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A dynamically-constructed fuzzy neural controller for direct model
reference adaptive control of multi-input-multi-output nonlinear

processes

Y. Frayman, L. Wang

Abstract Conventional industrial control systems are in
majority based on the single-input-single-output design
principle with linearized models of the processes. How-
ever, most industrial processes are nonlinear and multi-
variable with strong mutual interactions between process
variables that often results in large robustness margins,
and in some cases, extremely poor performance of the
controller. To improve control accuracy and robustness to
disturbances and noise, new design strategies are neces-
sary to overcome problems caused by nonlinearity and
mutual interactions. We propose to use a dynamically-
constructed, feedback fuzzy neural controller (DCF-FNC)
from the input-output data of the process and a reference
model, for direct model reference adaptive control
(MRAC) to deal with such problems. The effectiveness of
our approach is demonstrated by simulation results on a
real-world example of cold mill thickness control and is
compared with the performances of the conventional PID
controller and the cascade correlation neural network
(CCN). Exploiting the advantage of intelligent adaptive
control, both the CCN and our DCF-FNC significantly
increases the control precision and robustness, compared
to the linear PID controller, with our DCF-FNC giving the
best results in terms of both accuracy and compactness of
the controller, as well as being less computationally
intensive than the CCN. We argue that our DCF-FNC
feedback controller with both structure and parameter
learning can provide a computationally efficient solution
to control of many real-world multivariable nonlinear
processes in presence of disturbances and noise.

Keywords Feedback fuzzy neural controller, Dynamic
controller structure, Direct MRAC, Cold mill thickness
control

1

Introduction

Industrial processes are often multivariable and have
strongly nonlinear and time varying behavior. There also
exist strong mutual interactions between process variables.
Conventional control of industrial processes usually uses
simple linear or linearized models to approximate the pro-
cesses. For multi-input-multi-output (MIMO) processes it is
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normally very difficult to derive accurate models, due to
complex nonlinear relationships among variables, time
dependent changes in process dynamics, and model
uncertainties when dealing with some physical phenomena.
The severe nonlinearity and complexity of the processes
thus result in large robustness margins, and in some cases,
extremely poor performance of the controller. It is therefore
necessary to develop solid control methodologies that are
capable of coping with both nonlinearities and interactions,
as well as time varying processes under the strong influence
of disturbances and noise. In addition, nonlinear control
schemes that employ more realistic and more complex
descriptions for nonlinear processes require process models
in the form of nonlinear differential equations. This limits
its industrial applications, since such first principles models
are not readily available in industrial practice due to a
chronic lack of detailed and extensive process knowledge
required for the development of these models.

We are especially interested in control of ill-defined,
nonlinear, time varying, MIMO processes in the presence
of process disturbances and measurement noise, such as
the cold rolling mill, with a minimum amount of human
intervention. Therefore, it is desirable to integrate an in-
telligent component to increase the flexibility of the con-
trol system, e.g., to be able to extract relations from the
process, to change relations to improve control precision,
to reason and to learn. As we shall show, a direct adaptive
intelligent controller using process input-output data with
both structural and parameter tuning, such as the dy-
namically-constructed, feedback fuzzy neural controller
(DCF-ENC) discussed in the present paper, would fulfill
the above objectives.

Most of the existing research in neural or fuzzy neural
control has been concentrated on indirect control
schemes, where the neural network or the fuzzy neural
network is used to identify the process, with an open-loop
mode of operation and static feedforward networks, and a
controller is subsequently synthesized from this model [4,
20, 23, 28, 34, 35, 43]. We thus follow a different approach
of direct model reference adaptive control (MRAC) [2]
where a fuzzy neural network (DCF-FNC) is the controller
and no models of the process are required (some of the
present work has been briefly reported in [14, 15]).

In practical control applications it is necessary to use
feedback controllers to deal with temporal changes of
process parameters. In real-world process control the
ability of the controller to adapt to process changes is vital.
In this work we use a feedback controller to deal with
temporal changes of process parameters.



