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Abstract - High dimensionality of data sets is a
curse to classifiers. We propose to construct a
novel radial basis function (RBF) classifier using
class-dependent features by genetic algorithms (GA).
Since each feature may have different capabilities in
discriminating different classes, features should be
masked differently for different classes. In our novel
RBF classifier, each Gaussian kernel function of the
RBF neural network is active for only a subset of pat-
terns which are approximately of the same class. A
group of Gaussian kernel functions is generated for
each class. In our method, different feature masks
are used for different groups of Gaussian kernel func-
tions corresponding to different classes. The feature
masks are adjusted by GA. The classification accu-
racy of the RBF neural network is used as the fitness
function. Thus, the dimensionality of a data set is
reduced. Simulations show that, with irrelevant fea-
tures removed for each class, our method can lead to
significant improvements on classification accuracy.

I. INTRODUCTION

Many algorithms have been developed for data di-
mensionality reduction (DDR). In general, techniques
for DDR may be classified into two categories: class-
independent (features selected are common to all classes)
and class-dependent (different feature sets are se-
lected for different classes). In class-independent DDR
[6](8][12], all features selected are assumed to play equal
roles in discriminating each class from the others.

Class-independent features can be obtained through
genetic algorithms (GA) [2](3][5][7][13]. Each chromo-
some in the population pool represents a feature mask
[2][3](7][13]. Assume there are n features in total. n bits
are needed in a chromosome to represents the n features.
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The kth bit of a chromosome indicates the presence or
absence of the kth feature, i.e., the feature is presented if
the bit is 1, and is absent if the bit is 0. The classification
accuracy of a classifier may be used as the fitness function
in GA. Fung et al [5] proposed to use fuzzy GA (FGA)
to select class-independent features. In [2][5], the fitness
evaluator is a nearest-neighbor (NN) classifier. Chaikla
and Qi [3] also chosed a NN classifier together with mul-
tiple correlation as the fitness function of GA to select
class-independent features. Raymer et al [13] encoded
the number of NN classifiers into a chromosome together
with the features. In 7], the classification result was de-
termined by a vote of several different classifiers, i.e., the
logistic classifier (LOG), the linear discriminant classifier
(LDC) and the quadratic discriminant classifier (QDC),
etc..

Oh et al [10][11] proposed class-dependent feature
selection to improve recognition performance. Class-
dependent features were selected by considering class
separation in conjunction with the recognition rate {11].
Next, Oh et al constructed multiple MLP classifiers based
on the class-dependent features obtained. For each class,
an MLP classifier whose inputs were the features selected
for this class was trained individually. Thus, if there are
M classes in the data set, M MLP classifiers have to be
trained, which is computationally expensive.

In this paper, we propose a novel RBF classifier based
on the possibility that a feature may have different ca-
pability in discriminating different classes. For different
groups of hidden units corresponding to different classes,
different feature subsets are selected as inputs. GA is
used to search for the optimal feature masks. In other
words, we incorporate Oh et al's class-dependent feature
selection [10][11] in the RBF classifier. In contrast to Oh
et al [10]{11], only a single such RBF network, rather than
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multiple MLPs, are required for a multi-class problem.

This paper is organized as follows. The traditional
RBF classifier is introduced briefly in Section II. In
Section III, we propose a new RBF classifier with class-
dependent feature masks, which are encoded by GA. Ex-
perimental results are shown in Section IV. Finally, we
conclude the paper in Section V.

II. THE CONVENTIONAL RBF CLASSIFIER

RBF neural networks [1]{14]{15] are widely used for
function approximation, pattern classification, and so on.
In an RBF neural network, the activation of a hidden unit
is determined by the distance between the input vector
and the center vector of the hidden unit. The weights
connecting the hidden layer and the output layer can be
determined by a linear least square (LLS) method [1],
which is fast and free of local minima, in contrast to the
MLP neural network.

There are three layers in the RBF neural network, i.e.,
the input layer, the hidden layer with Gaussian activa-
tion functions, and the output layer. The architecture of
the conventional RBF neural network is shown in Fig.1.
There are M classes in the data set and M output neu-
rons. The m-th output of the network is written as fol-
lows:

K .
Um(X) = Wn;8;(X) + Wmobm - (1)

=1

Here X is the n-dimensional input pattern vector. X =
{z1,Z2, s Thy ooy T} m=1,2,..., M. K is the number
of hidden units. wy,; is the weight connecting the j-th
hidden unit to the m-th output node. b,, is the bias.
wmo 18 the weight connecting the bias in the m-th out-
put neuron. g;(X) is the activation function of the j-th
hidden unit:

||X—<=E||2
gi(X)=e ™ : 2)
where C; = {c1,¢2,..,Cky...,cn} and o; are the cen-

ter and the width for the j-th hidden unit, respectively,
which are adjusted during learning.

