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Abstract. The channel assignment problem (CAP), the task to assign
the required number of channels to each radio cell in such a way that
interference is precluded and the frequency spectrum is used efficiently,
is known to be an NP-complete optimization problem. In this paper,
we solve CAP using a stochastic chaotic neural network that we pro-
posed recently. The performance of stochastic chaotic simulated anneal-
ing (SCSA) is compared with other algorithms in several benchmark
CAPs. Simulation results showed that this approach is able to further
improve on results obtained by other algorithms.

1 Introduction

In recent years, there is a steady increasing demand for cellular mobile telephone
communication systems. But the usable frequency spectrum is limited. Thus
optimal frequency channel assignment is becoming more and more important
and it can greatly enhance the traffic capacity of a cellular system.

Gamst and Rave defined a general form of channel assignment problems in an
arbitrary inhomogeneous cellular radio network [1]: minimize the span of chan-
nels subject to demand and interference-free constraints. The CAP is usually
solved by graph coloring algorithms [3]. Kunz used the Hopfield neural network
for solving the CAP [2]. The algorithm minimizes an energy or cost function
representing interference constraints and channel demand. Since then, various
techniques have been explored for the application of neural networks to CAP.
Funabiki used a parallel algorithm which does not require a rigorous synchro-
nization procedure [10]. Chan et al proposed an approach based on cascaded
multilayered feedforward neural networks which showed good performance in
dynamic CAP [11]. Kim et al proposed a modified Hopfield network without
fixed frequencies [12]. Smith and Palaniswami reformulated the CAP as a gen-
eralized quadratic assignment problem [8]. They then found remarkably good
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solutions to CAPs using simulated annealing, a modified Hopfield neural net-
work, and a self-organizing neural network. Potential interferences considered in
their paper come from the cochannel constraint (CCC), the adjacent channel
constraint (ACC), and the co-site constraint (CSC) [1].

Simulated annealing is a general method for obtaining approximate solutions
of combinatorial optimization problems [6]. Since the optimization processing is
undertaken in a stochastic manner, it is also called stochastic simulated an-
nealing (SSA). Convergence to globally optimal solutions is guaranteed if the
cooling schedule is sufficiently slow, i.e., no faster than logarithmically [7]. In
recent years, a large amount of work has been done in chaotic simulated anneal-
ing (CSA) ([12]-[21]). CSA can search efficiently because of its reduced search
spaces. Chen and Aihara proposed a transiently chaotic neural networks (TCNN)
which adds a large negative self-coupling with slow damping in the FEuler ap-
proximation of the continuous Hopfield neural network so that neurodynamics
eventually converge from strange attractors to an equilibrium point [13]. The
TCNN showed good performance in solving traveling salesman problem (TSP).
But CSA is deterministic and is not guaranteed to settle down at a global min-
imum no matter how slowly the annealing takes place. In [15], we generalized
CSA by adding a decreasing random noise into the neuron inputs in the TCNN
to combine the best feasures of both SSA and CSA, thereby abtaining stochastic
chaotic simulated annealing (SCSA). In this paper, we show that SCSA can lead
to further improvements on solutions for CAP.

This paper is organized as followings. Section 2 reviews the static channel as-
signment problem and its mathemmatical formulation as given in [8]. In section
3, the SCSA is reviewed. In the section 4, we apply SCSA to several benchmark-
ing CAPs. Finally in section 5, we conclude this paper.

2 Static Channel Assignment Problem

In this section, we review the formulation of CAP as given by Smith and Palanis-
wami [8]. Suppose the number of available channels in an N-cell static mobile
communication system is M and the number of channels requiremed in cell ¢
is D;. The minimum distances in the frequency domain by which two channels
must be separated in order to guarantee an acceptably low signal/interference
ratio in each region are stored in the compatibility matrix C'= {C;;}, an n x n
symmetric matrix, where n is the number of cells in the mobile networks and
C;; is the minimum frequency separation between cell ¢ and one in cell j. In
most of cases, the number of available channels is less than the lower bound, i.e.,
the minimum number of channels required for an interference-free assignment.
A useful version of the CAP is defined as follows [8]:

minimize severity of interferences

subject to demand constraints

The output of neuron j, k is:

X

{ 1, if cell j is assigned to channel k£ ;
Jik =

0, otherwise .
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A cost tensor Pj; m+1 is used to measure the degree of interference between cells
j and 7 caused by such assignments that X, = X, ; = 1 [8], where m = |k — |
is the distance in the channel domain between channels & and [. The cost tensor
P can be calculated recursively as follows:

Pj,i,m+1 = max (O, Pj,i,m — 1), fOT m = 1, . ',M -1 s (1)
Pji1=0Cji, Vi,i#j (2)
Pj,j,l = 0, V] . (3)

Thus the CAP can be formulated to minimize the total interference of all
assignments in the network:

minimize
N M N M
= D D Xk DD Prage-usn Xt (4)
j=1k=1 i=11=1
subject to
M
ZX?’“ = D, Vj=1,--,N . (5)

where F'(X) is the total interference.

