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SUMMARY 

Representing the concept of numerical data by linguistic rules is often desir­
able. In this paper, we present a novel rule-extraction algorithm from the 
radial basis function (RBF) neural network classifier for representing the 
hidden concept of numerical data. Gaussian function is used as the basis 
function of the RBF network. When training the RBF neural network, we 
allow for large overlaps between clusters corresponding to the same class, 
thereby reducing the number of hidden units while improving classifica­
tion accuracy. The weights connecting the hidden units with the output 
units are then simplified. The interval for each input in the condition part 
of each rule is adjusted in order to obtain high accuracy in the extracted 
rules. Simulations using some bench-marking data sets demonstrate that 
our approach leads to more accurate and compact rules compared to other 
methods for extracting rules from RBF neural networks. 
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1 INTRODUCTION 

Extracting rules to represent the concept of data is an important aspect 
of data mining. The concept of data refers to the distribution of data, the 
relationship between patterns (samples) of data and their corresponding class 
labels, and the relationship between attributes (variables of samples) and 
class labels, etc.. The task of extracting concise, i.e., a small number of, rules 
from a trained neural network is usually challenging due to the complicated 
architecture of a neural network. 

Some research work has been carried out in extracting rules through RBF 
neural networks. In [2][5], redundant inputs are removed before rule extrac­
tion. Huber [7] selects rules according to importance; however, the accu­
racy is reduced with pruning. McGarry [11][12][13] extracts rules from RBF 
neural networks by considering the parameters of Gaussian kernel functions 
and weights which connect hidden units to the output layer. However, when 
the number of rules is small, the accuracy is low. When the accuracy is 
acceptable, the number of rules becomes large. 

In this paper, we propose a novel technique to extract rules from the RBF 
neural network. First, the number of hidden units is reduced due to our 
modification when training the RBF neural network. The weights connecting 
hidden units with output units are simplified (pruned) subsequently. Then 
the interval for each input in the condition part of each rule is adjusted in 
order to obtain a high rule accuracy. We show that our technique leads to a 
compact rule set with desirable accuracy. 

This paper is organized as follows. In Section 2, we proposed a way to obtain 
an efficient RBF classifier based on a modification in which large overlaps 
are permitted between clusters with the same class label. Our proposed 
algorithm to extract rules from the trained RBF classifier is described in 
Section 3. Experimental results are shown in Section 4. Finally, Section 5 
presents the conclusions of this paper. 

2 THE RBF NEURAL NETWORK 

The RBF neural network [1] attracts much attention because of its simplicity 
in structure and fast speed in learning. 
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In the RBF neural network, the activation of a hidden unit is determined by 
the distance between the input vector and the center vector of the hidden 
unit. There are three layers in the RBF neural network, i.e., the input layer, 
the hidden layer with Gaussian activation functions, and the output layer. 
Assume there are M classes in the data set, we write the m-th output of the 
network as follows: 

K 

Ym(X) = 2:= W mj0j(X) + wmobm (1) 
j=l 

Here X is the input pattern vector (n-dimension). m = 1,2, ... , M. K is 
the number of hidden units. M is the number of output. Wmj is the weight 
connecting the j-th hidden unit to the m-th output node. bm is the bias. WmO 

is the weight connecting the bias and the m-th output node. 0j(X) is the 
activation function of the j-th hidden unit: 

(2) 

where Cj and aj are the center and the width for the j-th hidden unit, 
respectively, and are determined during learning. 

Therefore, the density of the input data is modeled by the mixture model of 
Gaussian functions: 

M 

p(X) = 2:=P(j)0j(X) (3) 
j=l 

where the parameters P(j) are the prior probabilities for the data points 
included in the receptive field of the jth kernel function, and 0j is the jth 
Gaussian kernel function of the network. 

The weights connecting the hidden layer and the output layer can be deter­
mined by the linear least square (LLS) method [1][16], which is fast and free 
of local minima, in contrast to the multilayer perceptron neural network. 

CONSTRUCTING AN EFFICIENT RBF CLASSIFIER 

We now discuss the effect of overlapped receptive fields of Gaussian kernel 
functions of the RBF neural network on the number of its hidden units. 
Overlapped receptive fields of different clusters can improve the performance 
of the RBF classifier in rejecting noise when tackling with noisy data [10]. 

3 
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However, the overlaps between different classes will decrease the accuracy of 
classification when tackling with noise-free data. 