III. CONSTRUCTING AN NOVEL RBF
CLASSIFIER

In this section, we propose a novel RBF classifier and
describe its constructing algorithm. We observe that the
hidden neurons in an RBF network may be grouped ac-
cording to classes. That is, if most of the patterns in the
cluster represented by a hidden neuron belong to class 1,
we say that this hidden neuron belongs to the group for
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Fig. 1. Architecture of a conventional RBF neural network

class i (Fig. 2). We add a class-dependent feature mask
for each group of hidden neurons.
The m-th output of the network is as follows:

Mk

Un(X) = 303wk 05 (X) + wmobm 5 (3)

i=1 j=1

where ¢’ (X) is the activation function of the j-th hidden
unit which serves class i:

nxt-ci)?

oi(X)=e *i . (a)

Here XiA = {diz1,giza, ..., gLk -y G Tn }-
{9%,95, ... 9}, -9y} is the feature mask for class i.
gi = 0,1. o is the width for the j-th hidden unit of
class 7 and is obtained during training in the presence of
the feature masks. C} = {gic1,g5c2, -, giCk, -, ghcn}-

Finding the centers, widths and the weights connecting
hidden nodes to the output is the key to constructing and
training the RBF classifier. Both the dimensionality and
the distribution of the input patterns affect the number
of the hidden units.

The notation used is as follows. &} is the maximum ra-
dius of the receptive field of the Gaussian kernel function
for class i. &} is the standard deviation of the distances
from the patterns of class ¢ to the centroid of class ¢
[14][15][1]. @ is the percentage of in-class patterns (the
patterns belongs to the current class processed) in a clus-
ter. @ controls the nature of Gaussians [14][15]. For ex-
ample, a cluster with § = 60% (a “fat” Gaussian, there
are 60% in-class patterns in the cluster) can detect global
features in the data set that might not be detected by the
cluster with a larger 6 (a “narrow” Gaussian) [14][15], e.g.
, 0 =90%. V is the training set. « is the changing rate
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_ the hidden unit
group for class 1

Output

" the hidden unit
group for class M

Fig. 2. Architecture of a new RBF neural network. The
dashed lines connecting features with a group of hidden
units indicate that these features are not input to that
group of hidden units.

of radii of clusters. L is the training stage. Npeqs: is
the least number of patterns required for a cluster. Q; is
the number of total patterns that belong to class ¢ in the
training set. K, counts the number of trials intending to
generate a cluster. K* is the number of patterns of class
¢ left in V.

The follow is a modified algorithm based on that of
Roy et al [14][15):

1. Initializing:

a) Divide the data set into three parts, i.e., the
training data set, the validation data set, and the
test data set.

b) A binary string G with nM bits in length is
used to mask features for M classes.

¢) In order to derive the widths of the kernel
functions, &5 corresponding to class i is obtained by
calculating the standard deviation of the distance
from the patterns of class ¢ to the centroid of class
i.

d) Set class labe i=1.

C) NLeast = %Ql 0= 95% L=0. Ks = 0.
a(L) = 0.168%.

2. Forming clusters:

a) Select randomly a pattern from V' as an ini-
tial center belonging to class i. K; = Ko+ 1. If
K, > 0.5K% 6 = 0.99, Npecast = 1/2NLeast, and
K;=0.

b) L=L+1. If L > 10, go to 2(a). Else set
§(L) = 6§ — (L — 1)c and search in V to find all the
patterns in 6( L)-neighborhood of the selected center.

¢) Check two conditions. Condition 1 is
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whether the ratio between in-class patterns and the
total patterns in the cluster is greater than #. Con-
dition 2 is whether the number of patterns in the
cluster is greater than Npcqs. If condition 1 is not
met and condition 2 is met, go to 2 (b). If both
are true, a cluster is formed, and the patterns in the
cluster is removed from V. If condition 1 is met and
condition 2 is not met, or neither condition 1 or 2
are not met, continue. L = 0. Ky, = 0. Repeat 2
until there is no pattern belonging to class 7 left in
V.

3.i=1i+1. Ifi < M,V is set as the initial training
set. Go to 1 (e).

4. Calculate the center and width of each cluster: the
center is the mean pattern of all patterns in the clus-
ter and the width is the standard deviation of these
patterns.

5. Obtain weights connecting the hidden layer and the
output layer by the LLS method [1].

6. Calculate E;,. (the classification error of the train-
ing set) and E, (the classification error of the vali-
dation set). E, is used as the fitness function in GA
for evaluating each individual in the population pool
(eq.5).

We use the roulette wheel selection to select chromo-
somes in each generation. In the roulette wheel selection,
the selection probability is proportional to each chromo-
some’s fitness. Two-point crossover is used. Two points
are randomly located in each of the two parents. The two
parts of the parent chromosomes between the two pairs
of points are then exchanged to generate new offsprings.
The probability of crossover is 80%.

Mutation can prevent the fixation at some particular
loci. A locus in the parent chromosome is selected ran-
domly and the bit at the position is replaced (if the orig-
inal bit is 0, it is replaced by 1, and vice versa). Usually,
the mutation rate is relatively small to avoid too much
variation. However, at later generations, the number of
identical members increases, which leads to a stagnant
state. In order to break stagnant states to search for op-
timal results, we use a dynamic mutation rate, i.e., if the
number of identical members in a population exceeds a
certain percentage, the mutation rate is increased by a
certain amount.

