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Abstract - As an important task of data min- 
ing, extracting rules to represent the concept 
of numerical data is attracting much attention. 
In this paper, we propose a novel algorithm 
to extract rules using genetic algorithms (GA) 
and the radial basis function (RBF) neural net- 
work classifier. The interval for each input in 
the condition part of each rule is adjusted us- 
ing GA. The fitness of a chromosome is deter- 
mined by the accuracy of extracted rules. The 
decision boundary of rules extracted is in the 
form of hyper-rectangular. During the train- 
ing of an RBF neural network, large overlaps 
between clusters corresponding to  the same 
class is allowed in order to decrease the num- 
ber of hidden units while maintaining classifi- 
cation accuracy. The weights connecting the 
hidden units with the output units are then 
pruned. Our simulations demonstrate that our 
approach leads to more accurate and concise 
rules. 

1 INTRODUCTION 

Knowledge discovery in databases (KDD) [19][24] is 
very useful in economic and scientific domains. Huge 
amount of data have been stored in documents or in 
hard disks of computers. KDD techniques are used to 
reveal critical information hidden in the data sets. 

Rule extraction is a common task of KDD. The goal 
of a rule extraction system is to obtain insights for 
numeric data sets. Generally, a knowledge discovery 
system includes the follow components: 

1. Data collection 

For example, large volumes of data are produced 
in transactions on the Internet, in supermarkets, 
and in banks. 

2. Data preprocessing 

There may be some irrelevant or unimportant 
data. Dimensionality reduction is desirable for 
both memory constraint and speed limitation. 
Data collected from different sources may be in 
different forms. Hence, the follow preprocessing 
for data is needed. 

Feature selection: Much research work 
[13][14][16] has been carried out in choosing 
the optimal feature subset to represent the 
concept of data. 

Normalization: For a neural network, input 
values are usually normalized between [0,1]. 
Some nominal inputs should be transformed 
into numeric ones. 

3. The selection of rule extraction tools 

Decision trees, neural networks, and genetic algo- 
rithms, etc., are often used as powerful tools for 
rule extraction. 

Neural networks: Since neural networks are 
excellent at predicting, learning from expe- 
riences, and generalizing from previous ex- 
amples, many researchers focus on applying 
neural networks in the area of rule extrac- 
tion [10][17][26][27]. However, a disadvan- 
tage of neural networks is that it is difficult 
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to determine network architecture and train- 
ing parameters. Explaining the operation of 
a trained network can also be difficult. 

0 Decision trees: Decision trees [15][30] can 
form concise rules in contrast to neural net- 
works. However, the accuracy of decision 
trees is often lower than neural networks, es- 
pecially for noisy data. It is difficult for deci- 
sion trees to tackle dynamic data. Tsang et 
a1 [29] and Umano et a1 [30] combined neural 
networks with decision trees to obtain better 
performance in rule extraction. 

0 GA: Due to its ability to search globally for 
the optimal solution to a problem, GA has 
often been combined with neural networks 
in rule extraction tasks. Fukumi and Aka- 
matsu [4] used GA to prune the connec- 
tions in neural networks before extracting 
rules. Hruschka and Ebecken [5] proposed 
clustering genetic algorithm (CGA) to clus- 
ter the activation values of the hidden units 
of a trained neural network. Rules are then 
extracted based on the results from CGA. 
Ishibuchi et a1 [ll] used GA to obtain concise 
rules by selecting important members from 
the rules obtained from a neural network. 

4. The expression of the extracted rules 
Usually, the rules are in IF-THEN forms. The 
premise parts of rules are composed of different 
combinations of inputs. There are 3 kinds of de- 
cision boundary of rules. 

h yper-rectangular 
hyper-plane 
hyper-ellipse . 

Some research work has been carried out in extract- 
ing rules from RBF neural networks. The architecture 
of the RBF neural network is simple and it can meet 
the need of local tuning and global approximation. In 
[2][7], before inputing attributes to the rule extrac- 
tion system based on an RBF neural network, redun- 
dant inputs were removed, however, some information 
was lost with the removal. Huber [9] selected rules 
according to importance; however, the accuracy was 
reduced with pruning. McGarry [20]-[22] extracted 
rules from the parameters of Gaussian kernel func- 
tions and weights in RBF neural networks. However, 
when the number of rules was small, the accuracy was 
low. When the accuracy was acceptable, the number 
of rules became large. 

In this paper, we propose a novel technique to ex- 
tract rules from the RBF neural network using GA. 
First, a modification is carried out for reducing the 
number of hidden units when training the RBF neural 
network (Section 2). The weights connecting hidden 
units with output units are simplified (pruned) sub- 
sequently. In Section 3, GA is used for tuning the 
interval for each input attribute in the condition part 
of each rule in order to obtain a high rule accuracy. 
We show that our technique leads to a compact rule 
set with desirable accuracy with experimental simu- 
lations (Section 4). Finally, Section 5 presents the 
conclusions of this paper. 

