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ABSTRACT 

 
Since the usable frequency spectrum is limited, optimal 
assignment of channels is becoming more and more 
important. It can greatly enhance the traffic capacity of a 
cellular system and decrease interference between calls, 
thereby improving service quality and customer satisfaction. 
In this paper, we use genetic algorithms (GA) to solve the 
problem of assigning calls in a cellular mobile network to 
frequency channels in such a way that interference between 
calls is minimized, while demands for channels are satisfied. 
This channel assignment problem is known to be a difficult 
optimization problem. Simulation results showed that the 
GA approach is able to further improve on the results 
obtained by other techniques. 
 
                             1.   INTRODUCTION 
 
In recent years, the rate of increase in the popularity of 
mobile usage has very much outpaced the availability of 
the usable frequencies which are necessary for the 
communication between mobile users and the base 
stations of cellular radio networks. This restriction 
constitutes an important bottleneck for the capacity of 
mobile cellular systems. Careful design of a network is 
necessary to ensure an acceptable signal-to-interference 
(S/I) ratio. 

There are basically three sources of interference, 
namely: 

• Co-channel Interference: another caller within 
some range using the same channel; 

• Adjacent Channel Interference: another caller 
within the same region using an adjacent channel 
in the frequency domain; 

• Co-site Interference: Another caller within the 
same region using another channel within some 
range. 

The dependence of interference on regions and 
channels is determined by the radio frequency (RF) 
propagation (obtained from the regional topography and 
morphostructure) and the spatial density of the expected 

traffic, which are also used to predict the demand for 
channels. 

One aim of the channel assignment problem (CAP) is 
to assign the required number of channels to each region 
in such a way that interference is precluded and the 
frequency spectrum is used efficiently. This problem 
(called CAP1 in [1]) can be shown to be equivalent to a 
graph coloring problem and is thus NP-hard.  

In most practical situations, there may not be 
sufficient channels available to assure interference-free 
channel assignments. In these cases, we can attempt to 
minimize the interference for a given set of channels, 
while the demand is met (call ed CAP2 in [1]).  

Over recent years, several modern heuristic 
approaches [2]-[4] have been used to solve various 
channel assignment problems. Neural networks and 
simulated annealing have been considered for the channel 
assignment problems. These approaches have suffered 
from the infeasibility of the final solutions, due to their 
limitations of the technique [8] or the appropriateness of 
the chosen representation of a solution and its 
manipulation.  

Genetic Algorithms are adaptive search techniques 
that can find the global optimal solution by manipulating 
and generating recursively a new population of solutions 
from an initial population of sample solutions. GAs are 
generally good at finding acceptably good solution to any 
problem very quickly. GAs are an interesting approach for 
combinatorial optimization problems, since they search 
from one population of points in search space to another, 
and tend to focus increasingly on areas with deeper 
minima. This is in contrast to other heuristic approaches 
such as simulated annealing which only examines one 
point at a time and is one-dimensional in their search.  

There have been a number of attempts in using GA to 
solve CAPs. For example, [12],[19]-[22] used GA for 
CAP1. [23] and [24] formulated CAP2; however, they 
were interested only in interference-free situations. [16] 
gives a unique formulation of CAP2 in terms of GA. 

The objective of the paper is to solve CAP2 using 
genetic algorithms (GA), following the formulations given 
in [16] and treating the non-interference constraints as soft 



 

 

constraints in the objective function and the demand 
satisfaction as a hard constraint. Ten benchmark problems 
are used in our simulations and the results are compared 
with those obtained with other methods.  
 

2.  CHANNEL ASSIGNMENT PROBLEM 
 
Lets consider a network of N cells and M channels. The 
channel requirements (expected traffic) for cell i are given 
by Di. Assuming that the RF propagation and the spatial 
density of the expected traffic have already been 
calculated, the noninterference constraints can be 
determined. The electromagnetic compatibility (EMC) 
constraints specify the minimum distance in the frequency 
domain by which two channels must be separated in order 
that an acceptably low S/I ratio can be guaranteed within 
the regions to which the channels have been assigned. 
These minimum distances are stored in a symmetric 
compatibility matrix C which has a dimension N×N. 

The mathematical formulation of CAP2 given by 
Smith and Palaniswami [8] is reviewed below. Let 

Xj,k = 1, if cell j is assigned to channel k 
         0, otherwise 
For j=1, …N and k=1…M. Suppose Xj,k = Xj,l =1; that 

is, calls in j and i have been assigned channels k and l, 
respectively. One way to measure the degree of 
interference caused by such assignments is to weight each 
assignment by an element in a cost tensor Pj,i,m+1 where 

lkm −= is the distance ( in the channel domain) between 
channels k and l. If k = l, then the interference cost should 
be at its maximum, with the cost decreasing until the two 
channels are far enough apart that no interference exists. 

