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Abstract

Based on the model of Higgins and Goodman, we describe a dynamically generated fuzzy neural network (DGFNN) approach to

control, from input–output data, using on-line learning. The DGFNN is complete with the following powerful features drawn or

modified from the existing literature: (1) a small FNN is created from scratch—there is no need to specify initial network

architecture, initial membership functions, or initial weights, (2) fuzzy rules are constantly combined and pruned to minimize the size

of the network while maintaining accuracy, irrelevant inputs are detected and deleted; and (3) membership functions and network

weights are trained with a backpropagation-type algorithm. We apply the DGFNN controller to a real-world application of

controlling the torsional vibration of tandem cold-rolling mill spindles with a simulated plant. The results of the DGFNN controller

are compared with the performances of a conventional proportional-integral controller and a neural controller using recurrent

cascade correlation with quickpropagation through time. We show that while both neural approaches increase the control precision

and robustness, the DGFNN controller gives the best results for reducing the speed deviation and suppressing the torsional

vibration of the spindles, as well as is more computationally efficient.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Complex industrial control problems are increasingly
driving research and development of new intelligent
control methods based on soft computing, such as fuzzy
logic inference systems, crisp (nonfuzzy) neural net-
works, genetic algorithms, as well as various combina-
tions of these techniques. Both fuzzy logic inference
systems and multilayer perceptron neural networks
(MLP) are universal approximators (Hornik et al.,
1989; Cybenko, 1989; Funahashi and Nakamura,
1993; Wang and Mendel, 1992). This property makes
them suitable for control. While these intelligent
techniques have produced encouraging results, in
particular control tasks (e.g., Hunt et al., 1992;
Narendra and Pathasarathy, 1990; Narendra and
Mukhopadhyay, 1994; Neumerkel et al., 1994; Sbar-
baro-Hofer et al., 1993; Yen et al., 1995; Driankov et al.,
1995; Jin et al., 1995), certain complex control problems

cannot be solved by a single technique alone (Brown and
Harris, 1994; Harris et al., 1993).
From the implementation point of view, it is

undesirable to construct a controller by trail and error,
which is common in fuzzy control, because the size of
the rule matrix becomes prohibitively large for higher-
order systems. Thus, the necessity for a dynamically
created controller, based only on input–output measure-
ments of plant variables, becomes vital.
The situation is similar with crisp neural networks: the

architecture of an MLP, i.e., the number of hidden
layers and the number of hidden neurons in each layer,
is often selected on a trial-and-error basis. The network
weights are often initialized to small random values.
Several authors proposed learning algorithms that
construct the architecture during learning for MLPs
(Ash, 1989; Fahlman and Lebiere, 1990; Frean, 1990;
Mezard and Nadal, 1989; Nadal, 1989; Giles et al.,
1995), while Fahlman proposed a cascade correlation
algorithm (Fahlman and Lebiere, 1990), as well as a
recurrent cascade correlation (RCC) algorithm (Fahl-
man, 1991). These networks have long training times
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and are therefore not well-suited for real-time control in
most practical situations.
There have been extensive research activities on fuzzy

neural networks (FNNs); however, the majority of them
are not self-constructing (e.g., Berenji and Khedkar,
1993; Horikawa et al., 1992; Jang, 1993; Kosko, 1991;
Nauck and Kruse, 1993; Wang, 1994). Usage of bell-
shaped membership functions is computationally in-
tensive (Horikawa et al., 1992; Jang, 1993; Lin and Lee,
1994; Nie and Linkens, 1993, 1995; Wang, 1994; Juang
and Lin, 1999). The use of fully overlapping triangular
membership functions (e.g., Higgins and Goodman,
1994) can greatly reduce computational cost, which we
shall use in this paper.
Higgins and Goodman (1994) proposed an algorithm

to create an FNN according to input data. New
membership functions are added at the point of
maximum error on an as-needed basis, which will be
adopted in the present paper. They then used an
information-theoretic approach to simplify the rules.
In contrast, we will combine rules using a computation-
ally more efficient approach, i.e., a fuzzy similarity
measure. In Higgins and Goodman (1994), no back-
propagation-type error-gradient-descent learning was
used to refine the weights and there were no rule-
pruning or elimination of irrelevant inputs.
Juang and Lin (1999) also proposed a self-construct-