Our DCF-ENC requires two types of tuning: structural
tuning and parameter tuning. Structural tuning concerns
with the structure of the controller: the number of input-
output variables, partition of each input variable universe
of discourse (the number of membership functions), the
number of hidden (rule) nodes, and the logical operation
to compose hidden (rule) nodes. Parameter tuning con-
cerns with adjustments of the position and the shape of
membership functions (fuzzy weights). Other existing
feedback fuzzy neural approaches (e.g., [18, 26]) concen-
trated on parameter tuning, selecting the structure on a
trial-and-error basis. However, there are no simple ways to
determine in advance the minimal size of the partition of
the input’s universe of discourse or the minimal size of the
hidden (rule) layer necessary to achieve the desired per-
formance. This type of structure selection may require in-
depth knowledge about the underlying nonlinear process
which is seldom available [40]. Another problem with a
trial-and-error approach for structure selection [3, 18, 24,
26, 27, 36, 41] is that it increases the danger of over-pa-
rameterizing the network, which may lead to fitting noise
into the network, and consequently to poor generalization
ability [42].

Thus, to use a fuzzy neural controller (FNC) for
practical nonlinear processes, one needs to dynamically
determine its structure, i.e., to find the smallest network
structure capable of achieving an optimal performance.
Although some authors (e.g., [26]) claimed automatic
construction of feedback FNCs, in reality, they used a
predefined partition of the input university of discourse
(predefined number of membership functions). This
resulted in completely predefined structure of the FNC.
Consequent FNC learning does not affect this predefined
structure of the network. There exist some self-con-
structing FNCs (e.g., [28, 33]). However the use of two-
stage sequential learning process (one for structure de-
termination and another for control) limits their industrial
applications as the controller will not be operational
during the structure learning. In addition, in [28] learning
is done from inputs and desired outputs of the controller.
The desired outputs of the controller are not available in
advance, that makes learning from the inputs and outputs
of the controller impractical.

Similarly with neural networks, there are no simple ways
to determine in advance the minimal number of hidden
layers and the minimal size of each hidden layer necessary
to achieve a desired performance. It is not uncommon to
consider many architectures to determine the appropriate
one. In order to make an multilayer perceptron (MLP)
useful for real-time control, the network architecture has
to be determined dynamically. There are several learning
algorithms that construct the architecture during learning
[1, 10, 16, 30, 31]. One particular self-constructing
algorithm, the cascade correlation network (CCN) [10],
was selected for comparisons with our DCF-FNC.

A direct MRAC based on our DCF-FNC offers a method
for automatic discovery of an efficient controller. As we
will show, such an approach is able to achieve good
robustness in time varying environments through
continuous adaptation. The learning of our DCF-FNC is
different from the learning commonly used in neural

control in that our DCF-ENC controller learns from a

direct evaluation of accuracy with respect to the outputs of
the process rather than from the inputs and desired outputs
of the controller as e.g. in [28]. An important feature of the
feedback structure of our DCF-FNC is that a convergence
to a stable solution is guaranteed, as there is no feedback
path between controller outputs and controller inputs [42].

The overall DCF-ENC is a global nonlinear function
approximator which is linear in parameters with each
combination of input node, rule node and output node
acting as a local linear approximator. Each controller input
is associated with corresponding fuzzy sets. Through
logical combinations of these fuzzy inputs, the controller
input space is partitioned into several fuzzy regions. A
local controller is used within each region. The global
controller output is obtained through smooth interpola-
tions of the outputs of the local controllers. A major
advantage of approximators that are linear in parameters
is that for squared types of error functions, as the one we
use, there is a unique global minimum [12, 13].

The local learning of our DCF-FNC is much less com-
putationally intensive and much faster compared to global
learning employed by standard feedforward neural net-
works [42], since in our FNN weight adaptation is done
only for the part of the network (local network) that
corresponds to a current data pair, whereas in a global
network, such as the multilayer perceptron with back-
error-propagation learning, the weight adaptation is done
for the whole network.

The present paper is structured as follows. Section 2
describes our DCF-FNG, i.e., its learning algorithm and the
overall control system structure. Computer simulations of
our DCF-ENC on a real-world problem of thickness con-
trol in a cold rolling mill, together with comparisons with
the standard PID controller and the CCN, are shown in
Sect. 3. Section 4 summarizes the results in this paper.