It is desirable for an RBF classifier to have a small number of hidden units, 
and at the same time, a low classification error rate. A modification in 
training RBF neural network for simplifying the construction of RBF neural 
networks is now proposed. As known, classification error rate is mainly de­
termined by the degree of overlap between clusters for different classes, and 
is independent of the degree of overlap between clusters for the same class. 
In the above clustering algorithm, if cluster radii are increased by decreasing 
a (a is the ratio of the number of in-class patterns and the total number of 
patterns in one cluster), the number of clusters will decrease; however, the 
classification error rate will also increase because of larger overlaps between 
clusters for different classes. But if we modify the clustering algorithm such 
that small overlaps between clusters for different classes are maintained, and 
large overlaps between clusters for the same class are allowed, the classifica­
tion error rate should remain the same with the number of clusters decreased. 
That is, some clusters are enlarged in size, and at the same time, a-criterion is 
satisfied in all clusters, i.e., the ratio between the number of in-class patterns 
and the total number of patterns in one cluster should be above a certain 
value. 

The following steps is used to permit large overlaps between clusters with the 
same class label. A copy Ve of the original data set V is made first. When 
a qualified cluster (a-criterion is satisfied), e.g., cluster A in Fig.l(b) (same 
as in Fig.l(a», is generated, the members in this cluster are "removed" from 
the copy data set Ve , but the patterns in the original data set V is unvaried. 
Subsequently, the initial center of the next cluster is selected from the copy 
data set Ve , but the candidate members of this cluster are patterns in the 
original data set V, thus include the patterns in the cluster A. Subsequently 
when pattern 2 is selected as an initial cluster center, a much larger cluster 
B, which combines clusters B, C, and D in Fig.l(a), can still satisfy the 
B-criterion and can therefore be created. 

In order to obtain fewer number of clusters with high accuracy in classification 
at the same time, a dynamic ais used. The initial value of B is 100%. There 
are two conditions to determine whether to reduce aor not. One condition is 
if the ratio between the number of remaining patterns in Vc and the number 
of patterns in Ve in the previous epoch (one epoch is one presentation of each 
pattern in the data set) is less than a certain ratio Ql. The other condition 
is if the epoch number for searching a suitable cluster exceeds one certain 
number RCount. If either of the two conditions is satisfied, the a will be 
reduced by a certain value (we set the value as 2.5%), since a affects the 
accuracy of classification, Le., the higher the a, the higher the classification 
accuracy. The minimal aused in this paper is 75%. 
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(a) 	 (b) 

Figure 1: (a) no large overlap (b)large overlap 

When training RBF neural networks, the initial centers for clusters are chosen 
randomly (without considering the order of classes), which gives an equal 
chance for each class to form clusters, in contrast to the Gaussian Masking 
(GM) algorithm [14]. In addition, a few patterns left will not be considered as 
candidates of initial cluster centers, i.e., isolated patterns (symbol K is used 
to represent the number of isolated patterns) in each class will be omitted in 
the clustering process, in order to minimize the number of clusters. 

We therefore use the follow algorithm to construct an efficient RBF classifier, 
incorporating the above modification to the existing algorithms [14][15]: 

1. 	 Initialize for training: 

a) 	We divide the data set into three parts, the training data set, 
the validation data set, and the test data set. 

b) 	In order to derive the widths of the kernel functions, a gen­
eral scale of neighborhood 00 is obtained by calculating the stan­
dard deviation of the data set. 

2. 	 Set stage £ = 1; 0(£) = 00,0 = CHOo, where 0(£) is the initial radius of 
clusters at training stage £ and 0 is the increment step for the radius. 
a is the changing rate of radius. 

3. Generate Ve , a copy of the original training data set V. 

4. 	 Forming clusters: 

a) Count the number of patterns of all classes in Ve. If the number 
of patterns left for one class is larger than a predefined value 
K (the value corresponds to the number of isolated patterns), 
we continue, else go to step 7. 
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b) Set sub-stage Ls = 1, c5(Ls) = c5(L). 

c) 	Select randomly a pattern (from Vc ) and search in V to find 
all the patterns in c5(L)-neighborhood of the selected pattern. 

Thus large overlaps are permitted among clusters of the same 
class as we proposed above. 

d) Check whether the ratio between the number of in-class pat­
terns and the number of total patterns in the subset is greater 
than the pre-defined value 8, if true, a cluster is formed, then 
the patterns in the cluster is removed from Vc. If the ratio is 
less than 8, set Ls = Ls + 1, and c5(Ls) = c5(Ls) - 15. Search 
the patterns within c5(Ls )-neighborhood of the selected pattern. 
Stop only if the ratio criterion is satisfied or if Ls ~ 5. Repeat 
4 until the training set Vc is less than M * K (M is the number 
of classes in the data set ). 

5. 	 Calculate the center and width of each cluster: the center is the mean 
pattern of all patterns in the cluster and the width is the standard 
deviation of these patterns. 