ing FNN with on-line learning. New membership
functions are added based on input–output space
partitioning using a self-organizing clustering algorithm.
This membership creation mechanism is not directly
aimed at minimizing the output error as in Higgins and
Goodman (1994). A backpropagation-type learning
procedure was used to train network parameters. There
were no rule-combination, rule-pruning, or elimination
of irrelevant inputs.
Wang and Langari (1995) and Cai and Kwan (1998)

used self-organizing clustering approaches to partition
the input/output space, in order to determine the
number of rules and their membership functions in
an FNN through batch (off-line) training. Backpropa-
gation-type error-minimizing algorithm is often
used to train network parameters in various FNNs
with batch training (e.g., Jang, 1993; Ishibuchi et al.,
1994).
While the existing FNNs possess some attractive

features, they do not provide a complete framework for
control of complex systems. In this paper, we describe a
dynamically generated fuzzy neural network (DGFNN)
approach to control, from input–output data, using on-
line learning. The DGFNN has the following powerful
features drawn or modified from the existing literature:
(1) a small FNN is created from scratch—there is no
need to specify initial network architecture, initial
membership functions, or initial weights; (2) fuzzy rules
are constantly combined and pruned to minimize the

size of the network while maintaining accuracy,
irrelevant inputs are detected and deleted; and (3)
membership functions and network weights are trained
with a backpropagation-type algorithm. We apply the
DGFNN controller to torsional vibration control of
tandem cold-rolling mill spindles. The paper is struc-
tured as follows. Section 2 describes the DGFNN. In
Section 3, we state the control problem—torsional
vibration control of tandem cold-rolling mill spindles.
We derive a mathematical model of the two-mass system
for use with the proportional-integral (PI) control in
Section 4, where the simulation results using the PI
controller will be presented. Section 5 presents the
simulation results using the RCC and the DGFNN, as
well as a comparison of the PI, RCC, and DGFNN
results. Finally, Section 6 summarizes the main findings
of the paper.

2. A DGFNN approach to control

Let us first establish our notations. A control
system can be represented by the following state–space
model

~xxðt þ 1Þ ¼ ~ff ½~xxðtÞ;~uuðtÞ�; ð1Þ

~yyðtÞ ¼ ~gg½~xxðtÞ�; ð2Þ

where ~uu and ~yy are the system input and output vectors,
respectively, and ~xx is the system state vector. Eq. (1) is
the identification, and Eq. (2) is the action (control).
Given that the vector maps ~ff and ~gg are unknown, a
reference model with input ~xx ¼ ½x1;x2;y; xn�T and
output ~yyd ¼ ½yd1; yd2;y; ydm�T is used to designate the
desired performance. The desired output response ~yyd is
obtained from the output of the reference model subject
to the step signal (for load disturbance) or the other
disturbance signals. The parameters of the model are
determined by the desired performance in terms of
overshoot, settling time, and steady-state error.
The structure of the DGFNN is shown in Fig. 1. The

network consists of four layers, i.e., the input layer, the
input membership functions layer, the rule layer, and the
output layer. The input nodes represent input variables.
The input membership function layer generates input
membership functions for the numerical inputs. Each
input node is connected to all membership functions
nodes for this input. The input membership function
nodes are term nodes which act as membership
functions. We will use piecewise linear-triangular
membership functions (Higgins and Goodman, 1994),
since they are computationally efficient. Membership
functions fully overlap and their total membership at
any point is equal to one. One vertex lies at the center of
the region and has membership value unity, and the
other two vertices lie at the centers of the two

L. Wang, Y. Frayman / Engineering Applications of Artificial Intelligence 15 (2002) 541–550542



neighboring regions, respectively, with membership
values zero. Consequently, we need to specify only the
positions of the peaks Ai

j ; where i is a rule number, j is
an input number, but not the width of the function, to
describe a membership function completely.
The rule layer nodes represent fuzzy rules using the

following form for rule i:

Rule i: IF x1 is Ai
1 and ? xn is Ai

n

and y1 is Ai
1 and ? ym is Ai

m

THEN u1 ¼ wi
1 and ? un ¼ wi

n; ð3Þ

where i is the rule number, Ai
j is the member-

ship function of the antecedent part, wi
m is the real

number of the consequent part. They are connected to
appropriate input membership function nodes and
output nodes.
The membership value mi of the premise of the ith rule

is calculated as fuzzy and using the product operator,
which gives a smoother trade-off between rules com-
pared to the minimum:

mi ¼ Ai
1ðx1ÞAi

2ðx2Þ?Ai
nðxnÞ: ð4Þ

The connection weights between input nodes, the
input membership function layer, and the rule layer are
constant unity weights. Links between the rule layer and
the output layer are adaptive during learning. In
the output layer each node receives inputs from all
rule nodes connected to this output node and produces
the actual output of the controller. The output ul of the

fuzzy inference can be derived from the following
equation:

ul ¼

P
miw

i
lP

mi

ðl ¼ 1; 2;y;mÞ; ð5Þ

where mi is the membership value of the ith inference
rule. Among the commonly used defuzzification strate-
gies, the simplified fuzzy inference allows for simple
network implementation and is computationally effi-
cient (Sugeno and Tanaka, 1991; Takagi and Sugeno,
1985). There is a feedback from the output of the
network to the input layer (Elman, 1990).
The main aim of the learning algorithm is to obtain

the correct control signal ~uud ¼ ½ud1; ud2;y; udm�T corre-
sponding to the desired output ~yyd: The learning error
~ee ¼ ½e1; e2;y; em�T; defined as the difference between the
desired response ~yyd and the measured process output
~yy ¼ ½y1; y2;y; ym�T; is used as a learning criterion:

e ¼ 1
2
ðy � ydlÞ

2; ð6Þ

where e is reduced towards a pre-specified small value
el > 0 during learning.
The DGFNN structure-generation and learning

algorithms used in this paper are as follows:

1. Select input x; output y; and the reference model.
Generate the training input–output data for the
selected reference model. Specify the allowable error
threshold e or the maximum number of rules (rule
nodes) for learning to stop. Start with the number of

Fig. 1. Structure of the presented fuzzy neural network structure.
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input nodes equal to the number of input variables,
and the number of output nodes equal to the number
of output variables. The hidden (rule layer) is empty,
i.e., there are initially no rules in the rule base.

2. Initially, add two input membership functions nodes
at input minimum and maximum in the data set for
each input (Higgins and Goodman, 1994).

3. Add an additional membership function node at zero
point for each input variable as we are more
concerned with the performance of the system during
the steady state than during the transient process.
Create the initial rule base layer using Eq. (3).

4. Train the network using the following general
learning rule:

yi
lðk þ 1Þ ¼ yi

lðkÞ � Z
qel

dyi
l

: ð7Þ

The learning rules for wi
l and Ai

j are:

wi
lðk þ 1Þ ¼ wi

lðkÞ � Z
qel

qwi
l

; ð8:1Þ

Ai
qðk þ 1Þ ¼ Ai

qðkÞ � Z
qel

qAi
q

; ð8:2Þ

where Z is the learning rate. We let the learning
rate Z vary to improve the speed of convergence,
as well as the learning performance (accuracy):
whenever qel changes its sign, the learning rate
is reduced to Znew ¼ rc Zold; where rc is a coefficient
in the range ð0; 1Þ:

5. If the degree of overlapping of membership functions
is greater than a threshold, combine those member-
ship functions. We use the following fuzzy similarity

measure (Dubois and Prade, 1982):

EðA1;A2Þ ¼
MðA1-A2Þ
MðA1,A2Þ

; ð9Þ

where - and , denote the intersection and union
of two fuzzy sets A1 and A2; respectively. Mð�Þ is the
size of a fuzzy set, and 0pEðA1;A2Þp1: If an input
variable ends up with only one membership function,
which means that this input is irrelevant, we delete
the input. We can thus eliminate irrelevant inputs and
reduce the size of the rule base, thereby making the
network more computationally more efficient. If the
classification accuracy of the DGFNN is below the
requirement, and the number of rules is less than the
specified maximum, go to step 5. Otherwise, go to
step 6.

6. Add an additional membership function for each
input at its value at the point of the maximum output
error, following Higgins and Goodman (1994). One
vertex of the additional membership function is
placed at the value at the point of the maximum
output error and has the membership value unity; the
other two vertices lie at the centers of the two
neighboring regions, respectively, and have member-
ship values zero. As the output of the network is
not a binary 0 or 1, but a continuous function in the
range from 0 to 1, by firstly eliminating the error
whose deviation from the target value is the greatest,
we can speed up the convergence of the network
substantially.