2 CONSTRUCTING AN EFFICIENT RBF 
CLASSIFIER 

In an RBF neural network, the distance between 
the input pattern and the center of the hidden unit de- 
termines the activation of a hidden unit. The weights 
between the hidden layer and the output layer can be 
determined by the linear least square (LLS) method 

In [12], overlapped kernel functions are created to 
map out the territory of each cluster with a reduced 
number of Gaussians. The performance of the RBF 
classifier can be improved by overlapping between dif- 
ferent classes which can reject noise when tackling 
noisy data [ls]. The degree of cwerlaps between dif- 
ferent classes is measured by 8, which is the ratio be- 
tween the numbers of in-class and out-class patterns in 
a cluster. A &criterion is used tcl avoid large overlaps 
between different classes. Thus there are small over- 
laps between the Gaussians for different classes and a 
small classification error rate is obtained. Usually, 8 is 
determined empirically and is related to an acceptable 
classification error rate. 

In this paper, we propose to reduce the number of 
clusters, and thus the number of' hidden units, by al- 
lowing for large overlaps between clusters of the same 
class. Since classification error rate is mainly de- 
termined by the degree of overlaps between different 
classes, and is independent of the degree of overlap 
between clusters for the same class, we modify the 
clustering algorithm such that small overlaps between 
clusters for different classes are maintained, and large 
overlaps between clusters for the same class are al- 
lowed. Thus, the classification error rate would remain 
the same with the number of clusters decreased. This 
leads to more efficient construction of RBF networks, 
i.e., the number of hidden units will be reduced. 
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3 G A  FOR RULE E X T R A C T I O N  

3.1 Simplifying weights 

Each hidden unit of the RBF neural network is 
responsive to a subset of patterns (instances). The 
weights connecting the hidden unit with output units 
can reflect for which output the hidden unit mainly 
serves. Our rule extraction algorithm is directly based 
on the widths and the centers of the Gaussian kernel 
functions, and the weights connecting the hidden units 
to the output layer. 

First, let us determine the output unit for which 
each hidden unit mainly serves by simplifying the 
weights between hidden units and output units. As- 
sume there are m hidden units and n output units. 
The weight matrix W ,  which is a matrix with m rows 
and n columns, is converted to W1 by maintaining 
only the maximum value of each row to indicate the 
output unit that each hidden unit mainly serves. 
3.2 

form. Symbolic rule i is written as follows: 

Encoding rule premises using G A  

The rules extracted in our paper are in an IF-THEN 

IF input 1 is within the interval (Lli ,  U1i) 

and input 2 is within the interval (L2,, U2i) 

and 

and input n is within the interval (L,i, U,i) 
THEN the class label of the input pattern is ki.  

Here Uji and Lj, are the upper limit and the lower 
limit of interval j in rule i, respectively. 

Let us write: 

( 2 )  L . .  - . R(2) .. 3% - P p  - j a  7 

where p j i  is component j of the center of interval i, 
R(')ji and R(2)ji are the distances from the center to 
the upper limit and the lower limit, respectively. 

Through training an RBF neural network, the in- 
put data space is separated into several subspaces. 
One subspace is represented by a hidden unit of the 
RBF neural network. Since our kernel function is 
the Gaussian function, each subspace is hyper-ellipse. 
Since the decision boundary of our rules is hyper- 
rectangular, we use GA for searching the premise parts 
of rules. There are as many rules as hidden units. 
Hence, efficient architecture of RBF neural networks 

leads to compact rules. We set the initial value of in- 
terval center pJZ in equations 1 and 2 to be the center 
of hidden unit i. We select the initial values of R(lIJZ 
and R(2),, randomly. 

Now we encode the solutions for the rules. We en- 
code real value R(P),, ( p  = 1 , 2 )  using k binary bits 
(G(p)p = {gk,gk-l,...gz,...,g2,gl), gz = 071) as fol- 
lows: 

(3) R(P),, = B 3 ( 2 k  - 1) 

B(P),, = gk * 2k-l +gk-l*2k-2+ ... +g2* 21 +g1*2O 

where B(P),, is the decimal value corresponding to 
G(P),,: 

. 
(4) 

A chromosome Chrom in the population pool can 
be represented as a one dimensional binary string: 

Chrom = (G(1)11,G(2)11, ..., G('),l, G(2),1, ..., 
G(p) 3% 7 ..., G(')lm, G(2) lm,  ..., G(l)nml G(2)nm) 

3.3 Crossover and mutat ion 
Before genetic operators are applied, parent chro- 

mosomes should be selected from the population pool. 
Roulette wheel selection is used in our algorithm. In 
roulette wheel selection, the probability of selection 
is proportional to each chromosome's fitness. How- 
ever, roulette wheel selection does not guarantee the 
global optimum and elitism is used to maintain the 
best members. 

Two-point crossover is used. Two points are ran- 
domly located in one parent. The two parts of par- 
ent chromosomes between the two points are then ex- 
changed to generate new offsprings. The probability 
of crossover is around 80%. 

