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ABSTRACT

Recently, Chen and Aihara proposed the tran-
siently chaotic neural network (TCNN) for
solving combinatorial optimization problems,
and the TCNN has shown a high solving abil-
ity for traveling salesman problem (TSP). In
this paper, we are interested in the channel
assignment problem (CAP) which is to assign
the required number of frequency channels to
each cell in a cellular mobile network in such
a way that interference between channels is
minimized and the demands are met. We used
the TCNN to solve CAP, and simulation re-
sults show better performance than the results
obtained by other algorithms.

1. INTRODUCTION

With the demand for cellular mobile commu-
nication services growing rapidly, optimal as-
signments of frequency channels are becom-
ing more and more critical because the elec-
tromagnetic spectrum or frequencies allocated
for this purpose are limited. Careful design for
a cellular radio network can efficiently mini-
mize interference between calls and guarantee
the quality of service.

Smith and Palaniswami defined two types of
CAP in [7]. CAP1 is to minimize the span of
channels subject to demand and interference-
free constraints. CAP2 is to minimize the
severity of interferences, subject to demand
constraints. CAP1 can be solved by graph
coloring algorithms [2] and many neural net-
work techniques. Funabiki used a parallel al-
gorithm to solve CAP1 [8]. Chan et al pro-
posed an approach based on cascaded mul-
tilayered feedforward neural networks which
showed good performance in dynamic CAP1
[9]. Kim et al solved CAP1 by using a mod-
ified Hopfield network without fixed frequen-
cies [10]. Kunz firstly used the Hopfield neural
network for solving CAP2 by minimizing an

energy or cost function representing inter-
ference and channel demand constraints in
1991 [1]. Smith and Palaniswami reformu-
lated CAP2 as a generalized quadratic assign-
ment problem [7] and found remarkably good
solutions to CAP2 using simulated annealing
(SA), a modified Hopfield neural network, and
a self-organizing neural network.

Due to extensive research interests, a large
body of work exists on chaotic neural net-
works ([11]-[19]). Chaotic neural networks can
search very efficiently in solving the optimiza-
tion problems because of its smaller search
space. Chen and Aihara provided the the-
oretical explanation for the global searching
ability of the chaotic neural network: its at-
tracting set contains all global and local min-
ima of the optimization problem, and since the
chaotic attracting set has a fractal structure
and covers only a very small fraction of the en-
tire state space, the chaotic neural network is
more efficient in finding good solutions for op-
timization problems compared to other global
search algorithms. Chen and Aihara proposed
a transiently chaotic neural network (TCNN)
by introducing transiently chaotic dynamics
into neural networks. In this paper, we use the
TCNN to solve CAP2 and show that TCNN
is an effective way for radio network planning.
Here we deal with only CAP2 because in most
of cases, the number of available channels is
far less than the lower bound which is the
minimum number of channels required for an
interference-free assignment.

We organize this paper as follows. Section 2
reviews CAP2 and its mathematical formula-
tions as given by Smith and Palaniswami [7].
In section 3, we introduce the detail of the
TCNN algorithm. In section 4, we apply the
TCNN to several benchmarking CAP2 data
sets. Finally in section 5, we conclude this
paper.
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2. CAP2: A STATIC CHANNEL AS-
SIGNMENT PROBLEM

Suppose there are N cells in a mobile ra-
dio network and the total number of available
channels is M . The channel requirements for
cell i are given by Di (i = 1, 2, · · ·, N). DT =
(D1, D2, · · ·, DN ) is called the demand matrix.
We use the compatibility matrix C = {Cij} to
store the interference information, where Cij

is the minimum frequency separation between
cell i and cell j to guarantee an acceptably
low signal/interference ratio in each region,
i, j = 1, 2, · · ·N .

A neural network model with N ×M neu-
rons is used to calculate the channel assign-
ment. We define xjk as the output of each
neuron: xjk = 1, if cell j is assigned to chan-
nel k and xjk = 0 otherwise. Here j = 1, ···, N
and k = 1, · · ·,M .

We considered three types of interfer-
ences in this paper: the co-channel con-
straint (CCC), the adjacent channel con-
straint (ACC), and the co-site constraint
(SCC). A cost tensor Pji(m+1) is used to mea-
sure the degree of interference between cells j
and i caused by such assignments that xjk =
xil = 1 [7], where m = |k− l| is the distance in
the channel domain between channels k and l.
The cost tensor P can be calculated by follow-
ing equation:

Pji(m+1) = max (0, Pjim − 1) ,

for m = 1, · · ·,M − 1 , (1)

where Pji1 is the element of the compatability
matrix with the diagonal terms overwritten to
zero (Pjj1 = 0).
CAP2 then can be formulated as:
minimize

F (x) =
N∑
j=1

M∑
k=1

xjk

N∑
i=1

M∑
l=1

Pji(|k−l|+1)xil ,

(2)

subject to

M∑
k=1

xjk = Dj , ∀j = 1, · · ·, N , (3)

where F (x) is the total interference.