7. Go to step 3 (retrain the network with the updated
rule layer using the algorithm given in step 3).

For control systems, we are usually more concerned
with control precision during steady states than during
transient processes. Thus, we need more membership
functions near the steady state. They have to be added
when the output variable is near the reference value and
changes only slightly, as inputs are almost steady with

Fig. 2. Block diagram of the FNN control system.
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very little change. Consequently, the reduction of
steady-state error below 1% is not possible by the main
algorithm described above. To achieve the desired
response, we need to have additional membership
functions in the region ½�0:02; 0:02�; which will create
additional control variable uaddðkÞ: To compensate for
each stationary output error, the variable uadd at
sampling time k is determined by a recursive mathema-
tical expression

uaddðkÞ ¼ uaddðk � 1Þ þ DuaddðkÞ: ð10Þ

The total control variable becomes

u0ðkÞ ¼ uðkÞ þ uaddðkÞ: ð11Þ

The recursive calculation provides an integral fuzzy
neural controller part for compensation of stationary
errors, as its value increases with time, if the output
error is constant.
The block diagram of the DGFNN control system is

presented in Fig. 2.

3. Torsional vibration control of tandem cold-rolling mill

spindles: the control problem definition

The function of the tandem cold-rolling mill (Fig. 3) is
to reduce the thickness of the incoming strip, supplied in
a coil at room temperature, by a factor of 2–10, so the
outgoing strip should have a uniform thickness with
typical dimensions of 20–50 in width, and 0.007–
0:012 in thickness (Bryant, 1973). The product is
commonly used by the automotive industry and
consumer goods manufacturers.
To improve the gauge accuracy of rolled strip, the

roll speed control system must assure an extremely
high accuracy, so that the angular velocity is at a
pre-specified value of 20 rad=s: In reality, the resonance
point of torsional vibration, which depends on the
inertia of the DC drive motor and roll, as well as
the torsional rigidity of the intermediate shaft and
spindle, is often present at 40–90 rad=s: This frequency

determines the behavior of the system. The larger
(smaller) the frequency, the softer (harder) the system,
and hence the greater (lesser) the possible torsion of
the shaft. Thus, the resonance frequency also determines
the speed of the controller. For example, a softer
system requires a lower roll speed to avoid extensive
torsion of the shaft and oscillations of the two masses
against each other. To avoid adverse effects of
high resonance, the convenient PI control systems
are adjusted to a lower frequency response of
5–15 rad=s: Consequently, the mill speed is not properly
corrected by the control system at a sufficiently high
speed. The speed drop is so great when the strip enters
the mill that it takes a long time to recover from such a
speed drop. The result is inability to obtain a desired
gauge accuracy (Harakawa et al., 1987; Kawaguchi and
Ueyama, 1989). To solve this problem, we propose a
novel mill speed control system, using an FNN
approach.

4. Tandem cold-rolling mill as a two-mass system

In this section, we develop a mathematical model of
the system for use with the PI controller.
It is not sufficient to merely concentrate on the engine

while controlling the speed of an electrical drive. In
reality, a totally fixed connection between drive and the
mechanism is not possible. As a first step in the
mathematical modeling of the system, the ideal situation
of a fixed connection is usually assumed. If the results
are not satisfactory, the elastic soft connection and
possibly other nonlinearities, such as slack or Coulomb
friction in transmissions, clutches and bearings, have to
be taken into consideration. Then a model of an elastic
two-mass system has to be used (Kuo, 1991). In many
situations, a fixed shaft connection can be assumed.
When dealing with the control of a rolling mill, the
system should be modeled with two or more masses. The
more flexible the shaft and thus the system, the higher
the influence of nonlinearities, friction and slack. The
consequences are stick-slip limit cycles. Especially in
multimass systems, it either is impossible or requires
enormous efforts to avoid these phenomena with
conventional control theory. In addition, the real motor
shows a nonlinear dependency of the angular accelera-
tion from the angular velocity, representing the friction
of the controlled system. Other nonlinearities are caused
by a hysteresis of the motor shaft and a higher friction
of the motor with time, e.g., by solidification of grease.
The basic physical representation of the process and

the relevant variables involved in the control problem
are given in Fig. 4. The rolling mill is represented as an
electromechanical system, where the mechanism, i.e.,
roll through the gear train, is driven by an electrical
motor. Connections between the motor and the roll areFig. 3. Schematic diagram of a tandem cold-rolling mill.
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elastic because of the twisting of the shaft, the rigidity of
the gear train, and the connecting spindles.
According to Fig. 4, we use the following mathema-

tical description of the system, assuming that the
moment of inertia of the gear train is very small
compared to the moments of inertia of both the motor
and the roll, as well as the moments of friction applied
to them:

Mm ¼ M12 � b12ð ’f1 � ’f2Þ � Mf1 ¼ J1 .f1; ð12Þ

M12 ¼ c12ðf1 � f2Þ; ð13Þ

M12 � b12ð ’f2 � ’f1Þ � Mc � Mf2 ¼ J2 .f2: ð14Þ

Here Mm is the moment of the motor. Mc is the moment
of the roll. f1 and f2 are the angles of rotation of each
mass. ’f1; ’f2; .f1; and .f2 are the first and the second
derivatives of the angles. b12 is the friction coefficient.
c12 is the coefficient of rigidity. Mf1 and Mf2 are the
moments of the friction for each mass. M12 is the
moment between the masses. J1 and J2 are the moments
of inertia for the motor and the roll, respectively.
We now derive the dimensionless (normalized)

equations for the moments of the system to obtain a
unified approach to the system. We select as base motor
angular rotation

fb ¼
Z 1

0

ob dt: ð15Þ

We add to the system equations the equation for
armature current for F ¼ const; which we use as a
motor DC motor with separate excitation and armature
voltage control. We assume that the friction of the
masses is very small, i.e., Mf1 ¼ Mf1 ¼ 0; to make the
problem manageable. The dimensionless equations are
thus the following:

%f1 ¼
1

s
%o1; ð16Þ

%f2 ¼
1

s
%o2; ð17Þ

%ia ¼ %Mm ¼
1

Tas

%ec � o1

ra
� ia

� �
; ð18Þ

%o1 ¼
1

Tm1s
½ %Mm � %My � kcð %o1 � %o2Þ�; ð19Þ

%My ¼
1

Tcs
ð %o1 � %o2Þ; ð20Þ

%o2 ¼
1

Tm2s
½ %My � %Mc � kcð %o1 � %o2Þ: ð21Þ

Here Tm1 ¼ J1ob=Mb is the mechanical time constant of
the motor. Tm2 ¼ J2ob=Mb is the mechanical time
constant of the roll. kc ¼ bob=Mb is the friction
coefficient of the spindle and is assumed to be zero in
our case. Tc ¼ Mb=cob is the mechanical time constant of
the torsional rigidity of the spindle. Ta is the mechanical
time constant of the armature voltage. ec is the armature
voltage. s 
 d=dt: ra is the armature resistance.
Using the absolute changes of the variables, instead of

the variables themselves, and assuming that the load is
independent of the speed, we can linearize the system
and derive a transfer function from the block diagram
(Fig. 5) and the equations above.
We use the following measured state variables (inputs

to the controller). x1 ¼ D%ia is the armature current. x2 ¼
D %w1 is the angular velocity of the roll. x3 ¼ D %My is the
torque between the roll and the motor. x4 ¼ D %w2 is the
angular velocity of the motor. We use the armature
voltage u1 ¼ D%ec as the control variable and the torque
of the roll (load) u2 ¼ D %Mc as the disturbance variable—
the two inputs to the plant. The plant has following two
outputs. y1 ¼ D%ia is the armature current. y2 ¼ D %w1 is
the angular velocity of the roll.
The state representation of the system is

’X ¼ AX þ BU ;

Y ¼ CX ;

A ¼

�1
Ta

�1
raTa

0 0

1
Tm1

0 �1
Tm1

0

0 1
Tc

0 �1
Tc

0 0 1
Tm2

0

2
666664

3
777775; B ¼

1
raTa

0

0 0

0 0

0 �1
Tm2

2
66664

3
77775;

C ¼

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

2
6664

3
7775;

X ¼

D%ia
D %o1

D %My

D %o2

2
6664

3
7775; U ¼

D%ec

D %Mc

" #
; Y ¼

D%ia
D %o1

" #
:

Fig. 4. Equivalent model of the roll drive system: 1, electrical motor; 2

and 6, spindles; 3, bearings; 4, gear train; 5, shaft; and 7, roll.
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The transfer function of the system is

GðsÞ ¼
1

F ðsÞraTaTm1TcTm2

�

TmðT2
y s2 þ 1Þ 1

gT2
y s2 þ 1 �raðTas þ 1Þ

Tm2s raTm1sðTas þ 1Þ þ 1

1 �raðTas þ 1Þ þ Tcs

2
66664

3
77775; ð22Þ

where Tm ¼ Tm1 þ Tm2 is the total mechanical time
constant of the system. g ¼ Tm=Tm1 ¼ ðJ1 þ J2Þ=J1 is
the ratio of the masses, g ¼ 1 in our case. Ty ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðTcTm1Tm2Þ=Tm

p
is the mechanical time constant of

the elastic oscillation of the masses.
The characteristic equation of the system is

F ðsÞ ¼
raTmsðTas þ 1ÞðT2

y s2 þ 1Þ þ ðgT2
y s2 þ 1Þ

raTaTm1TcTm2
: ð23Þ

The two-mass system is an oscillating system with a
resonance frequency of

on ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c12ðJ1 � J2Þ

J1J2

s
: ð24Þ

Here c12 is the coefficient (modulus) of torsional rigidity
of the spindle,

c12 ¼
GIp

l
: ð25Þ

G is the modulus of rigidity. Ip is the polar moment of
the inertia of the area. l is the length of the spindle.
Applying disturbance load torque Mc as a step

function to a uncontrolled roll drive system, we can
see that the open-loop system is marginally stable and
have a dynamic error of 18.5% and a steady-state error
of 6.12% (Fig. 6). Additionally, for the same step
change in disturbance load torque, the angular velocity
of the motor shows constant undamped oscillation due
to slack (Fig. 7).

We have modeled the two-mass system with a fourth-
order linearized state–space model, and have used the PI
state controller for speed and current control. State

Fig. 6. Response of the roll speed to a step change of the load torque

for an uncontrolled system.

Fig. 7. Response of the motor angular velocity to a step change of the

load torque for an uncontrolled system.

Fig. 5. Block diagram of the modeled system shown in Fig. 4.
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controllers are better suitable for a process with many
state variables than simple PI controllers. The resulting
graph (Fig. 8) shows the ‘‘ringing-type’’ damped oscilla-
tion of the masses, characteristic for such systems. The
oscillation of the masses is a sign that, after the
perturbation, the PI controller is no longer optimized
for the parameters of the system, due to unmodeled
high-order dynamics. In a system with slack, it can be
observed that the slack causes a limit cycle. The
amplitude is dependent on the amount of slack. The
frequency is determined by the natural frequency of the
system on: Through a typical overshoot, the slack area
is generally passed. This causes an oscillation which is
worsened by integrating the deviation between the
desired and the actual value which creates large
regulation moments, and consequently some high
amplitude oscillations. Hence, the PI controller is not
suitable for such a system.

5. Simulation results of the RCC and DGFNN

approaches

We will use as a reference model Butterworth’s
( (Astr .om and Wittenmark, 1990; Ogata, 1987) charac-
teristic equation for the fourth-order system, as our
system is of the fourth order

F ðsÞ ¼ s4 þ 2:6ons3 þ 3:4o2
ns2 þ 2:6o3

ns þ o4
n; ð26Þ

where on is a natural frequency of the system.
This form of characteristic equation gives us a

damping ratio x ¼
ffiffiffi
2

p
=2; and the settling time can be

determined through approximate relationship ts ¼
4=xon: The same characteristic equation was used to
tune the PI speed and current controllers in the previous
section. We use the input–output data generated using
this model to train the DGFNN and the RCC. We