The problem can thus be formulated to minimize the 
total cost of all the assignments in the network. 
Minimize 
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 for j=1, …N and k=1…M                                (3) 
The cost (or proximity factor) tensor P described above 
can be generated according to recursive relation 
  )1,0max( ,,1,, −=+ mijmij PP     for m=1,  … , M        (4) 

  
jilij CP =,,

                                 for all j, i ≠ j              (5) 

  0,, =ljjP                                  for all j                      (6) 
Proimity factor tensor P is a three dimensional 

matrix. The front square of the cuboid   is simply the 
matrix C with the diagonal terms overwritten to zero. This 

is because if j=i and k=l, there should be no penalty 
incurred (there is effectively only a single call and no 
interference is possible). The third dimension of the tensor 
decreases the penalty linearly until the penalty becomes 
equal to zero. Thus the effective depth of the tensor is 
equivalent to the value of the maximum diagonal of C. 
This linear decrease in cost is a means of encouraging less 
severe violations of the non-interference constraints. If the 
network demands are such that violation is inevitable, it is 
preferred that the strength of the resulting signal to still be 
as strong as possible 

The above cost function is the fitness function for the 
genetic algorithm to be minimized. The demand matrix is 
the constraint to be satisfied by each solution the genetic 
algorithm produces.                        

 
3.  SIMULATION RESULTS 

 
We adopt the GA implementation proposed in [16] as 
follows. A population of solution matrices is first 
randomly generated to satisfy the demand in each cell. 
Crossovers are carried out by swapping a number of rows 
of two individuals in the population. The rows themselves 
are unchanged during crossovers. A mutation represents a 
swap of a randomly selected 1 with a randomly selected 0 
in a given row. Thus both crossover and mutation 
operators maintain the validity of the solutions in the 
population. The interference value given in eq.(1) is used 
to evaluate the fitness of an individual and tournament 
selection is used to select the individuals for the next 
generation.  
 

 
Problem 

Population 
Size 

Crossover 
Probabi-

lity 

Mutation 
Probabi-

lity 
EX1 50 0.6 0.25 
EX2 50 0.6 0.25 

HEX1 120 0.8 0.85 
HEX2 140 0.8 0.85 
HEX3 140 0.8 0.85 
HEX4 140 0.8 0.85 

KUNZ1 120 0.6 0.7 
KUNZ2 140 0.7 0.7 
KUNZ3 140 0.8 0.85 
KUNZ4 140 0.8 0.85 
Table 1. Parameters used in the GA simulations. 

 
We use the same data sets in our simulations as in [8]. 

The data sets can be divided into three classes. The first 
class consists of the problems EX1 and EX2 which are 
very small with N=4 and N=5, respectively. The second 
class of test problems (HEX1-HEX4) is based upon the 
21-cell regular hexagonal network used by Sivarajan et al. 
[5]. Two sets of demands are used for this 21-cell 



 

 

hexagonal network. The final set of problems (KUNZ1-
KUNZ4) is derived from the topographical data of an 
actual 24 x 21 km area around Helsinki, Finland, as used 
by Kunz [18]. Table 2 compares the interference values 
obtained by different methods given used in [8] with those 
obtained here using GA. 

Tables 3 and 4 present two solutions with the lowest 
interference values generated GA.  

4.  CONCLUSIONS AND DISCUSSIONS 
 
The results for EX1, EX2 and Kunz4 show that 
interference-free assignments can be found, as evidenced 
by a zero objective value. We can see that for HEX3 and 
KUNZ2 we get better values then the hill-climbing 
Hopfield neural network (HCHN) [8].  