3 Stochastic Chaotic Simulated Annealing

The stochastic chaotic simulated annealing (SCSA) is formulated as follows [15]:

1

Y ’ (6)

zjk(t) =

yir(t+1) = by +a( > Y wia+1iy) =zt (@k(t)—Io)+n(t) , (7)
i=1,i#j 1=1,l%k

ij<t+1)= (1_6)ij(t) (i:1,~--,n) ) (8)
An(t+1)] = (1 = B)A[n(?)] ; (9)

where
Z;j : output of neuron jk ;
y;k © input of neuron jk ;
M
Wikil = Wiljk; Wikjk = 0; E Wikl + Lij = —0E/Oxjy, :
1=1,l#k
connection weight from neuron j,k to neuron i, ;
I, : input bias of neuron j, k ;
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k : damping factor of nerve membrane (0 < k < 1);

« : positive scaling parameter for inputs ;

0 : damping factor of the time dependent (0 < 8 < 1);

zjk(t) : self-feedback connection weight or refractory strength (z(t) > 0) ;

Iy : positive parameter;

¢ : steepness parameter of the output function (¢ > 0) ;

E : energy function;

n(t): random noise injected into the neurons, in [-A, A] with a uniform dis-
tribution;

A[n]: the noise amplitude.

If n(t)=0 for all t, then the above noisy chaotic neural network reduces to
the transiently chaotic neural network of Chen and Aihara [13].

The corresponding energy function E for CAP is given by (1) and (2):

QX )+ ZZ szzp -1+ Xa  (10)

7j=1 k=1 j=1k=1 =1 [=1

Fig. 1. Layout of a 21-cell hexagonal network

4 Application of SCSA to Benchmark CAPs

4.1 Descriptions of Various Problems

First we use the data set suggested by Sivarajan [3], denoted as EX1. The number
of cells is N = 4, the number of channels available is M = 11, the demand of
channels is given by DT = (1,1,1,3). We also use a slightly larger extension of
EX1, denoted as EX2 [8]:

N_5 M =17,DT = (2,2,2,4,3).

The Second example considered is the 21-cell cellular system (HEX1-HEX4)
found in [4] (Fig.1). We used two sets of demands for the 21-cell as follows.

DT =(2,6,2,2,2,4,4,13,19,7,4,4,7,4,9,14,7,2,2, 4, 2);
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DI =(1,1,1,2,3,6,7,6,10,10,11,5,7,6,4,4,7,5,5,5,6).

The details of HEX1-HEX4 are shown in Table 1 [8]. There are two different
compatability matrices for HEX problems by considering the first two rings of
cells around a particular cell as interferences [8]. The first one does not include
ACC, so the relative off-diagonal terms C};; are 1. The second one includes ACC,
the off-diagonal terms of C;; in second matrix are 1 or 2 respectively correspond-
ing to CCC and ACC.

Table 1. Descriptions for hexagonal CAPs

Problem | N | M | D | co-channel | adjacent | Cj;
HEX1 [21|37| Dy yes no 2
HEX2 (21|91 | D, yes yes 3
HEX3 |21|21| D2 yes no 2
HEX4 |21 |56 | D, yes yes 3

The final set of CAP is generated from the topographical data of an actual
24 x21 km area around Helsinki, Finland [22]. Kunz calculated the traffic demand
and interference relationships between the 25 regions around the base stations
of this area. The compatability matrix is abtained from Kunz data as C3 [8].
The demand vector is:

DT =(10,11,9,5,9,4,5,7,4,8,8,9,10,7,7,6,4,5,5,7,6,4,5,7,5).

This benchmarking CAP is divided into four classes by considering only the
first 10 regions (KUNZ1), 15 regions (KUNZ2), 20 regions (KUNZ3), and the
entire area (KUNZ4) (Table 2) [8].

4.2 The Simulation Results Of SCSA

We chose a set of parameters for each CAP as in Table 3.