generate 1000 input–output data pairs normalized in the
interval ½�1; 1� using a sampling time Ts ¼ 0:005 s: The
data are splitted into two sets, i.e., 500 samples for
training, another 500 for validation of the network’s
generalization ability, and the whole data set is used for
final testing of a trained network. The same data are
used with an RCC using quickpropagation through time
(Fahlman, 1988; Zipser, 1990) learning algorithm
implemented with the Stuttgart Neural Network Simu-
lator (1995), with a learning rate Z ¼ 0:005; a maximum
growth parameter m ¼ 1:75; a weight decay term n ¼
0:0001; and a maximum tolerated difference between a
teaching value and an output dmax ¼ 0:1: Both the
DGFNN and the RCC are trained using on-line
learning. After few hundred trials, we find that to get
steady-state error below 1% the RCC requires, on
average, 7000 epoch. Furthermore, the RCC is unsuc-
cessful 90% of the time due to memory limitations and
random weight initialization. On the contrary, the
DGFNN is successful every time, and required on
average 80 epoch to achieve similar results. Simulation
results are presented in Fig. 9, where the result of the PI
controller is also presented for comparison. We note
that Fig. 9 shows the best performance of the RCC, as
the RCC gives widely different results due to random
weight initialization, whereas the DGFNN always
produces satisfactory results. The mean squared error
of the DGFNN is RMSEFNN ¼ 0:001244 and that of the
RCC, when successful, is RMSERCC ¼ 0:001190: Hence,
though the RCC, when at its best performance, is able to
achieve slightly better results in controlling the torsional
vibration of tandem cold-rolling mill spindles in the
presence of the load torque disturbances than the
DGFNN, the RCC is not suitable for real-time
implementation due to memory and speed limitations,
as well as for the requirements of reliable performance.
In comparison, the DGFNN is far more promising for
real-time control.

Fig. 8. Response of the roll speed to a step change of the load torque

using the PI controller.

Fig. 9. Responses of the roll speed to a step change of the load torque

for the PI, the FNN, the RCC controllers.
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6. Conclusion

In this paper we have described a dynamically
generated fuzzy neural network (DGFNN) which can
be used to control a complex system with a minimal
knowledge about the system, such as input–output
measurements, and with satisfactory performance both
for tracking the required signal and for disturbance
rejection. The DGFNN is able to reduce heavy
computation involved in crisp neural control, since the
DGFNN algorithm updates the weights only for the
nodes representing the maximum error at the time, i.e.,
it updates weights locally, unlike the MLP in which all
weights are updated (global updating). The DGFNN
also eliminates the problem of trial-and-error construc-
tions common to many fuzzy controllers. Furthermore,
unlike the MLP, the DGFNN is capable of expressing
the knowledge acquired from input–output data in
terms of fuzzy inference rules, thus avoiding black-box
behaviors or a separate phase for rule extraction.
The DGFNN is complete with the following powerful

features drawn or modified from the existing literature:
(1) a small FNN is created from scratch—there is no
need to specify initial network architecture, initial
membership functions, or initial weights, (2) fuzzy rules
are constantly combined and pruned to minimize the
size of the network while maintaining accuracy,
irrelevant inputs are detected and deleted, and (3)
membership functions and network weights are trained
with a backpropagation-type algorithm. While the
existing FNNs possess some of these features, none of
the existing FNNs seems to possess all these features.
The DGFNN with both structure and parameter

learning can provide a computationally efficient solution
to control of many real-world complex systems in the
presence of disturbances. As a demonstration of the
applicability of the DGFNN, we have used it for
torsional vibration control of tandem cold-rolling mill
spindles and compared with the PI and the RCC
controllers. We have shown that the conventional PI
controller was not able to suppress the torsional
vibration of the spindles. While both the RCC and
the DGFNN increase the control precision and robust-
ness compared to the PI controller, the DGFNN
controller gives more reliable performance and is far
more computationally efficient, i.e., it learns much faster
and requires less computer memory, and is therefore
more promising for real-time control in practical
applications.

Appendix. The system parameters

DC motor with separate excitation.
Nominal power ¼ 4300 kW:
Nominal voltage ¼ 750 V:

Nominal current ¼ 6100 A:
Mechanical time constant of the elastic oscillation of the
masses Ty ¼ 0:0074 s:
Mechanical time constant of the motor Tm1 ¼ 0:102 s:
Mechanical time constant of the armature voltage
Ta ¼ 0:055 s:
Armature resistance ra ¼ 0:104:
Mechanical time constant of the roll Tm2 ¼ 0:102 s:
Mechanical time constant of the torsional rigidity of the
spindle Tc ¼ 0:00107 s:
Sampling frequency T ¼ 0:005 s:
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