Mutation can help GA escape from local minima. A 
locus in the parent chromosome is selected randomly, 
the bit on the position is replaced (if the original bit 
is 0, then it is replaced by 1,  and vice versus). In 
our algorithm, in order to break the stagnant state for 
searching optimal result, we use a dynamic mutation 
rate. If the number of identical members in a popu- 
lation exceeds a certain percentage, the mutation rate 
is increased by a certain amount. 
3.4 Fitness function 

Our fitness function is: 

. (5) 

where E({(Lji ,Uji)})  is the error rate of extracted 
rules. Each chromosome in the population pool cor- 
responds to a rule set. The accuracy of the rule set is 
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calculated. The better the fitness of the chromosome, 
the lower the error rate of its corresponding rule set. 
4 THE EXPERIMENTAL RESULTS 

Iris and Thyroid data sets in the UCI Repository 
of Machine Learning Databases are often used to test 
classification methods. There are 4 attributes and 3 
classes in Iris data set. The four input attributes of 
Iris data is: sepal length, sepal width, petal length, 
and petal width. The 3 classes are Setoda, Versicolor, 
and Virginica. There are 5 attributes and 3 classes 
in Thyroid data set. Each data set is divided into 
3 parts, i.e., training, validation, and test sets. 150 
patterns of Iris data set is divided into 50 patterns for 
each set. There are 215 patterns in Thyroid data set. 
115 patterns are for training, 50 patterns for validation 
and 50 patterns for testing. We set 9 = 7 in our 
experiments. 

When large overlaps among clusters of the same 
class are permitted, both the number of hidden units 
and the classification error rate are decreased. After 
allowing large overlaps among clusters with the same 
class label, for Iris, the average number of hidden units 
reduced from 4.6 to 3.4. The error rate in testing data 
remained the same. For Thyroid, the average number 
of hidden units reduced from 14.4 to 8, and the error 
rate in testing data reduced from 0.06 to 0.048. The 
smallest number of hidden units in constructing an 
RBF neural network classifier is 3 for Iris data set. 
For Thyroid, a t  least 6 hidden units are needed. 

We use GA to search optimal solutions of rules. 
Population size is 300 individuals. The number of bits 
for each GY:, is IC = 6. Crossover probability is 90%. 
Mutation rate is dynamic. If the number of identical 
members in a generation exceeds a certain percentage 
(we set it to be 75%), the mutation rate is increased 
by a certain amount. In this paper, the initial mu- 
tation rate is 8/1000, and the increment amount is 
1/1000. Elitist strategy is used. The number of elite 
chromosomes, which are maintained unchanged and 
live from one generation to the next, is 4. The GA 
searching procedure is stopped if there are 1000 gen- 
erations produced or the accuracy of extracted, rules 
is higher than a predefined value. 

After the searching procedure of GA based on the 
trained RBF neural network, we obtain 3 symbolic 
rules for Iris data set. The accuracy of the symbolic 
rules that we obtain through the proposed method is 
97.33% for Iris data set. For Thyroid data set, 6 rules 
are obtained, with 5 conditions in each rule, and the 
accuracy is 85%. Halgamuge et a1 [7] extract rules 
based on RBF neural networks, however, 5 or 6 rules 

are needed to represent the concept of Iris data (the 
accuracy is not available). Huber and Berthold [9] 
use 8 rules to represent Iris data set (the accuracy 
is not available). In order to get a small rule base, 
unimportant rules are pruned according ranking [9] , 
however, the accuracy of rules is reduced at the same 
time. McGarry et a1 [20][21][22] cextracted ruleis from 
RBF neural networks directly based on the parame- 
ters of Gaussian kernel functions and weights. In [20] , 
the accuracy reaches loo%, but the number of rules 
is large (for the Iris data set, 53 rules are needed). 
In [21] and [22], the number of rules for the Iris data 
set is small, i.e., 3, but the accuracy of the extracted 
rules is only 40% and around 80‘%, respectively. The 
results of extracted rules for Thyroid data set using 
other methods are not available. 

Much work has been carried out in extracting rules 
using the MLP. Good results have been obtained both 
in accuracy and numbers of rules (e.g., [S][lO]). Com- 
pared with the rule extraction techniques using MLP, 
the accuracy of the rules extracted from GA combined 
with the RBF neural networks is lower, however, the 
training of the RBF neural network can escape from 
local minima, which is very important for large data 
sets. 
5 CONCLUSIONS 

In this paper, a novel rule-extraction algorithm 
combining GA and RBF networks is proposed. Rule 
extraction is carried out from a simplified RBF clas- 
sifier in order to explain and represent the concept of 
data in a concise way. The weights between the hidden 
layer and the output layer are simplified first. Then 
the interval for each input as the condition part of one 
rule is determined by genetic algorithms. Experimen- 
tal results show that our rule extraction technique is 
simple to implement, and concise rules with high ac- 
curacy are obtained. The proposed method needs to 
be tested using larger and more realistic data, which 
will be the subject of future work. 
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