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Abstract

Extracting concise rules from neural networks is a
challenging task, especially when the dimensionality
of inputs is high. Removing the redundant or irrele-
vant attributes is the process of reducing the dimen-
sionality of data, increasing classifier efficiency, and
maintaining high classification accuracy, which may
lead to more compact rules representing the concept
of data. In this paper, a separability-correlation mea-
sure (SCM) is proposed to rank attribute importance.
An RBF classifier is used to evaluate the best sub-
set of attributes. Based on the retained subset of at-
tributes used as the inputs to the RBF neural network,
rules are extracted. Simulations show that our method
leads to more compact rules.

1 Introduction

Neural networks are frequently used in data min-
ing. The task of extracting concise, i.e., a small num-
ber of, rules from a trained neural network is usually
challenging due to the complicated architecture of a
neural network [1][16].

An RBF network is generally much easier to train
than Multi-layer perceptron (MLP). In recent years,
rule extraction from RBF neural networks has been
carried out by some researchers. In [4][6], redun-
dant inputs are removed before extracting rules. Hu-
ber [8] selects rules according to importance. How-
ever, the accuracy is reduced with pruning. McGarry
[11][12][13] extracts rules from RBF neural networks
by considering the parameters of Gaussian kernel func-

tions and weights which connect hidden units to the
output layer. However, when the number of rules is
small, the accuracy is low. When the accuracy is ac-
ceptable, the number of rules becomes large.

Data dimensionality reduction (DDR) is an impor-
tant task in data processing, which helps us clean data
and save cost for further processes. In DDR, irrelevant
attributes are found and then removed from the origi-
nal attribute set to reduce the number of attributes
while maintaining the concept of data. DDR has
become an important aspect of pattern recognition,
since operators and automated controllers are able to
make better use of lower-dimensional data compared
to higher-dimensional ones. Reduced data dimension-
ality leads to less complicated network structure and
thus increased efficiency in processing data.

In order to obtain more compact rules, on the one
hand, data dimensionality reduction (DDR) is needed
before inputting data to neural networks. We propose
a rule extraction algorithm based on RBF neural net-
works. The simple architecture and the local approx-
imation in kernel functions of RBF neural networks
make extracting rules from RBF networks more desir-
able than from other neural networks. On the other
hand, reducing the number of hidden units of RBF
neural networks should be carried out before extract-
ing rules.

For reducing the dimensionality of data, we rank
the attribute importance first. In this paper, a
separability-correlation measure (SCM) is proposed
for determining the importance of the original at-
tributes. The SCM is composed of the intraclass dis-



tance to interclass distance ratio and an attribute-
class correlation measure. The magnitude SCM corre-
sponding to a certain attribute gives the importance
of the attribute. An RBF classifier is used to remove
unimportant attributes using the ranking result from
SCM. Large overlaps between clusters of the same
class are allowed, which leads to a less number of hid-
den units. Then rule extraction is carried out based
on the results of DDR.

We present the SCM measure for ranking the im-
portance of attributes in Section 2. In Section 3, we
introduce how to construct an RBF neural network
classifier efficiently by allowing for large overlaps be-
tween clusters of the same class. Section 4 shows our
rule extraction algorithm. Experimental results are
shown in Section 5. Finally, we conclude the paper in
Section 6.

2 Separability-Correlation Measure

Class separability and the correlation between at-
tributes and class labels are used to measure the im-
portance of each attribute. The probability of cor-
rect classification is large, when the distances between
different classes are large. Therefore, the subset of
features which can maximize the separability between
classes is a desirable objective of feature selection.
Class separability may be measured by the intraclass
distance Sw and the interclass distance Sb [5]. The
greater Sb is and the smaller Sw is, the better the sep-
arability of the data set is. The ratio of Sw and Sb is
calculated and is used to measure the separability of
the classes: the smaller the ratio, the better the sep-
arability. If omitting attribute k1 from the data set
leads to less class separability, i.e., a greater Sw/Sb,
compared to the case where attribute k2 is removed,
attribute k1 is more important for classification of the
data set than attribute k2, and vice versa. Hence the
importance of the attributes can be ranked by com-
puting the intraclass-to-interclass distance ratio with
each attribute omitted in turn.

In addition, we propose to use the correlation Ck

between the changes in attributes and their corre-
sponding changes in class labels as another indication
of importance of attribute k in classifying the patterns.

