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Abstract - Rule extraction is a technique for knowl-
edge discovery. Compact rules with high accuracy
are desirable. Due to the curse of irrelevant fea-
tures to classifiers, feature selection techniques are
discussed widely. We propose to extract rules based
on class-dependent features from an radial basis func-
tion (RBF) classifier by genetic algorithms (GA).
Each Gaussian kernel function of the RBF neural net-
work is active for only a subset of patterns which are
approximately of the same class. Since each feature
may have different capabilities in discriminating dif-
ferent classes, features should be masked differently
for different classes. In our method, different feature
masks are used for different groups of Gaussian ker-
nel functions corresponding to different classes. The
feature masks are adjusted by GA. The classification
accuracy of the RBF neural network is used as the
fitness function. Thus, the dimensionality of a data
set is reduced. Concise rules with high accuracy are
subsequently obtained based on the class-dependent
features. We demonstrate our approach using com-
puter simulations.

I. INTRODUCTION

Extracting rules from data sets has attracted more and
more attention in recent years. Rule extraction is an
important task of data mining. The popularity of rule
extraction is due to its ability to represent the concept
of data in linguistic words.

The amount of data available is increasing in volume
and dimensionality. There is a need for preprocessing,
such as cleaning uncompleted data and reducing the di-
mensionality of data. In most cases, there are redundant
or irrelevant attributes in data sets. Hence, it is desirable
to remove the redundant or irrelevant attributes from the
data sets, which can facilitate practical applications in
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improving speed and relieving memory constraints. Data
dimensionality reduction (DDR) is often used as one of
the first steps for data mining tasks.

Techniques for DDR may be classified into two cate-
gories: class-independent (features selected are common
to all classes) and class-dependent (different feature sets
are selected for different classes). In class-independent
DDR [1][6], all features selected are assumed to play
equal roles in discriminating each class from the others.

Genetic algorithms (GA) were used to obtain class-
independent features [3][4][5][7]{11). Each chromo-
some in the population pool represents a feature mask
[3][4][7][11]). Assume there are n features in total. n bits
are needed in a chromosome to represents the n features.
The kth bit of a chromosome indicates the presence or
absence of the kth feature, i.e., the feature is presented
if the bit is 1, and is absent if the bit is 0. The classifica-
tion accuracy of a classifier is used as the fitness function
in GA. Fung et al [5] proposed to use fuzzy GA (FGA)
to select class-independent features. In [3][5], the fitness
evaluator is a nearest-neighbor (NN) classifier. Chaikla
and Qi [4] also choose the NN classifier together with
multiple correlation as the fitness function of GA to se-
lect class-independent features. Raymer et al [11] encode
the number of NN classifiers into a chromosome together
with the features. The classification accuracy is also used
as the evaluation function. In [7], the classification result
is determined. by the vote of several different classifiers,
i.e., the logistic classifier (LOG), the linear discriminant
classifier (LDC) and the quadratic discriminant classifier
(QDC), etc.. :

Class-dependent feature selection was proposed by Oh
et al [9][10] to improve recognition performance. Class-
dependent features were selected by considering class
separation in conjunction with the recognition rate [10].
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Next, Oh et al constructed multiple MLP classifiers based
on the class-dependent features obtained. For each class,
a MLP classifier whose inputs were the features selected
for this class was trained individually. Thus, if there are
M classes in the data set, M MLP classifiers have to be
trained, which is computationally expensive.

In the present work, different feature subsets are se-
lected for different classes based on the possibility that
a feature may have different capability in discriminat-
ing different classes. For different groups of hidden units
corresponding to different classes, different feature sub-
sets are selected as inputs. GA is used to search for the
optimal feature masks. In other words, we incorporate
Oh et al's class-dependent feature selection [9][10] in the
RBF classifier. In contrast to Oh et al [9](10], only a sin-
gle such RBF network, rather than multiple MLPs, are
required for a multi-class problem.

We use the RBF neural network as a classifier. The
rule-extraction method extracts rules from the simplified
RBF classifier whose inputs are class-dependent features.
In an RBF classifier, the boundary of the receptive field
of the kernel function is a hyper-sphere. The Euclidean
distance between a pattern and the center of the clus-
ter measures the probability that a pattern belongs to a
class. Rules with hyper-rectangular decision boundaries
are extracted based on the training result of an RBF
neural network using gradient descent theory.

This paper is organized as follows. Our GA-based RBF
classifier is presented in Section II. Section III shows our
rule extraction method. Experimental results are shown
in Section IV. Finally, we conclude the paper in Section
V.