Table 2. Descriptions for KUNZ problems

Problem | N | M C D
KUNZ1 [ 10|30 | [Cs]10 | [D3]10
KUNZ2 | 15 | 44 | [Cs]1s | [Ds]1s
KUNZ3 | 20 | 60 | [Cs]20 | [D3]20
KUNZ4 (25 (73| Cs D3

Our results are presented in Table 4. For comparison, Table 4 also includes
results given in [8], i.e., the performances of GAMS/MINOS-5 (labeled GAMS),
the traditional heuristics of steepest descent (SD), simulated annealing (SA), the
original Hopfield network (HN) (with no hill-climbing), hill-climbing Hopfield
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Table 3. The parameters for various CAPs

Problem | K € Iy a 8 z(0) | n(0) | W1 | W2
EX1 0.9 |1/250 | 0.65 | 0.0045 | 0.0005 | 0.1 | 0.5 | 1.0 | 0.02
EX2 0.9 | 1/250 | 0.65 | 0.0045 | 0.0005 | 0.1 | 0.5 | 1.0 | 0.02

HEX1 [0.9|1/250 |0.05| 0.05 |0.0005 |0.08|0.08 1.0 |0.25
HEX2 [0.9]1/250 |0.08 | 0.05 |0.0005 |0.08|0.08 | 1.0 |0.25
HEX3 [0.9|1/250 | 0.05| 0.05 |0.0005 |0.08|0.08 1.0 0.2
HEX4 |0.9|1/250|0.07 | 0.05 |0.0005 |0.08|0.08| 1.0 | 0.3

KUNZ1 {0.9|1/250 | 0.06 | 0.05 |0.0004|0.08|0.08 | 1.0 |0.45

KUNZ2 [0.9|1/250 | 0.01 | 0.05 |0.0005|0.08|0.08 | 1.0 | 0.45

KUNZ3 [0.9|1/250 | 0.05| 0.05 |0.0005|0.08|0.08 | 1.0 | 0.45

KUNZ4 [0.9|1/250 | 0.05| 0.05 |0.0005|0.08|0.08 | 1.0 | 0.45

network (HCHN), and the self-organizing neural network (SONN). Each of the
heuristics is run from ten different random initial conditions. In Table 4, “Min”
means the minimum total interference (eq. 4) found during these ten times,
and “Av” is the average total interference [8]. We also computed the standard
deviations (STDD) during these ten runs, as shown in Table 5.

Table 4. The results of SCSA and other techniques

GAMS SD SA HN HCHN SONN SCSA
problem | Min | Av. Min | Av. Min |Av. Min|Av. Min |Av. Min | Av. Min
EX1 2 06 O 00 0 02 0 00 0 04 0 00 0
EX2 3 1.1 0 0.1 0 1.8 0 08 0 24 0 00 0
HEX1 54 56.8 55 | 50.7 49 | 49.0 48 | 48.7 48 | 53.0 52 | 47.7 47
HEX2 27 289 25204 19| 21.2 19 | 19.8 19 | 2855 24 | 185 18
HEX3 89 88.6 84 | 829 79| 816 79 | 803 78 | 872 84 | 773 76
HEX4 31 282 26 | 21.0 17 | 21.6 20 | 189 17 | 29.1 22 | 17.2 16
KUNZ1 28 244 22 | 21.6 21 | 22.1 21 | 21.1 20 | 22.0 21 | 20.0 19
KUNZ2 39 381 36| 332 32| 328 32| 315 30| 334 33| 303 30
KUNZ3 13 179 15 | 139 13 | 132 13 | 13.0 13 | 144 14 | 13.0 13
KUNZ4 7 55 3 1.8 1 04 0 01 0 22 1 00 0

The results in Table 4 show that the SCSA is able to further improve on results
obtained by other approaches.

5 Conclusion

In this paper, we showed that stochastic chaotic simulated annealing (SCSA) [15] is very
effective in solving combinatorial optimization problems, such as channel assignment
problems in radio network planning. This approach has both noisy nature and chaotic
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Table 5. The standard deviations for various CAPs

Problem | HEX1 | HEX2 | HEX3 | HEX4 | KUNZ1 | KUNZ2 | KUNZ3 | KUNZ4

STDD | 0.265 | 0.173 | 0.267 | 0.354 | 2.095 0.173 0.0 0.0

searching characteristics, so it can search in a smaller space and continue to search
after the disappearance of chaos. Implementation of SCSA to solve other practical
optimization problems will be studied in future work.

References

1.

2.

10.

11.

12.

13.

14.

A. Gamst and W. Rave, “On frequency assignment in mobile automatic telephone
systems,” Proc. GLOBECOM’82 , pp. 309-315, 1982.

D. Kunz, “Channel assignment for cellular radio using neural networks”, IEEE
Trans. Veh. Technol., vol. 40, no. 1, pp. 188-193, 1991.

