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Abstract  

 
In this paper, we describe an incrementally generated fuzzy 
neural network (FNN) for fuzzy system modelling. This 
FNN combines the features of initial fuzzy model self-
generation, fast input selection, partition validation, 
parameter optimisation and rule-base simplification. 
Experimental studies demonstrate that the FNN is able to 
achieve accuracy comparable to or higher than both a 
feedforward crisp neural network i.e. NeuroRule, and a 
decision tree i.e. C4.5, with more compact rule bases for 
most of the data sets used in our experiment. In addition, 
the FNN is insensitive to the problem of small disjuncts 
that affects decision trees. This can be very useful in real-
world situations, since the data of interest can often be 
only a small fraction of the available data.  
 

1. Introduction 
 
System modeling has been an important issue in both 
engineering and non-engineering areas. To overcome the 
problems confronted by conventional modeling methods, 
fuzzy neural modeling have been proposed as viable 
alternatives and successfully employed in various areas 
where conventional approaches fail to provide satisfactory 
solutions.  
 
In the literature, crisp neural networks often have a fixed 
architecture, i.e., a pre-determined number of layers with 
pre-determined numbers of neurons. The weights are 
usually initialized to small random values. Knowledge-
based networks [4], [11] use crude domain knowledge to 
generate the initial network architecture. This helps in 
reducing the search space and time required for the 
network to find an optimal solution. There have also been 
mechanisms to generate crisp neural networks from scratch, 
i.e., initially there are no neurons or weights which are 
generated and then refined during training. For example, 
Mezard and Nadal's tiling algorithm [9], Fahlman and 
Lebiere's cascade-correlation [3], and Giles et al's 
constructive learning of recurrent networks [5] are very 
useful. 
 
For FNNs, it is also desirable to shift from the traditional 
fixed architecture design methodology [13] to self-
generating approaches. Higgins and Goodman [6] 

proposed an algorithm to create an FNN according to input 
data. New membership functions are added at the point of 
maximum error on an as-needed basis, which will be 
adopted in the present paper. Juang and Lin [14] proposed 
a self-constructing FNN with on-line learning. New 
membership functions are added based on input-output 
space partitioning using a self-organizing clustering 
algorithm. Chao and Chen [2] applied fuzzy similarity 
measure to eliminate redundant fuzzy logic rules. 
 
Frayman and Wang [15] proposed a FNN using fuzzy 
similarity measure to remove irrelative inputs and rule 
applicability coefficient was used for rule-base 
simplification. We proposed a new FNN, with much 
simpler and effective input selection and rule-base 
simplification abilities.  
 
The paper is organized as follows. Section 2 describes the 
implementation of our FNN. Some experimental results on 
data classification using our FNN and comparisons with 
the pruned feedforward crisp neural network and decision 
tree approaches are shown in section 3. Section 4 
concludes the paper. 
 

2. Implementation of Our FNN 
  
The structure of our FNN is shown in Figure1. The 
network consists of four layers, i.e., the input layer, the 
input membership function layer, the rule layer, and the 
output layer [15]. 
 

 
In databases, data fields are either numerical or categorical. 
The input membership function layer generates input 
membership functions for numerical inputs, i.e., numerical 
values are converted to categorical values.   
 
Each rule node is connected to all input membership 
function nodes and output nodes for this rule. Each rule 
node performs a product of its inputs. The input 
membership functions act as fuzzy weights between the 
input layer and the rule layer. Links between the rule layer, 
the output layer and the input membership functions are 
adaptive during learning. In the output layer each node 
receives inputs from all rule nodes connected to this output 
node and produces the actual output of the network. 



 

 
 
 
                                Figure 1: Structure of FNN 
 
The structure generation and learning algorithm of the 
FNN are as follows in Figure 2. 
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Figure 2: Flow chart of the FNN algorithm 
 
2.1 FNN Initialization 

 Firstly we create n nodes for the input layer and m nodes 
for the output layer, where n and m are the number of the 
input variables (attributes) and the output variables 
(classes), respectively. The rule layer is empty, i.e., there 
are initially no rules in the rule base [15]. 
Two equally spaced triangular membership functions are 
added along the operating range of each input variable. In 
such a way these membership functions will satisfy ε-
completeness. Piecewise-linear triangular membership 
function is chosen for computational efficiency [6]. 
 