2

DCF-FNC for direct MRAC of MIMO nonlinear processes

A general MIMO nonlinear process can be represented by
the following

X(t+1) = fIx(e), 4(t),d(1)] (1)
y(t) = gx(t), V(t)] . (2)
where ¥ = (x1,x,,...,%,) is the process inputs,
i = (ug,uy,...,uy) are the control signals (the manipu-
lated variables), d = (d1,ds,...,dp) are disturbance
inputs, ¥ = (31,2, - - -, ¥m) are the process outputs,
V= (1,2, - - - ,jm) are the measurement noises, and ¢ is the
sampling time. Here n, m, and p are the dimensions of
corresponding vectors. Given that the vector maps f and g
are unknown, a DCF-FNC can be used to control the
process with the only assumption that the inputs and the
corresponding outputs of the process are measurable.

A reference model is used to designate the desired
performance. The desired output response ¥, is
obtained from the output of the reference model subject
to the same input ¥, disturbance signal d, and
measurement noise 7i as the process under control.
The parameters of the model are determined by the
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desired performance in terms of standard control
objectives such as overshoot, settling time, and steady-
state error.

The learning algorithm is designed to obtain the correct
control signals (manipulated variables) u; (I=1,2,...,m)
corresponding to the desired process outputs yg. The
learning error ¢, defined as the difference between the
desired process responses y, and the measured process
outputs y;, is used as a learning criterion (squared error
function).

g =iy —ya) - (3)

IF Xl(t)
and yi(t—1)
and yi(t—c)

THEN u,(t) = w!

The learning error ¢ asymptotically approaches zero or a
pre-specified small positive value as the iteration number k
increases.

llew(t)|| — 0 or |lew(t)|| <e, t€[0,T] as k — oo
(4)

where || - || is the norm.

The structure of our DCF-FNC is shown in Fig. 1. The
controller has an input layer, a rule layer, and an output
layer.

u

The input nodes represent input variables consisting of
the current controller inputs (process inputs) and the
previous outputs of the process (rather than the network).
This feedback structure provides the possibility to include
temporal information. The feedback also speeds up the
convergence of the controller during learning.

Each input node is connected to all rule nodes through
membership functions (fuzzy weights). We use piecewise-
linear triangular membership functions. This type of
membership functions is simple to implement and is
computationally efficient. The leftmost and rightmost
membership functions are shouldered.

Rule node i represents fuzzy rule (i =1,2,...,r), r
being the number of rules (rule nodes):

is AL and .- x,(f) is AL

is A;ll and -+ y,(t—1) is A)’.,m1 (5)
is A, and - yu(t—c) is A
D () =W

where w} is the weight connecting rule node i and output
node 1. A; (@ =X1,--,%n, Y11, - - - » Yme) is the membership
function of the antecedent part of rule node i for input
node g, and z (z=1,2,...,¢) is the time delay. Each rule
node is connected to all input nodes and output nodes for
this rule, and these connections are adaptive during
learning. The output of rule node i, i.e., the membership

Fig. 1. The structure of our dynamically-constructed, feedback
fuzzy neural controller (DCF-ENC)




value y; of the premise of the ith rule, is calculated as a
fuzzy AND using the product operator

p= AL (x) AL (%) - AL ((t—1)) -
X AL (ym(t—=1)) - AL (i(t—¢))--
x Al (ymlt—0)) . (6)

u; indicates the degree to which the compound antecedent
of the rule is satisfied. The use of the product operator for
fuzzy AND produces a smoother control surface, in
comparison with the commonly used fuzzy min operator
[3, 27-29, 36].

In the output layer each node receives inputs from all
rule nodes connected to this output node and produces the
actual output of the DCF-FNC. Output u; of the DCF-FNC
is obtained using the weighted average

_Ziﬂiwf
a il ?)

The use of a weighted average (following simplified fuzzy
inference [38, 39]) allows us to avoid problems with the
commonly used center-of-area (COA) defuzzification that
can produce unpredictable results [27-29].

A block diagram of the overall DCF-FNC control system
is presented in Fig. 2.

The DCF-FNC structure generation and parameter
tuning algorithms are as follows. We generate the training
input-output data for the selected reference model. We
need to specify the allowable error threshold &. We also
need to specify the maximum number of rule nodes r as an
alternative stopping criteria to prevent the controller from
growing exponentially if the specified accuracy target is
unachievable.

We start with the number of input nodes equal to the
sum of the number of input variables and the number of
output variables multiplied by the number of delays
(n 4 ¢ x m), and the number of output nodes equal to the
number of output variables (m).