II. THE RBF CLASSIFIER

A. A Traditional RBF Classifier

RBF neural networks [2][12] are widely used for func-
tion approximation, pattern classification, and so on. In
an RBF neural network, the activation of a hidden unit
is determined by the distance between the input vector
and the center vector of the hidden unit. The weights
connecting the hidden layer and the output layer can be
determined by a linear least square (LLS) method [2],
which is fast and free of local minima, in contrast to the
MLP neural network.

There are three layers in the RBF neural network, i.e.,
the input layer, the hidden layer with Gaussian activation
functions, and the output layer. There are M classes in
the data set and M output neurons. The m-th output of
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the network is written as follows:

K :
Ym(X) =Y Wm0 (X) + Wmobm - (1)
j=1

Here X is the n-dimensional input pattern vector. X =
{z1,22,..s Ty o, Tn}. m=1,2,.., M. K is the number
of hidden units. w,; is the weight connecting the j-th
hidden unit to the m-th output node. b,, is the bias.
wWmo is the weight connecting the bias in the m-th out-
put neuron. ¢;(X) is the activation function of the j-th
hidden unit: ,

2
=yt
g;(X)=e *1 ) (2)
where C; = {c1,¢2,...,Ck,y ... Cn} and o, are the cen-

ter and the width for the j-th hidden unit, respectively,
which are adjusted during learning.

B. Architecture of a Novel RBF Classifier

We observe that the hidden neurons in an RBF net-
work may be grouped according to classes. That is, if
most of the patterns in the cluster represented by a hid-
den neuron belong to class ¢, we say that this hidden
neuron belongs to the group for class ¢ (Fig. 1). We add
a class-dependent feature mask for each group of hidden
neurons.

The m-~th output of the network is as follows:

M k;
ym(X) =¥ wi 6H(X) + wmobm (3)
i=1 j=1

where ¢§ (X) is the activation function of the j-th hidden
unit which serves class i:

nxi-c?

(X)) =e *i . (4)

Here Xi. = {9iz1, gbx2, ..., i Tk, . G5 T0 ).
{9%.95 - 9} --, g4} is the feature mask for class i.
gr = 0,1. o} is the width for the j-th hidden unit of
class i and is obtained during training in the presence of
the feature masks. C} = {gjc1,g5¢2, -, ghCks s GhCn}-

C. Training the Classifier

Finding the centers, widths and the weights connecting
hidden nodes to the output is the key to constructing and
training the RBF classifier. Both the dimensionality and
the distribution of the input patterns affect the number
of the hidden units.

The notation used is as follows. 8} is the maximum ra-
dius of the receptive field of the Gaussian kernel function
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the hidden unit
group for class 1

Output

Yyt

the hidden unit
group for class M

Fig. 1. Architecture of a new RBF neural network. The
dashed lines connecting features with a group of hidden
units indicate that these features are not input to that
group of hidden units.

for class i. &} is the standard deviation of the distances
from the patterns of class ¢ to the centroid of class i
[12][2]. @ is the percentage of in-class patterns (the pat-
terns belongs to the current class processed) in a cluster.
@ controls the nature of Gaussians [12]. For example, a
cluster with 8 = 60% (a “fat” Gaussian, there are 60%
in-class patterns in the cluster) can detect global features
in the data set that might not be detected by the clus-
ter with a larger 6 (a “narrow” Gaussian) [12], e.g. ,
0 = 90%. V is the training set. « is the changing rate
of radii of clusters. L is the training stage. Npeqst 18
the least number of patterns required for a cluster. @Q; is
the number of total patterns that belong to class i in the
training set. K counts the number of trials intending to
generate a cluster. K is the number of patterns of class
i leftin V.

Our algorithm is based on Roy et al [12]’s algorithm,
however, we have made some modifications. Compared
to Roy et al's original algorithm [12], we have made fol-
lowing changes:

1. In Step 1 (b), class-dependent features are used in-

“stead of total features [12] with the introduction of
the feature masks.

2. In Step 1 (c), 65 (maximum neighborhood radius) is
calculated as the standard deviation of class 7 since
different classes are with different feature masks eq.
4. In [12], the maximum neighborhood radius is the
maximum of the class standard deviations multiply-
ing a certain constant.

3. In Step 1 (e), Npeast is set as the least number of
patterns required for a cluster. Since the initial cen-
ter is selected randomly, we set Npeqs: in order to in-
crease the possibility generating larger-size clusters.
The NLeqs: is adjusted automatically according to
the condition of training (how many patterns of the
class concerned are left). In [12], a general number
is predefined as the minimum number of patterns
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required for forming a Gaussian kernel function.