Then we create the initial rule base layer using the 
following form for rule i: 
 

Rule i:     IF         x1 is Ai
x1 and … xn is Ai

xn 

                          Then       y1=ω1
i,…, ym=ωm

i,         ----    (1) 
 

where xj (j=1,2,.., n), and yl (l=1,2,.., m) are the inputs and 
the outputs, respectively. ωl

i is a real number. Ai
q (q=x1, 

x2,… xn) is the membership function of the antecedent part 
of rule i for node q in the input layer[16]. 
 
The membership value µi of the premise of the ith rule is 
calculated as fuzzy AND, using the product operator 
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The output yl of the fuzzy inference is obtained using the 
weighted average [17]. 
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2.2 FNN Training 
 
The network is trained using the following general learning 
rule [18]. 
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where η is the learning rate. The objective is to minimize 
an error function 
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where yl is the current output, and ydl  is the target output.  
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We let the learning rate η vary to improve the speed of 
convergence, as well as the learning performance 
(accuracy). We update η according to the following two 
heuristic rules: 

1) If the error measure undergoes five consecutive 
reductions, increase η by 5%. 

2) If the error measure undergoes three consecutive 
combinations of one increase and one reduction, 
decrease η by 5%. 

Furthermore, due to this dynamical update strategy, the 
initial value of η is usually not critical as long as it is not 
too large. 
 
The learning error εl is reduced towards zero or a pre-
specified small value εdef > 0 as the iteration number k 
increases. 

 
2.3 Input Selection 
 
Based on the initial fuzzy model that incorporates all 
possible input variables, we can evaluate the importance of 
each input variable. The objective of this work is to reduce 
the input dimensionality of the model without significant 
loss in accuracy. Elimination of redundant input features 
may even improve accuracy. 
 
It is known that the change of system output is contributed 
to by all input variables. The larger the output change 
caused by a specified input variable, the more important 
this input may be. The fuzzy inference system provides an 
easy mechanism to test the importance of each input 
variable without having to generate new models [7]. The 
basic idea is to let the antecedent clauses associated with a 
particular input variable i in the rules be assigned a truth-
value of 1 and then compute the fuzzy output, which is due 
to the absence of input i.  Then we rank those fuzzy 
outputs from worst to best, and the worse result indicates 
the associated input is most important.  
 
Further more, we have to decide how many inputs should 
be selceted. We start from using the most important input 
as the only input to the FNN, setting antecedents 
associated with all other inputs to 1. In the following steps, 
each time we add one more input according to the ranking 
order. The subset with best output result is selected as the 
inputs group; other inputs and associated membership 
functions are deleted. This approach is proved to be very 
simple, fast and effective. 
 
2.4 Partition Validation  
 
If the degree of overlapping of membership functions is 
greater than a threshold, we need to combine them [2]. We 
use the following fuzzy similarity measure [19]  

       E (A1, A2)= 
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where ∩ and ∪ denote the intersection and union of two 
fuzzy sets A1 and A2, respectively. M (•) is the size of a 
fuzzy set, and 0≤ E (A1, A2) ≤1.  
 
From the formula above, we find that the computation of 
the similarity of two fuzzy sets requires calculating the size 
of intersection and union of two triangular membership 
functions. As triangular membership functions are used in 
our FNN, it makes such calculations simple and 
straightforward. 
 
If an input variable ends up with only one membership 
function, which means that this input is irrelevant, we 
delete the input. We can thus eliminate irrelevant inputs 
and reduce the size of the rule base. If the classification 
accuracy of the FNN is below the requirement, and the 
number of rules is less than the specified maximum, we 
modify the rule base following the method introduced in 
next section. 
 
2.5 Rule Base Modification 
 
An additional membership function is added for each input 
at its value at the point of the maximum output error, 
following Higgins and Goodman [6]. One vertex of the 
additional membership function is placed at the value at 
the point of the maximum output error and has the 
membership value unity; the other two vertices lie at the 
centers of the two neighboring regions, respectively, and 
have membership values zero. As the output of the 
network is not a binary 0 or 1, but a continuous function in 
the range from 0 to 1, by firstly eliminating the error 
whose deviation from the target value is the greatest, we 
can speed up the convergence of the network substantially. 
 