Our fitness function is:

F(G)=1-E,(G) v (3)

where E,(G) is the classification error rate of the valida-
tion data set for chromosome G.
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IV. EXPERIMENTAL RESULTS

Glass and Thyroid data sets from the UCI Repository
of Machine Learning Databases [9] are used in this paper
to test our algorithm.

The GA parameters are as follows. There are 4n =
36 (n is the number of features) chromosomes for Glass
data set, and 20 chromosomes for Thyroid data set. The
initial mutation rate is 40%. If the number of identical
members in a population exceeds 25%, the mutation rate
is increased by 1%. The number of elite chromosomes,
which remain unchanged and live from one generation to
the next, is 2. The number of generations is 50.

A. Glass Data Set

Glass data set contains 214 cases. There are 9 attributes
and 6 classes in Glass data set. 114 patterns are for
training, 50 for validation, 50 for testing.

The error rates are 16.41% for training, 20.93% for val-
idation, and 23.26% for testing. For class 1, 4 features
are involved for classifying it from other classes, i.e., 4
features are used as the inputs to the hidden units of
class 1 (Table I). 7, 5, 4, 5, 3 features are used as inputs
to the hidden units of classes 2, 3, 4, 5, 6, respectively.
Thus, the average number of features used for each class
is(4+7+5+4+5+3)/6 = 28/6 = 4.7, compared
to the original 9 features. Our experimental result is

TABLE 1
FEATURE MASK FOR GLASS.

Classes | Feature masks
Class1 1001101010
Class2 1111110101
Class3 [ 110011010
Class4 | 011010100
Class5 000111011
Class 6 | 110100000

compared with other methods’ results [7] in Table IL. In
the first line of Table II, the classification result of the
LOG classifier [7] using all the features (no feature se-
lection) is shown. By the sequential backward selection
(SBS) [4][7], 6.9 class-independent features on average
are obtained for all classes. The LOG classification re-
sult [7] based on selecting class-independent features us-
ing GA is shown in the third line of Table II. There
are two versions of another algorithm involving multiple
classifiers [7], i.e., the logistic classifier (LOG), the lin-
ear discriminant classifier (LDC) and the quadratic dis-
criminant classifier (QDC), etc.. In multiple classifiers
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TABLE 11
COMPARISON WITHE OTHER METHODS FOR GLASS DATA
SET. (NA: NOT AVAILABLE).

Method Training | Testing | Feature
error error number

LOG without "

feature selection 28.14% | 39.54% | 9

SBS 27.62% 37.39% | 6.9

LOG with -

class-independent | 27.52% | 40.39% | 7.7

feature selection

Multiple classifiers

Version 1 27.62% | 39.26% | NA

Multiple classifiers

Version 2 25.35% | 34.55% | NA

Our method 16.41% | 23.26% | 4.7

(version 1) [7], GA was used for class-independent fea-
ture selection and only the features were encoded in GA.
The fitness of each chromosome was determined by a vote
of the classifiers. In multiple classifiers (version 2), the
classifier types were also encoded in GA, i.e., each indi-
vidual classifier can be chosen from the three classifiers
mentioned above. The comparison shows that a better
classification accuracy with a fewer number of features is
obtained by our method.

B. Thyroid Data Set

There are 5 attributes and 215 patterns in Thyroid data
set. 115 patterns are for training, 50 for validation, and
50 for testing.

With class-dependent features, the classification error
rates are 2.84% for training, 2.33% for validation, and
4.65% for testing. Without feature masks, the classi-
fication error rates are: 3.88% for training, 3.88% for
validation, and 4.65% for testing.

It is shown in the feature masks (Table IIT) that feature
1 does not play any role on discriminating the classes. For
class 3, feature 2 can discriminate it from other classes.
Feature 2 and 3 are used to classify class 2 from other -
classes. Feature 2, 3, 4, 5 is used for discriminate class 1
from other classes. Thus, the average number of features
used for each classis (14+2+4)/3 = 7/3 = 2.33, compared
to the original 5 features.
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TABLE III
FEATURE MASK FOR THYROID DATA SET.

Classes | Feature masks
Class 1 01111
Class 2 01100
Class 3 01000

V. CONCLUSIONS

In this paper, we have proposed a class-dependent fea-
ture selection method based on a novel RBF classifier and
GA. The feature subset is selected for each class individ-
ually based on its ability in discriminating the class with
other classes. Glass and Thyroid data sets are used to
test the algorithm. Experimental results show that the
algorithm proposed are effective in reducing the number
of feature input and improving classification accuracy si-
multaneously.

DDR is often the first step for data mining tasks. The
class-dependent feature selection results obtained above
provide a new direction for analyzing the relationships
between features and classes. The reduction in dimen-
sionality can lead to compact rules in rule extraction
task. Extracting rules based on the classification results
obtained above will be our future work.
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