6. 	 Obtain weights by the LLS method [1]. 

7. 	 Calculate Etr (the classification error of the training set) and Ev (the 
classification error of the validation set). Stop if both of Etr and Ev 
are less than a pre-specified value Eo. In this paper, Eo =0.01. Else: 

a) If Ev(L) < Ev(L - 1), set L = L + 1 and c5(L) = c5(L) - 15/2. 
Go to 3. 

b) 	If Etr(L) > Etr(L - 1) and Ev(L) > Ev(L - 1), L = L + 1, 
c5(L) = c5(L) - c5,go to 3. 

c) If L > 10 or Ev > Eo go to 2. 

By allowing for large overlaps between clusters for the same class, we can 
further reduce the number of clusters substantially. This will lead to more 
efficient construction of RBF networks, i.e., the number of hidden units will 
be reduced. The experimental results will be shown in Section 4. 

4 RULE EXTRACTION 

After training the RBF neural network, the concept of data is memorized 
in the RBF classifier. We now try to explain the concept of data through 
the RBF classifier. Since each hidden unit of the RBF neural network is 
responsive to a subset of patterns (instances), the weights connecting the 
hirlrlen unit . . en it 
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mainly serves. Our rule extraction algorithm is directly based on the widths, 
centers of Gaussian kernel functions, and weights connecting hidden units 
and the output layer. 

We first determine the corresponding output unit which each hidden unit 
mainly serves for by simplifying the connections between hidden units and 
output units. Consider the weight matrix (assume there are m hidden units, 
and n output units) 

W = ( ~~~ ...~~~ .. : : : .. ~.~.:. ) 
Xml X32 ... Xmn 

where Xij is the element of the weight matrix, and it refers to the weight 
connecting the ith hidden unit and the jth output unit. 

The matrix will be converted into 

WI = ( ~ .. ::: .. ~~~~ ........ ' .... ~ ) 

o ... Xmkm 0 

where Xjkj is the maximum value of each row j (j = 1, ...m) of matrix W. 
Thus, WI reflects the corresponding output which each hidden unit mainly 
serves for. 

The suitable intervals of attributes make up the premise part of an extracted 
rule, i.e., the decision boundary of our rules is hyper-rectangular. Let us 
assume that the number of attributes is N. The upper limit Upper(j, i) and 
the lower limit Lower(j, i) of the jth attribute in the ith rule are initialized 
as: 

Upper(j, i) = /-Lji + pj,i (4) 

Lower(j, i) = /-Lji - Pj,i (5) 

Pj,i = 7]j * Xiki * ai (6) 

Here /-Lji is the jth item of the center of the ith kernel function. Initially, 
7]j = 1. ai is the width of the ith kernel function. Xik i is the corresponding 
element in WI' Pi,j will be adjusted by adjusting 7]j as follows: 

"lj = 7]j + Sign *0.025. (7) 
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Sign has two value +1 and -1, which is determined by the trend of change 
in the rule accuracy when adjusting. The initial Sign is +1. If the rule accu­
racy becomes lower with the adjusted 7], Sign is changed to -1. Otherwise, 
Sign remains the same. The stop-criterion for the iteration is a predefined 
rule error rate. When adjusting the intervals to obtain high accuracy, the 
validation set is used for determining the direction of adjusting, which can 
help the extraction rules not to fit the training data set too well, and obtain 
good results in the testing data set. 

Compared with the technique proposed by McGarry [11][12][13], a higher 
accuracy with concise rules is obtained in our method. In [11][13], the input 
intervals in rules are expressed in the following equations: 

Xupper = J.ti + ai - S (8) 

X/ower = J.ti - ai + S (9) 

Here S is feature "steepness", which was discovered empirically to be about 
0.6 by McGarry. J.ti is n-dimensional center location of rule i, and ai is the 
width of receptive field. We note that the empirical parameter may not be 
suitable to all data sets. The experimental results are shown in the next 
section. 

5 THE EXPERIMENTAL RESULTS 

Two data sets, Iris and Thyroid from the UCI Repository of Machine Learn­
ing Databases, are used for testing our methods. There are 4 attributes and 
3 classes in Iris data set. There are 5 attributes and 3 classes in Thyroid 
data set. Each data set is divided into 3 parts, i.e., training, validation, and 
test sets. 90 patterns of Iris data set is used for training, 30 patterns for val­
idation and 30 patterns for testing. There are 215 patterns in Thyroid data 
set. 115 patterns are for training, 50 patterns for validation and 50 patterns 
for testing. We set 0:1 = 0.8 and we set the maximum number of epoches for 
searching a cluster to be RCount=20. 0: is the changing rate of radius and 
we set it as 0.9 in our experiments. The number of isolated patterns K is 
2. A pattern is randomly selected first, if a qualified cluster whose center is 
the selected pattern can not be found after adjusting 7] to search in the total 
data set for RCount times, then the selected pattern will be released, a new 
pattern will be selected again in order to generate a new duster. 