Hence we propose a separability-correlation mea-
sure (SCM) Rk as the sum of the class separability
measure Swk/Sbk and the correlation measure Ck (k
refers to the k-th attribute), where Swk and Sbk are
intraclass and interclass distances calculated with the
k-th attribute omitted from each pattern, respectively.

The importance level of attributes is ranked

through the value of Rk. The greater the magnitude
of Rk, the more important the k-th attribute.

3 A Simplified RBF Classifier

RBF neural networks accomplish non-linear map-
ping from attributes (inputs) to class labels (outputs).
If there are M classes in the dataset, the non-linear
mapping is as follows:

ym(X) =
K∑

j=1

wmjøj(X) + wm0bm . (1)

Here X is the input pattern vector (n-dimension).
m = 1, 2, ..., M . K is the number of hidden units,
M is the number of output. wmj is the weight con-
necting the j-th hidden unit to the m-th output node.
bm is the bias, wm0 is the weight connecting the bias
and the m-th output node. øj(X) is the activation
function of the j-th hidden unit:

øj(X) = e
||X−Cj||2

2σj
2

, (2)

where Cj and σj are the center and the width for the
j-th hidden unit, respectively, and are adjusted during
learning.

In the RBF neural network, the output of a hidden
unit is based on the distance between the input vector
and the center vector of the hidden unit. The weights
connecting the hidden layer and the output layer, can
be calculated by the linear least square (LLS) method
[2], which is fast and free of local minima, in contrast
to the multilayer perceptron neural network.

There are two kinds of overlaps. One is the overlap
between clusters of different classes. In [14], it is shown
that overlapped receptive fields of different clusters
can improve the performance of the RBF classifier in
rejecting noise when tackling with noisy data. In [15]
and [10], overlapping Gaussian kernel functions are
created to map out the territory of each cluster with
a less number of Gaussians. Small overlaps between
the Gaussians for different classes are measured by the
ratio between the number of the in-class patterns and
the number of the out-class patterns in this cluster. A
pre-defined value θ is set, i.e., the ratio should be not
less than θ to guarantee a small classification error rate
for the training data set (this is θ-criterion). When
small overlaps among clusters for different classes are
permitted, small overlaps among clusters for the same
class may exist.

The other kind of overlaps is the overlap between
clusters of the same class. In this paper, by allowing



for large overlaps between clusters for the same class,
we can further reduce the number of clusters substan-
tially. This will lead to a simplified RBF neural net-
work.

Through the algorithm described in Section 2, the
importance level of each attribute is obtained. The
subset of attributes which includes k most impor-
tant attributes is input to the RBF classifier, and for
k = 1, 2, ..., N , classification error rate is calculated for
each k. For small k, classification error decreases as k
increases until all important attributes are included.
If for some k1, the classification rate for k = k1 + 1 is
greater than that for k = k1, then attributes (k1 + 1),
(k1 + 2), ..., N are considered irrelevant.

4 Rule Extraction

We explain the concept of data by rules extracted
from RBF classifiers. By training the RBF neural
network, the concept of data is memorized in the con-
struction of the RBF classifier. Since each hidden unit
of the RBF neural network is responsive to a subset of
patterns (instances), the weights connecting the hid-
den unit with output units can reflect for which output
the hidden unit serves. Our rule extraction algorithm
is directly based on the widths, centers of Gaussian
kernel functions, and weights connecting hidden units
and the output layer. Obtaining the important at-
tributes by the method stated in our previous section,
the important attributes are used as the input of RBF
neural networks.

First, we determine the corresponding output unit
which each hidden unit serves for through simplifying
the weights between hidden units and output units.
The maximum value of each row of the weight matrix
W is converted into 1, and others are converted to
be 0. Thus, the new weight matrix W1 reflects the
corresponding output which each hidden unit mainly
serves.

The suitable interval of attributes composes of the
premise parts of extracted rules. Let us assume that
the number of attributes is N . The upper limit
Upper(j, i) and the lower limit Lower(j, i) of the jth
attribute in the ith rule are initialized as:

Upper(j, i) = μi + ρi,j , (3)

Lower(j, i) = μi − ρi,j , (4)

ρi,j = ηj ∗ xiki ∗ σi . (5)

where μi is the jth item of the center of the ith kernel
function, initially, ηj = 1, σi is the width of the ith
kernel function. xiki is the corresponding element in

W1. ρi,j will be adjusted according to our iteration
steps as follows.