K. N. Sivarajan, R. J. McEliece and J.W. Ketchum, “Channel assignment in cel-
lular radio”, Proc. 39th IEEE Veh. Technol. Soc. Conf., pp. 846-850, May, 1989.
A. Gamst, “Some lower bounds for a class of frequency assignment problems”,
IEEFE Trans. Veh. Tech., vol. VT-35, pp. 8-14, Feb., 1986.

W. K. Hale, “Frequency assignment: theory and application”, Pro. IEEE, vol. 68,
pp- 1497-1514, Dec., 1980.

M. Duque-Anton, D. Kunz, and B. Ruber, “Channel assignment for cellular radio
using simulated annealing”, IEEE Trans. Veh. Technol., vol. 42, no. 1, February,
1993.

S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images”, IEEE Trans. Pattern Analysis and Machine In-
telligence, vol. 6, pp. 721-741, 1984.

K. Smith and M. Palaniswami, “Static and dynamic channel assignment using
neural network”, IEEE Journal on Selected Areas in Communications, vol. 15, no.
2, Feb., 1997.

N. Funabiki and Y. Takefuji, “A neural network parallel algorithm for channel
assignment problems in cellular radio networks”, IEEE Trans. Veh. Technol., vol.
41, no. 4, November, 1992.

P. Chan, M. Palaniswami and D. Everitt, “Neural network-based dynamic channel
assignment for cellular mobile communication systems”, IEEE Trans. Veh. Tech-
nol., vol. 43, no. 2, May, 1994.

J. Kim, S. H. Park, P. W. Dowd and N. M. Nasrabadi, “ Cellular radio channel
assignment using a modified Hopfield network”, IEEE Trans. Veh. Technol., vol.
46, no. 4, November, 1997.

L. Chen and K. Aihara, “Chaotic simulated annealing by a neural network model
with transient chaos”, Neural Networks, vol. 8, no. 6, pp. 915-930, 1995.

L. Chen and K. Aihara, “Transient chaotic neural networks and chaotic simulated
annealing”, in M. Yamguti(ed.), Towards the Harnessing of Chaos. Amsterdam,
Elsevier Science Publishers B.V. pp. 347-352, 1994.

L. Chen and K. Ajhara, “Global searching ability of chaotic neural networks”,
IEEE Trans. Clircuits and Systems-1: Fundamental Theory and Applications, vol.
46, no. 8, August, pp. 974-993, 1999.



764

15.

16.

17.

18.

19.

20.

21.

22.

S. Liand L. Wang

L. Wang and F. Tian, “Noisy chaotic neural networks for solving combinatorial
optimization problems”, Proc. International Joint Conference on Neural Networks.
(IJCNN 2000, Como, Italy, July 24-27, 2000)

F. Tian, L. Wang, and X. Fu, “Solving channel assignment problems for cellu-
lar radio networks using transiently chaotic neural networks”, Proc. International
Conference on Automation, Robotics, and Computer Vision. (ICARCV 2000, Sin-
gapore)

L. Wang, “Oscillatory and chaotic dynamics in neural networks under varying
operating conditions”, IEEE Transactions on Neural Networks, vol. 7, no. 6, pp.
1382-1388, 1996.

L. Wang and K. Smith, “On chaotic simulated annealing”, IEEE Transactions on
Neural Networks, vol. 9, no. 4, pp. 716-718, 1998.

L. Wang and K. Smith, “Chaos in the discretized analog Hopfield neural network
and potential applications to optimization”, Proc. International Joint Conference
on Neural Networks, vol. 2, pp. 1679-1684, 1998.

T. Kwok, K. Smith and L. Wang, “Solving combinatorial optimization problems
by chaotic neural networks”, C. Dagli et al.(eds) Intelligent Engineering Systems
through Artificial Neural Networks vol. 8, pp. 317-322, 1998.

T. Kwok, K. Smith and L. Wang, “Incorporating chaos into the Hopfield neural
network for combinatorial optimization”, Proc. 1998 World Multiconference on
Systemics, Cybernetics and Informatics, N. Callaos, O. Omolayole, and L. Wang,
(eds.) vol. 1, pp. 646-651, 1998.

T. Kohonen, “Self-organized formation of topologically correct feature maps”, Biol.
Cybern., vol. 43, pp. 59-69, 1982.



	1 Introduction
	2 Static Channel Assignment Problem
	3 Stochastic Chaotic Simulated Annealing
	4 Application of SCSA to Benchmark CAPs
	4.1 Descriptions of Various Problems
	4.2 The Simulation Results Of SCSA

	5 Conclusion
	References