4. In [12], six training stages were used corresponding
to 6={50%, 60%, ..., 100%}, respectively. In each
stage, @ is unchanged and all clusters of this stage
should meet the #-criterion. A classification result is
obtained for this §. The classification error rate from
a stage is compared to that in the previous stage.
Whether to continue to the next training stage is de-
termined by the comparison in the classification re-
sults (If the classification accuracy is better than the
previous stage, i.e., it is possible to obtain a higher
accuracy if increasing §. Thus, the data is trained
again using a larger 6. Else, the training is stopped).
Although a larger 8 leads to a higher accuracy in the
training data set, it may lead to poorer generaliza-
tion in the testing data set. Hence, in our algorithm
(Step 2), 6 is automatically adjusted according to
the training condition (how many patterns of the
class concerned are left). With the decreasing num-
ber of patterns, @ is decreased by a certain factor,
say 0.9 in our simulations.

From the algorithm stated above, it can be seen that if a
new class is added into the data set, there is no need to
train the entire RBF classifier. All the hidden units in the
old classifier can be maintained. The training procedure
can begin from Step 2 above. After the hidden units for
the new class are obtained, the new hidden units can be
combined with the previous hidden units and the weights
between the hidden layer and the output layer can be
calculated using the LLS method. Similarly, if some new
patterns of an existed class are added to the data set,
there is no need to train the entire RBF classifier either.
All the hidden units corresponding to other classes in the
old classifier can be maintained. The training procedure
can begin from Step 2 above to search for clusters of the
class concerned. After the hidden units for the class are
obtained, the new hidden units can be combined with
those maintained hidden units. The weights between the
hidden layer and the output layer can then be calculated
using the LLS method.

D. GA Encoding

Suppose n is the total number of the original features
and M is the number of classes. A binary string repre-
senting a possible solution in GA is shown in Fig.2. The
length of each individual is n- M bits. A chromosome G
is presented as follows:

G = {(gia "'gila s 9711)7 oo (gic, -~-9,l'c7 ) gf.)
v (M, gM . g} (5)
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Here g =0,1. k=1,2,..,.M. i =1,2,....n.

= =3
feature mask &' feature mask 8
for class 1 for class M
1234 e n 1238 e Py

feature 1,3,...,n-1 are used
for discriminating class 1
from the other dlasses

feature 1,2,...,n-3,n are used
for discriminating class M
from the other classes

Fig. 2. An encoding string presenting an exemplar solution.

We use the roulette wheel selection to select chromo-
somes in each generation. Two-point crossover is used.
Mutation can prevent the fixation at some particular loci.
A locus in the parent chromosome is selected randomly
and the bit at the position is replaced (if the original
bit is 0, it is replaced by 1, and vice versa). Usually,
the mutation rate is relatively small to avoid too much
variation. However, at later generations, the number of
identical members increases, which leads to a stagnant
state. In order to break stagnant states to search for op-
timal results, we use a dynamic mutation rate, i.e., if the
number of identical members in a population exceeds a
certain percentage, the mutation rate is increased by a
certain amount.

Our fitness:function is:

F(G)=1-E\(G) (6)

where E,(G) is the classification error rate of the valida-
tion data set for chromosome G.

III. RULE EXTRACTION

The rule extraction algorithm proposed here is based
on the widths and the centers of the Gaussian kernel func-
tions, and the weights connecting the hidden neurons to
the output layer. For each class, a subset of features
are selected in order to discriminate the class from other
classes. A group of kernel functions are generated for the
class based on the selected feature subset. Each hidden
neuron of the RBF neural network is responsive to a sub-
set of input patterns (instances). The rules extracted in
our paper are in an IF-THEN form.

The objective of tuning the rule premises is to deter-
mine the boundaries of rules so that a high rule accuracy
is obtained for the testing data set. Before starting the
tuning process, all of the premises of the rules must be
initialized. Let us assume that the number of attributes
is n. The number of rules equals to the number of hidden
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neurons in the trained RBF network. The number of the
premises of rules equals to n. The upper limit Uj; and
the lower limit Lj; of the jth premise in the ith rule are
initialized according to the trained RBF classifier as:

U](,?)=Mji+0'i ) (7)

L§~?) = Hji —0i (8)
where pj; is the jth item of the center of the ith kernel
function. o; is the width of the ith kernel function.