 
 GA GAMS SD SA HN HCNN SONN 

Problem Min Min Av. Min Av. Min Av. Min Av. MIN Av. Min 
EX1 0 2 0.6 0 0.0 0 0.2 0 0.0 0 0.4 0 
EX2 0 3 1.1 0 0.1 0 1.8 0 0.8 0 2.4 0 

HEX1 48 54 56.8 55 50.7 49 49.0 48 48.7 48 53.0 52 
HEX2 19 27 28.9 25 20.4 19 21.2 19 19.8 19 28.5 24 
HEX3 76 89 88.6 84 82.9 79 81.6 79 80.3 78 87.2 84 
HEX4 17 31 28.2 26 21.0 17 21.6 20 18.9 17 29.1 22 

KUNZ1 20 28 24.4 22 21.6 21 22.1 21 21.1 20 22.0 21 
KUNZ2 29 39 38.1 36 33.2 32 32.8 32 31.5 30 33.4 33 
KUNZ3 13 13 17.9 15 13.9 13 13.2 13 13.0 13 14.4 14 
KUNZ4 0 7 5.5 3 1.8 1 0.4 0 0.1 0 2.2 1 

Table 2. Comparison of results obtained using GA with those obtained with other methods [8]: GAMS/MINOS-5 (labeled 
GAMS), the traditional heuristics of steepest descent (SD), stochastic simulated annealing (SSA), the original Hopfield 
network (HN) (with no hill-climbing), the hill-climbing Hopfield network (HCHN), and the self-organizing neural network 
(SONN). 
 

Cell Demand Assigned Channels 
1 1 21 
2 1 2 
3 1 20 
4 2 8,12 
5 3 9,11,14 
6 6 3,7,10,16,18,20 
7 7 1,3,9,13,15,17,19 
8 6 2,4,6,8,12,14 
9 10 1,3,5,7,9,11,14,16,18,20 

10 10 1,3,5,7,10,13,15,17,19,21 
11 11 2,4,6,8,10,12,13,15,17,19,21 
12 5 1,11,16,18,20 
13 7 2,4,6,8,12,14,21 
14 6 1,5,9,11,16,20 
15 4 13,15,17,19 
16 4 6,8,12,18 
17 7 1,3,5,9,11,16,18 
18 5 2,4,7,19,21 
19 5 2,4,7,10,21 
20 5 8,11,13,15,20 
21 6 6,9,12,14,17,20 

Table 3. Channel Assignment for HEX3. Minimum 
Interference = 76. The number generations required to 
obtain this minimum value is 9423. 

Cell Demand Assigned Channels 
1 10 3,9,21,26,28,30,33,35,37,40 
2 11 3,12,16,19,21,26,28,33,35,37,44 
3 9 1,5,7,15,20,24,27,34,42 
4 5 9,16,19,28,33 
5 9 2,6,11,17,19,22,29,31,41 
6 4 16,19,21,28 
7 5 4,6,17,22,32 
8 7 2,11,13,25,29,38,41 
9 4 12,14,23,31 

10 8 5,8,10,18,20,36,39,43 
11 8 3,21,26,30,35,37,40,44 
12 9 1,7,15,24,27,30,34,40,42 
13 10 8,10,12,14,18,23,31,36,39,43 
14 7 4,6,13,17,25,32,38 
15 7 1,7,15,24,27,34,42 

Table 4. Channel Assignment for KUNZ2. Minimum 
interference is 29. The number generations required to 
obtain this minimum value is 43190. 

 
During the simulations, several parameters, such as 

the crossover probability, mutation probability and 
population size, need to be set. These values were set by 
trial and error. For any GA applications, the settings of 
these parameters are generally ad hoc. But for problems 



 

 

of higher complexity we can see that the mutation rate is 
higher.  

In this paper, we have considered the problem of 
assigning channels to calls in a cellular mobile 
communication network. While many researchers have 
studied the problem of finding the minimum number of 
channels required to obtain an interference-free 
assignment, it is more useful in practical situations, 
where the number of available channels is substantially 
fewer than the minimum number for interference-free 
assignments, to find the assignment which minimizes the 
severity of any interferences given the number of 
available channels. Genetic Algorithms are an interesting 
approach for combinatorial optimization problems, since 
they search from one population of points in search 
space to another, and tend to focus increasingly on areas 
with deeper minima.  

The simulations done on the benchmark problems 
showed that this approach could achieve desirable 
results, satisfying the demand constraint and solutions 
with lower (or equally low) interference when compared 
to other heuristic approaches. 

More advanced genetic algorithms like parallel GA 
and micro-GA can be used to solve the CAP2 to give 
better results in a short span of time. GA is particularly 
well suited to implementation on parallel computers. 
Evaluation of the objective function and constraints can 
be done simultaneously for a whole population, as can 
the production of the new population by mutation and 
crossover. Thus, on a highly parallel machine, a GA can 
be expected to run nearly K times as fast for many 
problems, where K is the population size. This can be 
used effectively to obtain the optimum solution in a 
minimum time though one has to parallelism the 
evaluation of individual problem functions effectively. 
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