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of the lighting and viewing directions are never required in this ap-
proach. In these cases, the proposed RBF approach outperforms other
conventional models. Fig. 4(c) shows the recovered shape by the Lam-
bertian model. Perceivably, the result is far from satisfactory attributed
to the specular components. Fig. 4(d) also shows the result obtained by
the Lambertian model without illuminate condition estimation. In this
case, the recovered egg lost the major contour because of the abnormal
illuminate condition. The reconstructed shapes obtained by a more re-
fined Torrance–Sparrow model under known and unknown reflectivity
parameters are shown in Fig. 4(e) and 4(f), respectively. Although its
performance is better than that of the Lambertian model, the recovered
egg and cylinder are not satisfactory attributed to the incorrect reflec-
tivity parameter estimate. Another promising real image result based
on a human hand object is demonstrated as shown in Fig. 5. Clearly,
the proposed RBF-based approach is able to deliver much better results
than those yielded by the other models under specular effect and un-
known reflectivity parameters conditions.

IV. CONCLUSION

A new learning approach for parametric specular reflectance model
is proposed. This new reflectance model is based on learning the param-
eters of RBF network, which is able to model the physical parameters
of the reflectance model under the existence of specular components.
Through this RBF-based specular model, the shape from shading al-
gorithm has become much robust and effective for most objects recon-
struction with different lighting and specular conditions. The proposed
RBF model is very robust under noisy environments. This enables the
RBF-based reflectance model to be applicable to most real-world appli-
cations where the reflectivity parameters is never given, and the image
is suffered from noisy and specular conditions.
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HeteroAssociations of Spatio-Temporal Sequences with the
Bidirectional Associative Memory

Lipo Wang

Abstract—Autoassociations of spatio-temporal sequences have been dis-
cussed by a number of authors. We propose a mechanism for storing and
retrieving pairs of spatio-temporal sequences with the network architecture
of the standard bidirectional associative memory (BAM), thereby achieving
hetero-associations of spatio-temporal sequences.

Index Terms—Associative memory, bidirectional associative memory
(BAM), image sequence, neural network.

In the bidirectional associative memory (BAM) proposed by Kosko
[5], there are two layers of neurons: layerA with n neurons and layer
B with m neurons. The neurons in layerA are connected with those
in layerB through a weight matrixM , and the neurons in layerB are
connected with those in layerA through the transposed matrixMT .
There are no intralayer connections. Kosko [5] showed that the BAM
always settles down to a stable state for any arbitrary real weight matrix
M . A stable state for a BAM is in fact a pair of two memory states
represented by the final states of the two layers of neurons
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whereAi andBi are spatial patterns with dimensionsn andm, respec-
tively.

In the special case where the two layers contain the same number
of neurons and the weight matrices are symmetric, that is,m = n;

M = MT , andAi = Bi, the BAM is equivalent to the Hopfield
network [2]. The BAM is normally referred to as a heteroassociative
memory, because it stores memory pairs, whereas the Hopfield network
is referred to as an autoassociative memory.

Much research attention has been focused on storage and retrieval of
spatio-temporal sequences (e.g., [4], [8], [9], and [15]), which are time-
dependent sequences of spatial patterns. Autoassociations of spatio-
temporal sequences have been discussed by a number of authors based
on static autoassociative networks (e.g., [4] and [8]); however, there
does not yet exist any mechanism for heteroassociations of pairs of
spatio-temporal sequences. Possible applications of heteroassociations
of spatio-temporal sequences may include control for robots or un-
manned planes, with one sequence in the pair describing the environ-
ment and the other sequence in the pair being the corresponding control
signals.

In addition to the static BAM, Kosko [5] further proposed a method
for storing and retrieving sequences ofk spatial patterns:
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But the network structure that is capable of storing and retrieving se-
quences as in (2) is no longer that of the standard BAM. Rather, the
network needs to have multiple slabs in parallel or other hierarchical
structures. There are two drawbacks in the above system. First, the net-
work structure is complex and depends on the lengths of the sequences
to be stored. Second, a sequence represented by (2) may be stored and
retrieved with an autoassociative network such as the Hopfield network
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TABLE I
RETRIEVAL OF THE SPATIO-TEMPORAL

SEQUENCEPAIR SHOWN IN (3). INITIALLY (t = 0) THE STATE OF LAYER B IS
B (CLOSE TOPATTERN B )

Fig. 1. Memory image pair. The images for layerA (top row) and layerB
(bottom row) are 12� 11 and 22�16 pixels in size, respectively. Each sequence
consists of six images and repeats itself.

Fig. 2. Retrieval of the image pair shown in Fig. 1 with a noisy cue image
presented to layerB at t = 0.

[8], [4]. A heteroassociative network, such as the BAM, should be able
to handle more complicated problems.

In this Letter, we propose the following mechanism for storing and
retrieving pairs of spatiotemporal sequences:

~S1 : A1 �! A2 �! . . . �! Ap

~S2 : B1 �! B2 �! . . . �! Bp (3)

with the standard two-layer BAM structure

~S1
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thereby achieving heteroassociations of spatio-temporal sequences.
Herep is the number of pairs of spatial patterns stored in the system
and is also the length of the spatio-temporal sequences.