We introduce the following notations. Suppose 7(® is
the tuning rate at time ¢. Initially 7(®) = 1/N;, where N;
is the number of iteration steps for adjusting a premise.
Ny is set to be 20 in our experiments. E is the rule error

rate. 5E
Q=5 , )

J ani

(t) — OF
Aji = oL, It (10)

U](f ) and Lg?, the upper and lower limits at time ¢, are

tuned as follows.

Uity =u +avlp (11)
LE =L + ALY (12)
Initially, we let
AU =7© (13)
ALY = —© (14)

Subsequent AU}: ) and AL;? are calculated as follows.

( n® if Qﬁ—l) <0
—n® QU >0
aw® = AW i =0 (15)
AWS™D it QY = 0 for
, 3N consecutive
. , iterations,
where W = U, L.

The gradient information of the rule error rate is used
to determine the subsequent trend in adjusting premises,
i.e., the direction of change is always opposite to the error
gradient, so that the error decreases during the premise
adjustment, as indicated by the first two lines in eq.15.
When Q;? = 0 consecutively for %N 1 time steps, this
means that the current direction of premise adjustment is
fruitless. AWJ.(f ) changes its sign as shown in the 4th line
of eq. 15. In this situation, we also let n{t) = 1.15(t-1)
which helps to keep the progress from being trapped.
Otherwise n(*) remains unchanged.
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TABLE I
FEATURE MASK FOR THYROID DATA SET.

Classes | Feature masks
Class 1 01111
Class 2 01100
Class 3 01000

IV. THE EXPERIMENTAL RESULTS

Thyroid data set from the UCI Repository of Machine
Learning Databases 8] is used in this paper to test our
algorithm. There are 5 attributes in Thyroid data set,
i.e.,, (1) T3-resin uptake test (A percentage), (2) total
Serum thyroxin as measured by the isotopic displacement
method, (3) total serum triiodothyronine as measured
by radioimmuno assay, (4) basal thyroid-stimulating hor-
mone (TSH) as measured by radioimmuno assay, and (5)
maximal absolute difference of TSH value after injection
of 200 micro grams of thyrotropin-releasing hormone as
compared to the basal value. The 3 classes are normal,
hyper and hypo. There are 215 patterns in Thyroid data
set, 115 patterns for training, 50 for validation, and 50
for testing.

The GA parameters are as follows. In the popula-
tion pool, there are 4n = 20 (n is the number of fea-
tures) chromosomes. The initial mutation rate is 40%. If
the number of identical members in a population exceeds
25%, the mutation rate is increased by 1%. The number
of elite chromosomes, which remain unchanged and live
from one generation to the next, is 2. The generation
number is 50.

TABLE II
RULE ACCURACY FOR THYROID DATA SET.

rule accuracy | full features | class-dependent
features

training set 94.57% 94.57%

validation set | 95.35% 93.02%

testing set 90.7% 93.02%

It is shown in the feature masks (Table I) that feature
1 does not play any role on discriminating classes. Hence,
the T3-resin uptake test can be unnecessary in this type
of Thyroid diagnosis. For class 3, feature 2 can discrimi-
nate class 3 from other classes. Feature 2 and 3 are used
to classify class 2 from other classes. Feature 2, 3, 4, 5 is
used to discriminate class 1 from other classes.

Two rules are extracted for Thyroid data set. The rule
accuracy (in Table II) is: 94.57% for training data set,

0-7803-7282-4/02/$10.00 ©2002 IEEE

93.02% for validation data set, and 93.02% for testing
data set. The accuracy in testing data set for 3 classes
are: 97.67% for class 1, 100.0% for class 2, and 95.35%
for class 3. With full features as inputs, 3 rules are ob-
tained, and the rule accuracy in testing data set for 3 data
subsets are: 94.57% for training data set, 95.35% for val-
idation set, and 90.7% for testing set. Thus, higher rule
accuracy and more concise rules are obtained when using
class-dependent features.

V. CONCLUSIONS

In this paper, we have proposed a rule extraction
method from a novel RBF classifier based on class-
dependent features. The discriminatory power of each
feature for discriminating classes is considered for each
class. Different feature subsets are selected for different
classes individually based on its ability in discriminating
the class with other classes, which show the relationships
between the feature subset and the class concerned. The
class-dependent feature selection results obtained above
provide a new direction for analyzing the relationships
between features and classes. The reduction in dimen-
sionality can lead to compact rules in rule extraction
task. Thyroid data set is used to test the algorithm.
Experimental results show that the algorithm proposed
are effective in reducing the number of feature input and
leads to compact and accurate rules simultaneously.
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