Initially we add two equally spaced, fully overlapping,
and shouldered input membership functions along the
operating range (universe of discourse) of each input
variable. In such a way these membership functions satisfy
e-completeness, which means that for a given value of x of

=~ Reference model

DCR-FNN

U

yd

u ‘ Controlled y

process -

controller

Fig. 2. A block diagram of the overall DCF-FNC control system

one of the inputs in the operating range, we can always
find a linguistic label A such that the membership value
Uy (x) > e If the e-completeness is not satisfied, there may
be no rule applicable for a new data input. The initial rule
layer is created using Eq. (5).

The controller is trained using the following learning
rules

681

wik+1) = wi(k) = n =
I

(8)

for adaptation of the weights between the rule layer and
the output layer, and

681
0A]

1 1
Aq(k+1) :Aq(k)—n 9)
for adaptation of membership functions (fuzzy weights)
between the input layer and the rule layer. In Egs. (8) and
(9), n is the learning rate. We let the learning rate # vary to
expedite convergence and to improve learning accuracy.
We start with a relatively large learning rate to enhance the
learning speed. Whenever actual error changes its sign,
the learning rate is reduced according to the following
iterative formula

(10)

Mnew = Tclold »

where 7, is a coefficient in the range (0, 1).

If the degree of overlapping of membership functions is
greater than a pre-specified threshold (e.g. 0.9), we com-
bine those membership functions. We use the following
fuzzy similarity measure [6]

M(A; N Ay)

E(A Ay) = ——L 2]
(41, 42) M(A;UA4y)

(11)
where N and U denote the intersection and the union of
two fuzzy sets A; and A,, respectively, and E(A;,A,) is a
degree of A} = A,. M(-) is the size of a fuzzy set, and

0 < E(A;,A;) < 1. We can thus reduce the size of the rule
base, which is necessary in order to protect the controller
from the “curse of dimensionality”. Combining the
membership functions is done to eliminate the underper-
forming membership functions, and to replace them with
new ones which are likely to perform better.

If the accuracy of the DCF-FNC is satisfactory, the al-
gorithm stops. Otherwise, if the number of rule nodes is
less than the specified maximum, we add a new rule node
together with its fuzzy weight (membership function) at
the point of the maximum process output error. Fuzzy
weight (membership function) is added for all inputs. One
vertex of this membership function is placed at the point
of the maximum process output error and has member-
ship value unity; the other two vertices lie at the centers of
the two neighboring regions, respectively, and have
membership values zero. In such a way we are able to
reduce the error efficiently. By firstly eliminating the
errors whose deviation from the target values is the
greatest, we can speed up the convergence of the controller
substantially. Next, weights are adapted and the process
is repeated until either we obtained a satisfactory perfor-
mance, or the maximum pre-specified size of the con-
troller (number of rule nodes) is exceeded.
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3

Computer simulations

In this sections, we evaluate our DCF-FNC’s ability to track
reference signals and robustness to process disturbances
and measurement noise by numerical simulations on

a real-world example of cold mill thickness control. We
then compare the results with the performances of the
conventional PID controller and the CCN for the same
problem.

3.1

Problem description

During rolling of metals, especially the final cold rolling of
sheet materials, variations in gauge (thickness) along the

length of the material must be controlled within very tight
tolerances. Fast-acting hydraulic systems with a bandwidth
of a few hundreds rad/sec are commonly used to achieve

such tolerances.

In a single-stand reversing strip mill (Fig. 3), the in-
coming strip is supplied from a pay-off reel at one side of
the mill, reduced in thickness as it is passed between the
mill work rolls, and recoiled by a tension reel at the other
side of the mill. The roll gap is then reduced, and the
process is repeated in the reverse direction. The process
continues until the outgoing strip is of the desired final
thickness. The thickness of the rolled strip is predomi-
nantly determined by the gap between the work rolls, al-
though there are other contributing parameters, such as
the tension in the strip, hardness variations in incoming

Mill Stand
Load Cell — Backup Roll
=

Work Roll

(driven) _ Thickness gauge
Incoming o )
stri utgoing

P ~N Q = strip

N

Hydraulic Cylinder

Tension reel
Pay-off reel

Fig. 3. A single-stand reversing strip mill

materials, and hardening of the material during rolling.
The roll gap is initially set by electrical screw-down drives.
Once the strip is threaded, changes to the roll gap are done
by extending/contracting hydraulic cylinders. Automatic
gauge control (AGC) for cylinder control is used in two
modes, pressure (load) control or position control.
Figure 4 [7] shows a typical arrangement of a control loop
for cylinder position. For pressure control, position
transducers are replaced by pressure transducers.