ηj is modified according to:

ηj = ηj + Sign ∗ 0.025. (6)

Sign has two value +1 and −1, which is determined
by the trend of change in the rule accuracy when ad-
justing. The initial Sign is +1. If the rule accuracy
becomes lower with the adjusted η, Sign is changed
to −1. Otherwise, Sign remains the same. The stop-
criterion for the iteration is a predefined rule error
rate. When adjusting the intervals to obtain high ac-
curacy, the validation set is used for determining the
direction of adjusting, which can help the extraction
rules not too fit to the training data set, and obtain
good results in the testing data set.

5 Experimental Results

Iris data set is used for testing our method. There
are 4 attributes in Iris data set. The data set is divided
into 3 parts, i.e., training, validation, and test sets.
In 150 patterns of Iris data set, 90 patterns are for
training, 30 for validation, 30 for testing. We set α =
0.1 and θ = 7 in our experiments. We set α1 = 0.8 and
we set the maximum epoch number of searching one
cluster is RCount=20. The experiment is repeated 5
times with different initial conditions and the average
results are recorded.

Our simulations show that by allowing for large
overlaps between clusters of the same class, the num-
ber of hidden units of the RBF classifier is decreased
from 5.2 to 4 on average. The classification error rate
just increase a little bit. The importance ranking or-
der of the attributes according to our SCM is: 4, 3, 1,
2 for Iris data set. The classification error rates of the
RBF classifier for different subsets of attributes in the
order of importance are calculated. As the number of
attributes used increases the validation error first de-
creases, reaches minimum when attributes 4 and 3 are
used, and then increases. Hence in the Iris data set,
attributes 1 and 2 are considered to be unimportant
for classification and are then removed. This decreases
the classification error rate from 0.0467 to 0.0333, the
number of inputs from 4 to 2, and the number of hid-
den units of the RBF neural network from 4 to 3.

The attributes left after our DDR procedure are
used as inputs to an RBF neural network. After re-
moving unimportant attributes, the accuracy of the
RBF classifier becomes better. The architecture of
the RBF neural network is simplified by DDR, and at



Table 1: Comparisons with other rule extraction algo-
rithms

comparison rule average number rule
number of premises accuracy

McGarry1 [11] 53 4 100%
McGarry2 [12] 3 4 40%
McGarry3 [13] 3 4 85%
Halgamuge [6] 5-6 - -
Huber [8] 8 - -
Our method 3 2 93.3%

“-” represents that the value is not available

the same time, DDR lead to more compact rules, i.e.,
a less number of premises in each rule.

By the rule-extraction algorithm described in Sec-
tion 3, the rule set for Iris is obtained. There are 3
rules in the rule set. There are two premises corre-
sponding to the two attributes left in each rule. The
accuracy of obtained rules is 93.3%.

In Table 1, we compare our rule extraction algo-
rithm with other rule extraction algorithms based on
RBF neural networks. It shows that our method
obtain better performance with a less number of
premises, a less number of rules, and higher accuracy.

On the other hand, many rule-extraction methods
have been explored based on the MLP. Desirable re-
sults have been obtained both in accuracy and num-
bers of rules (e.g., [3][7][9]). Compared with the rule
extraction techniques using MLP, the accuracy of the
rules extracted from the RBF neural networks is lower,
however, the training of the RBF neural network can
escape from local minima, which is very important for
large data sets. The architecture of the RBF neural
network is simpler and the training time is usually
shorter in comparison with the MLP.

6 Conclusion

In this paper, we propose a novel attribute impor-
tance ranking method called SCM in order to reduce
the computational burden for selecting a suitable at-
tribute subset. Irrelevant attributes are deleted from
the original attribute set, which lead to lower dimen-
sional inputs to the RBF classifier according to the
ranking results from SCM. Experimental results show
that the method proposed is effective in reducing the
size of data sets and reducing the structural complex-
ity of the RBF neural network. A simplified RBF

classifier is constructed by allowing for large overlaps
between clusters of the same class. Then the results
obtained are used extracting concise rules. More con-
cise rules are extracted, i.e., the number of rules is
decreased, the premises of rules are simplified and the
accuracy is desirable, after removing the unimportant
attributes in data and simplifying the architecture of
RBF neural networks.
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