3. TRANSIENTLY CHAOTIC
NEURAL NETWORKS

The model for each neuron of TCNN is taken
from [11]. The internal state of each neuron

i is given by a time dependent scalar value
yjk. The output of each neuron xjk is a fixed
function f of the internal state:

xjk(t) =
1

1 + e−yjk(t)/ε
, (4)

where ε is the steepness parameter of the out-
put function (ε > 0).

yjk(t+ 1) = kyjk(t) + α(
N∑

i=1,i̸=j

M∑
l=1,l ̸=k

wjkilxjk(t) + Iij)− z(t)(xjk(t)− I0) , (5)

where wjkil is the connection weight from neu-
ron jk to neuron il, with wjkil = wiljk and
wjkjk = 0; We can caculcate it as follows:

N∑
i=1,i ̸=j

M∑
l=1,l ̸=k

wjkilxjk + Iij = −∂E/∂xjk (6)

And k is the damping factor of nerve mem-
brane (0 ≤ k ≤ 1); α is the positive scaling
parameter for inputs ; I0 is the positive para-
meter. The corresponding energy function E
for CAP is given by:

E =
W1

2

N∑
j=1

(

M∑
k=1

xjk −Dj)
2

+
W2

2

N∑
j=1

M∑
k=1

xjk

N∑
i=1

M∑
l=1

Pji(|k−l|+1)xil, (7)

where W1 and W2 represent the relative
strength (or importance)of the constraint and
the interference, respectively. z(t) is the
self-feedback connection weight or refractory
strength z(t + 1) = (1 − β)z(t), where β rep-
resents the damping factor (0 ≤ β ≤ 1).

4. TCNN FOR VARIOUS CAP2S
DATA SETS

We firstly used the EX problem suggested by
Sivarajan [2]. It is divided into EX1 and EX2
as follows:

N = 4,M = 11, DT = (1, 1, 1, 3).
N = 5,M = 17, DT = (2, 2, 2, 4, 3).
The Second data set used in our simulations

is the 21-cell cellular system (HEX1-HEX4)
found in [3] (Fig.1).

We chose the last CAP2 generated from the
topographical and morphostructure data from
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Figure 1: A 21-cell hexagonal network used in
our simulations.

Table 1: The descriptions for KUNZ prob-
lems.

Problem N M C D
KUNZ1 10 30 [C(3)]10 [D3]10
KUNZ2 15 44 [C(3)]15 [D3]15
KUNZ3 20 60 [C(3)]20 [D3]20
KUNZ4 25 73 C(3) D3

the area of 24×21 km around Helsinki, Fin-
land [20].

Smith and Palaniswami divided this bench-
marking CAP2 into four classes by considering
only the first 10 regions (KUNZ1), 15 regions
(KUNZ2), 20 regions (KUNZ3), and the en-
tire area (KUNZ4)[7]. The detail is listed in
Table 1.

After a large amount of simulation, we ob-
tained better results compare to results ob-
tained by other algorithms, which include re-
sults given in [7], i.e., the performances of
GAMS/MINOS-5 (labeled GAMS), the tradi-
tional heuristics of steepest descent (SD), sto-
chastic simulated annealing (SSA), the orig-
inal Hopfield network (HN) (with no hill-
climbing), the hill-climbing Hopfield network
(HCHN), and the self-organizing neural net-
work (SONN). Each of the techniques (except
GAMS/MINOS-5) is run from ten different
random initial conditions. We calculated the
total interference found during these ten times
and the assignment results have smaller values
both in average total interference and mini-
mum total interference with all CAP data set.
For example, we obtained the average total in-
terference and minimum total interference of
HEX1 as 48.1 and 47, respectively. The best
result among above techniques is 48.7 and 48
obtained by HCHN which is larger than 48.1
and 47, so we can give the better channel as-
signment. By using TCNN, we obtained the
interference-free assignments of ten runs in

EX and KUNZ1 problems. Also other algo-
rithms can obtain the interference-free assign-
ments sometime (the minimum total interfer-
ences are 0), they cannot guarantee to give the
optimal assignments in each time (the average
total interference for many runs are not 0).
We plot the total energy function E of HEX2
in Figure 2 to show the chaotic dynamics of
the system.
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Figure 2: The Energy as a function of time in
HEX2.

5. CONCLUSIONS

In this paper, we have considered the CAP
and demonstrated that the transiently chaotic
neural network is an effective way to solve
the channel assignment problem and its sim-
ulation results show better performance than
other algorithms.

The present work is concerned with only
static CAPs. Implementation of the TCNN to
solve other practical optimization problems,
such as the dynamic CAP, will be continu-
ously studied.
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