The cylinder position reference signal will have in
practice contributions from several other control loops not
shown in Fig. 4. For example, the outgoing strip thickness
will be measured and any deviation from the desired value
requires reduction of the reference signal for cylinder
position. However, for physical reasons, it is impossible to
measure the outgoing thickness until some distance
downstream of the roll gap. This introduces a transport
lag, which severely degrades the gauge performance when
compensating for short-duration errors. In high perfor-
mance mills, the incoming thickness at the roll gap is also
measured and used in a feedforward control loop, so that
the cylinders are adjusted in line with variations in the roll
gap. Another common disturbance to the operation of the
position control loop is the roll eccentricity, arising from
imperfect roll grinding and roll wear.

Improvements in thickness and corresponding gap
position in cold rolling mills have been motivated by the
demand for increasing thickness accuracy. Conventional
thickness control systems are based on the single-input-
single-output design principle. Until recently, because of
the fast dynamics of hydraulic AGC loops, control was
implemented using standard PI or PID controllers. The
rolling process, however, is a typical multivariable system
with strong mutual interactions between the strip thick-
ness, the roll gap position, the rolling force, and the strip
hardness. Consequently, a new design strategy is necessary
to overcome the problem of mutual interactions and to
improve thickness accuracy. As the steel industry requires
a better product quality with reduced production costs,

a viable scheme for thickness control is of substantial
interest to the industry. Considerable industrial research
effort [7, 19, 25, 32, 37] has been devoted to finding the
best possible solution.

The presence of the computer in AGC loops enables us
to investigate the use of intelligent control methods, such
as fuzzy neural networks. We propose to use our DCF-FNC
controller with the process input-output data and a ref-
erence model for direct MRAC.

( N Mill stand
of

Cylinder  position error Servo valve current

Oil VolumeAF\T .
flow ) Cylinder top plate

Position

position \
reference + N | \ oil
O Controller Servo valve

transducer

Cylinder

Measured cylinder position

Fig. 4. Automatic gauge control (AGC)
gap position loop



3.2

Simulation model of a cold rolling mill

In our simulation studies we have used an AGC position
control servo valve and capsule model (Fig. 5) developed
from the physical insight of the process [7] to replace the
servo valve and capsule in Fig. 4 (the position transducer
is assumed to have negligible dynamics). Although the
main emphasis is on the gap position control, the other
parts of the mill need to be taken into account (such as the
force control loop), as their disturbances and noise affect
the performance of the position control. This results in a
complete model representation of the combined mill
position control, disturbances and noise (Fig. 6) [19]. In
Fig. 6, G represents a hydraulic roll-gap model for closed-
loop position control of Fig. 5. G, is an eccentricity
disturbance model:

Ge = 852.224/((s* + 0.0314s + 985.96)

X (s* 4+ 0.0294s + 864.36)) | (12)

and Gy, is an input thickness and hardness disturbance
model:

Gp = 0.333/(s + 0.333) . (13)

Experimental testing [19] verified the use of an eccentricity
model comprising two lightly damped oscillators driven by
zero-mean white noise with covariance E{o(t)w (1)} = x2,
where x; = 0.00012.

As the physical data for hardness variation in cold
rolled strip mills is very expensive, we used a first order lag
driven by zero-mean white noise [19] with covariance
E{&(t)&(r)} = x30(t — 1), where x; = 0.00007 and 4 is the
Kronecker delta function.

The disturbances and noise were applied concurrently
to represent a real situation when the disturbances and
noise in the rolling mill are present at the same time.

To generate roll force and gauge variations a small
change model is used [19]. There gauge h(t) satisfies:

MM 1
h(t) = > Js(t 14
O = o O T (14)
where My, = 1.039 x 10° N/m and M, = 9.81 x 108 N/m
are the mill and the strip moduli, respectively, and s(¢) is
the roll gap setting.

Thus the measured roll force z(¢) is:

52(t) = M (Sh(t) — s(t)) + n(t)

(15)

where n(t) represents measurement noise with covariance
E{n(t)n(z)} = x%5(t — 1), where x3 = 1000.