in our experiments. The results shown in Table 1 are the average values of 5 
independent experiments. The smallest number of hidden units in construct­
ing an RBF neural network classifier is 3 for Iris data set. For Thyroid, at 
least 6 hidden units are needed. 
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Table 1: Reduction in the number of hidden units 

Iris Thyroid 
Comparisons Small Large Small Large 

overlap overlap overlap overlap 

Error rate in 
classification 0.0491 0.0387 0.048 0.0385 
Number of 
hidden units 5.2 3.4 13.8 7.4 

Table 1 shows that when large overlaps among clusters of the same class are 
permitted, both the number of hidden units and the classification error rate 
for testing data are decreased. 

After the learning procedure and using our proposed rule extraction method, 
we obtain 3 symbolic rules for Iris data set. 

The accuracy of the symbolic rules that we obtain through the proposed 
method is 90%-94% for Iris data set. For Thyroid data set, 6 rules are 
obtained, with 5 conditions in each rule, and the accuracy is 80%-85%. 

For Iris data set, 3 rules are obtained, the accuracy is 94% for testing data. 
rule 1: 

IF the sepal length is within the interval (3.24, 5.59) 


AND the sepal width is within the interval (2.27, 4.31) 


AND the petal length is within the interval (0.28, 2.33) 


AND the petal width is within the interval (0.00, 0.57) 


THEN the class label is Setosa. 


rule 2: 


IF the sepal length is within the interval (4.28, 7.71) 


AND the sepal width is within the interval (1.24, 3.37) 


AND the petal length is within the interval (2.50, 5.49) 


AND the petal width is within the interval (0.46, 1.66) 


THEN the class label is Versicolor. 


rule 3: 


IF the sepal length is within the interval (5.26, 7.90) 


AND the sepal width is within the interval (2.31, 4.11) 
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AND the petal length is within the interval (4.31, 6.90) 

AND the petal width is within the interval (1.79, 2.50) 

THEN the class label is Virginica. 

Default rule: 

the class label is Virginica. 

We now compare our results with rule-extraction results using RBF neural 
networks. In [5], 5 or 6 rules were needed to represent the concept of Iris data 
(the accuracy was not available). Huber [7] extracted 8 rules to represent 
Iris data set (the accuracy is not available). In order to get a small rule 
base, unimportant rules were pruned according to ranking [7]. However, the 
accuracy of rules was reduced [7] at the same time. McGarry [11][12][13] 
extracted rules from RBF neural networks directly from the parameters of 
Gaussian kernel functions and weights. In [11], the accuracy reached 100%, 
but the number of rules was large (for the Iris data set, 53 rules were needed). 
In [12] and [13], the number of rules for the Iris data set was small, i.e., 
3, but the accuracy of the extracted rules was only 40% and around 80%, 
respectively. The results of extracted rules for Thyroid data set using other 
methods were not available. 

Many rule-extraction methods have been explored based on the multilayer 
perceptron (MLP). Desirable results have been obtained both in accuracy 
and numbers of rules (e.g., [3][6][8][9]). Compared with the rule extraction 
techniques using MLP, the accuracy of the rules extracted from the RBF 
neural networks is lower, however, the training of the RBF neural network 
can escape from local minima, which is very important for large data sets. 
The architecture of the RBF neural network is simpler and the training time 
is usually shorter in comparison with the MLP. 

For Iris data set, Fu [4] reported 94% in rule accuracy by C4.5, and the 
number of rules was 5. Though there was higher rule accuracy reported for 
Iris by the decision tree algorithm (C4.5) [3] (97.33% in testing data set, 
3 rules), it had been shown that neural networks generated rules of better 
performance than the decision tree algorithm in noisy conditions [4]. 

6 CONCLUSIONS 

A useful modification in constructing and training the RBF network by al­
lowing for large overlaps among clusters of the same class is proposed, which 
reduces the number of hidden units while maintaining the classification per­
formance. The reduced number of hidden units can facilitate us in searching 
concise rules. Rule extraction is carried out from the simplified RBF classifier 
in order to explain and represent the concept of data. In order to identify 
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clearly which hidden unit serves for which class, the weights between the hid­
den layer and the output layer are simplified first. Then the interval for each 
input as the premise of each rule is determined by iterations. The validation 
data set is used for making sure that the result is fit for training data set and 
testing data set at the same time. Our rule extraction technique is simple 
to implement, which is shown through our experimental results, and concise 
rules with high accuracy are obtained based on the RBF classifiers. 
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