In the forward direction, i.e., from layerA to layerB, the weight
matrix consists of two parts

MAB = �1

p
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The weight matrix in the backward direction, i.e., from layerB to layer
A, is
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The memory patterns in (5) and (6) are bipolar, i.e., on-pixels and off-
pixels are represented by+1 and�1, respectively, rather than one and
zero. The coefficients in (5) and (6) are chosen such that only one part
of each matrix is active at any instance of time, i.e.,

�1 = 1 and�2 = 0; if 2j� � t < (2j + 1)�

�1 = 0 and�2 = 1; if (2j + 1)� � t < (2j + 2)� (7)

wherej = 0; 1; . . .. Suppose all neurons in a layer (layerA or B)
complete a round of sequential updating within one time step.� in (7) is
the number of time steps that is sufficiently large for the BAM to settle
down to a memory pair starting from any initial state (the convergence
or relaxation time). For the reasons that will be clear below, we also
require that� is an odd number.

Matrix M1 in (5) and (6) stores the standard memory pairs present
in the static BAM [5], whereas matrixM2 helps to store heteroasso-
ciative sequence pairs by associatingA1 with B2; A2 with B3, and so
on. The operation of the present spatio-temporal BAM, which we shall
call TBAM, is shown schematically in the following equations and is
described below:
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Suppose all neurons in layerA complete a round of sequential updating
within one time step starting ateventime stepst = 0; 2; . . . ; whereas
all neurons in layerB complete a round of sequential updating within
one time step starting atodd time stepst = 1; 3; . . ..

During the first interval of� time steps [see (8)], the forward and the
backward weight matrices areM1 andMT

1 , respectively. LayerA is
the first of the two layers to update (att = 0): the double arrow(=))
in (8) indicates that signals first travel from layerB to layerA. Suppose
the neural state of layerB att = 0 is near patternB1. The state of layer
A is thus thrown near patternA1 by connection matrixM1 after one
time step. At the end of this intervalt = ��1, the TBAM settles down
to memory pair(A1; B1).

During the second interval of� time steps [see (9)], the forward and
the backward weight matrices areM2 andMT

2 , respectively, according
to (5)–(7). Since� is an odd number, layerB is the first of the two layers
to update (att = � ) and is thrown near patternB2 by connection matrix
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TABLE II
OVERLAPS (NORMALIZED DOT-PRODUCT) BETWEEN THE SIX IMAGES

FOR LAYER A SHOWN IN FIG. 1. ORTHOGONALITY IS INDICATED BY

ZERO-OVERLAP: IMAGE “2” I S ORTHOGONAL WITH IMAGE “6”, I MAGE “4” IS

ORTHOGONAL WITH IMAGE “5”

TABLE III
OVERLAPS (NORMALIZED DOT-PRODUCT) BETWEEN THESIX IMAGES FOR

LAYER B SHOW IN FIG. 1. EACH IMAGE IS NOT ORTHOGONAL

WITH ANY OTHER IMAGES

M2. At the end of this interval, i.e.,t = 2��1, the TBAM settles down
to the memory pair(A1; B2) . . . [see (10) and (11),. . .].

The system dynamics of the TBAM is summarized in Table I. Pairs
of spatio-temporal sequences can thus stored and retrieved.

We illustrate the proposed algorithm with the example shown in
Figs. 1 and 2. The image sequence pair shown in Fig. 1 is stored in the
TBAM with (5) and (6). The images for layerA (top row) and layer
B (bottom row) are12 � 11 and22 � 16 pixels in size, respectively.
Each sequence consists of six images and repeats itself. In Fig. 2, a test
image, i.e., a digit image “1” corrupted by noise, is presented to layer
B, which retrieves the image sequence pair. In this example, the net-
work stabilizes after one iteration, i.e.,� = 1.

Several important issues need to be addressed:

1) Memory Capacity—The number of sequence pairs and the length
of each sequence pair that can be stored in and retrieved from the
TBAM depend on the number ofstatic image pairs that can be
stored in the corresponding BAM. That is, the memory capacity
of the TBAM needs to be determined by the memory capacity
of the BAM. Although there have been studies on the memory
capacity of asecond-orderBAM [6], [3], the memory capacity
of the original BAM used in the present system has not yet been
derived in the literature. Since the original BAM bears certain
resemblance with the Hopfield network [2], the methods used
to study the memory capacity of the Hopfield network may be
used to study the memory capacity of the BAM; however, such a
study is expected to be as lengthy as the Hopfield case (e.g., [1]
and [7]).

2) Orthogonality and Noise—Similarly, detailed studies on the is-
sues of orthogonality and noise for the original BAM are still
lacking and need to be carried out before a study can be carried
out for the TBAM, which is based on the BAM. The learning

algorithm used in the TBAM, i.e., (5) and (6), are Hebb-type
dot-product rules, similar to that used in the Hopfield network
[2]. It is thus expected that orthogonality and noise in the stored
patterns will have significant effects on the performance of the
TBAM, as in the case of the Hopfield network [10]. However,
the TBAM is able to tolerate some nonorthogonality and noise
(see Fig. 2, Tables II and III).

3) Degree of Sequence Complexity—During retrieval with the pro-
posed TBAM, the image pair at a given time step is uniquely
determined by the image pair at the previous time step, as fa-
cilitated by (6). Hence the network is capable of dealing with
only one-to-one mappings, i.e.,simple sequences. Generaliza-
tion to incorporate multiple time-delays will enable the TBAM to
process certaincomplex sequences[9], [15]. Similarly, a gener-
alized TBAM with multiple time-delays will be required to deal
with temporal noise, e.g., gaps or incorrect images in a sequence,
as opposed to noise within each spatial image (referred to asspa-
tial noise).

In-depth studies on these issues, as well as applications of the proposed
TBAM and its generalizations, e.g., incorporations of complex-valued
multistate neurons []–[]are out of the scope for the present Letter and
will be the subject of future work.
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