The thickness control in a cold rolling mill requires the
output gauge to be regulated in the presence of distur-
bances using the measured roll gap position and the roll
force. Here we have an inferential control problem where it
is not the measured variables that are controlled, but the
measured variables are used to achieve control of another
system variable - the strip gauge (thickness).

33

Simulation results

We used as a reference model Butterworth’s [2] charac-
teristic equation for the 5th order system

E(s) = s° + 3.24w,s* + 5.2407s°
32 4 5
+ 5.24w;,s" + 3.24w,s + o], (16)

where w, is a natural frequency of the system w, =

200 rad/s. This form of characteristic equation gives us a
damping ratio ¢ = 0.71, and the settling time can be
determined through approximate relationship t, ~ 4/Ewy,.
The delay time 4 can also be approximated from the
following relationship g4 ~ (1 + 0.7¢)/w,. Consequently,
the number of delays in Eq. (5) ¢ = 2. A 4Hz square wave
with the amplitude of 10 um as in [7] (Fig. 7) applied to
cylinder position reference was used as a test signal.

We used the input-output data generated using above
reference model for training and testing of our DCF-FNC.
We have generated 1000 input-output data pairs using
fifth order Runge-Kutta integrator [2] with a sampling
time ¢ = 0.005 s normalized in the range [—1, 1]. The DCF-
FNC was trained with on-line learning. We used first 500
samples for training, the other 500 for validation of con-

o Gauge
‘ — ‘ Input gauge
E.ccentnuty | G [= and hardness
disturbance Ge J\ Strip gain
: M = ' Measurement
‘ noise
i 8s
— G . Mm
Position change . . Force
Roll gap (gap reduction) ~ Mill spring

position control

Fig. 6. An overall single-stand model for the cold rolling mill

Cylinder position
Servo valve Oil volume Cylinder Piston Kp =
current flow rate pressure  force
vl .2 )
S D Ryt |
u(t) $24 2o s+ 032 + . vs + ms+d | s S0
Cylinder velocity
Lo

Fig. 5. Servo valve and cylinder model of a position loop. Here
s = dx/dt, w, = 120 rad/s is the servo valve natural frequency,

{ = 1.1 is the valve damping ratio, K; = 25 m’/(sA) is the flow
gain, b = 1.4 x 10° N/m? is the oil compressibility, a = 0.58 m? is

the capsule cross-sectional area, v = 0.0232 m® is the capsule
volume, m = 1 x 10° kg is the mass of the mill,

K, = 4.5 x 10° N/m is the mill housing stiffness, and d = 5 x 10°
is a damping term
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troller’s ability to generalize, and the whole data set for
final testing of the resulted controller. For comparison the
same data was used with a CCN with the quickpropagation

1:5 T T T T

05 1 .

Roll gap position (normalized)
o

-15 I 1 I I
0 200 400 600 800
Time (samples)

1000

Fig. 7. The desired square wave reference signal (sampling time
t = 0.005 s in Figs. 7-11)

learning algorithm [9, 44] (learning rate # = 0.005, maxi-
mum growth parameter u = 1.75, weight decay term

y = 0.0001, maximum tolerated difference between a
teaching value and an output dp,x = 0.1). In addition, two
PID controllers was used for the same process (one for the
position loop, another for the force loop). The parameters
of PID controllers, i.e., gain K, = 15.5, integral time
constant 7 = 1.6, and derivative time constant tp = 2,
were selected according to the industry standard
Ziegler-Nichols’ method [2].

Simulation results are presented in Figs. 8-11. Figure 8
shows the uncontrolled time response (root mean squared
error (RMSE) = 0.1724 for the position and 0.1232 for the
rolling force). While reducing the deviations due to dis-
turbances and noise of the position of roll gap and the
rolling force to some extend, the PID controller showed
rather poor performance (RMSE = 0.0897 for the position
and 0.0787 for the rolling force in Fig. 9). The reasons for
the poor performance of the conventional “optimal” PID
controller may be attributed to the high non-stationarity
and/or the coupling of the rolling process. Fixed PID
controllers are thus not able to capture the underlying

o

1.5 T T T T

Roll gap position (normalized)

a 1.5 T T T T
g op L M S A
=
E 05 -
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g o
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& -y M ) IRt LL Y U 7l V]

-1.5 . . L :

0 200 400 600 800 1000
Time (samples)

b 15 T T T T

0.5 n .
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-1-UIFU-\_,-J—L~*LJF—”-U—-

