help to achieve the improvements over the CSA; Compared with Li’s
ALH, it is the slow damping of the negative self-feedback in the AL-CSA that helps to improve the searching
efficiency for optimal or near-optimal solutions.

In our previous work, we found that the solution quality of Chen and Aihara’s CSA is sensitive to the choices of
the penalty terms when the city number of TSP becomes larger [21]. Our future work will apply the AL-CSA to
larger and practical optimization problems.
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