_ 1 .5 1 1 1 L
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Fig. 8a, b. The time response for uncontrolled a roll gap position
(root mean squared error (RMSE) = 0.1724) and b rolling force
(RMSE = 0.1232)
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Fig. 9a, b. The time response for a the roll gap position with the
PID controller (RMSE = 0.0897) and b the rolling force
(RMSE = 0.0787)
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Fig. 10a, b. The best performance of the CCN for a the roll gap
position (RMSE = 0.0312) and b the rolling force (RMSE =

0.0518) after the data normalization. The CCN almost always fails
to learn or leads to poor performance without such normalization

process behavior. The performance of the CCN is much
better, although still not completely satisfactory

(RMSE = 0.0312 for the position and 0.0518 for the rolling
force in Fig. 10). The response of the CCN-controlled
rolling force becomes significantly worse compared to that
of the position, which shows that the CCN controller is not
able to keep up with the fast changes in the process
behavior. In contrast, our DCEF-FNC controller is able to
produce significantly better results compared to both the
PID controller and the CCN (RMSE = 0.0285 for the po-
sition and 0.0127 for the rolling force in Fig. 11). If we take
into account that disturbances are in the force control loop
(Fig. 6) we notice that out DCF-FNC produces a signifi-
cantly tighter control of disturbances compared to the
CCN (Figs. 10b and 11b). As both the roll gap position and
the rolling force errors contribute to the strip thickness
error, we can conclude that control by the DCF-ENC is
much better compared to control by the CCN. Both the
DCF-ENC and the CCN produce much better control
compared to the PID controller, which indicates a distinct
advantage of nonlinear control over linear control in case
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Fig. 11a, b. The time response with our DCF-FNC controller for
a the roll gap position (RMSE = 0.0285) and b the rolling force
(RMSE = 0.0127). The DCF-FNC leads to a very similar perfor-
mances with or without data normalization, in contrast to CCN

of a nonlinear industrial process. Apart from giving better
accuracy than the CCN does, our DCF-ENC has a much
smaller size (24 hidden nodes) in comparison with the
CCN (37 nodes).

For the CCN to perform adequately, all input and out-
puts variable have to be strictly normalized within [—1, 1].
Failure to do so will result either in a poor network per-
formance, or inability to learn at all. This could possess a
problem with application of CCN to a real process, as the
process variables are usually of a very different range and
variance. In contrast, the DCF-FNC is much less sensitive
to normalization of the variables due to the use of fuzzy
logic. To deal with the problem termed by Fahlman [10] as
the moving target problem, each hidden node in the CCN is
frozen after installation into the network. Although this
feature prevents the network from unlearning (forgetting)
the old information in order to allow the network to follow
well several different targets as in our case, this is not
always beneficial in real-world situation, especially with
time-varying processes as it limits the network’s ability to
adapt to changes. Freezing hidden nodes in the CCN can
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be viewed as equivalent to a fuzzy neural network with a
fixed grid partition, in contrast to a variable grid partition
employed by the DCF-FNC. Furthermore, the deep struc-
ture of the CCN can also result in practical problems, as
the speed of signal propagation through the network may
be too slow to keep up the process changes for a fast plant,
especially if the resulting network size is relatively large.
These may be the reasons why the CCN is unable to
achieve the same performance as our DCF-ENC.

Both control accuracy and computational efficiency
signify that direct MRAC based on our DCF-ENC with
both structure and parameters tuning can lead to marked
improvements in control of industrial processes in the
presence of process disturbances and measurement
noise.

4

Conclusion

In this work we presented our dynamically-constructed,
feedback fuzzy neural controller (DCF-FNC) for direct
model reference adaptive control (MRAC). The effective-
ness of our approach was demonstrated by simulation
results on a real-world example of thickness control in
cold-rolling mills and was compared with the perfor-
mances of the conventional PID controller and the cascade
correlation neural network (CCN). Both the CCN and our
DCEF-FNC significantly increase the control precision and
robustness compared to the linear PID controller, with our
DCEF-FNC giving the best result in terms of both accuracy
and the compactness of the controller, as well as being less
computationally intensive than the CCN. We argue that
our DCF-ENC controller with both structure and parame-
ter learning can provide a computationally efficient solu-
tion to control of many real-world nonlinear processes in
the presence of process disturbances and measurement
noise.
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