The rules generated above are then evaluated for accuracy 
and simplicity. We use a weighting parameter between 
accuracy and simplicity, which is the compatibility grade 
(CG) of each fuzzy rule. CG of rule j is calculated by the 
product operator as: 
   )()()()( 21211 njnjjj xxxx µµµµ ×⋅⋅⋅⋅××=   ---- (9) 
when the system provides correct classification result. 
 
All rules whose CG falls below a pre-defined threshold are 
deleted. Elimination of rule nodes is rule by rule, i.e., when 
a rule node is deleted, its associated input membership 
nodes and links are deleted as well. By varying the CG 
threshold the user is able to specify the degree of rule base 
compactness. The size of the rule base can thus be kept 
minimal. If the classification accuracy of the FNN after the 
elimination of rule nodes is below the prescribed 
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requirement we will add another rule as described above, 
otherwise we stop the process. 
 
Our FNN contains the powerful features of initial fuzzy 
model self-generation [16], fast input selection, partition 
validation [2], [6], parameter optimisation [18] and rule-
base simplification, and combines them together to achieve 
better performance.  Our fast inputs selection is added as 
an effective supplementation, which is much simpler than 
others’ method, such as [14], [15]. 
 

3. Experimental Evaluation 
 
To test the FNN we used ten classification problems of 
different complexity defined by R.Agrawal in [1] on 
synthetic database with nine attributes. Attributes elevel, 
car and zipcode are categorical, and all others are non-
categorical.  
 
The first classification problem has predicates on the 
values of only one attribute. The 2nd to 3rd problems have 
predicates with two attributes, and the 4th to 6th problems 
have predicates with three attributes.  Problems 7 to 9 are 
linear functions and problem 10 is a non-linear function of 
attribute values.  
 
For comparisons with the FNN, we used decision tree 
construction algorithms C4.5 and C4.5rules [10] on the 
same data sets. C4.5 and C4.5rules Release 8 from the 
pruned trees with default parameters were used. We also 
compared our results with those of a pruned feedforward 
crisp neural network (NeuroRule) [8] for the classification 
problems.  
 
Table 1 shows the accuracy on each test data set and the 
number of rules for all three approaches for the problems. 
  
Func Accuracy (%) Number of Rules 
 NR C4.5 FNN NR C4.5 FNN 

1 99.9 100 100 2 3 2 
2 98.1 95.0 93.6 7 10 5 
3 98.2 100 97.6 7 10 7 
4 95.5 97.3 94.3 13 18 8 
5 97.2 97.6 97.1 24 15 7 
6 90.8 94.3 95.0 13 17 8 
7 90.5 93.5 95.7 7 15 13 
8 N/A 98.6 99.3 N/A 9 2 
9 91.0 92.6 94.1 9 16 15 

10 N/A 92.6 96.2 N/A 10 8 
 

Table 1 Experimental Results 1 
 
Compared to NeuroRule, the FNN produces rule bases of 
less complexity for all problems, except problem 7 and 9. 

The FNN gives better accuracy for problems 6, 7 and 9, 
and comparable but lower accuracy for the rest. Compared 
to C4.5rules, the FNN gives less complex rules for all 
problems. The FNN gives higher accuracy than C4.5rules 
on problems 6 to 10, and comparable but lower accuracy 
for the rest. The results for problems 8 and 10 were not 
reported in [8]  (indicated by “N/A” in Table 1). 
 
If very high accuracy is required, without consideration of 
compactness of rule base, we can set a lower threshold for 
rule elimination stage. From Table 2, it is found that we 
got higher accuracy compared with both methods in most 
of problems, except in problem 3 and 5. However, rule 
base becomes much larger than results in Table 1, which 
may make the analysis of database more difficult. 
 

Func Accuracy (%) Number of Rules (%) 
 NR C4.5 FNN NR C4.5 FNN 

1 99.9 100 100 2 3 11 
2 98.1 95.0 98.5 7 10 25 
3 98.2 100 99.3 7 10 36 
4 95.5 97.3 98.1 13 18 120 
5 97.2 97.6 97.2 24 15 81 
6 90.8 94.3 96.5 13 17 50 
7 90.5 93.5 97.7 7 15 52 
8 N/A 98.6 99.1 N/A 9 15 
9 91.0 92.6 95.2 9 16 65 

10 N/A 92.6 97.7 N/A 10 50 
 

Table 2 Experimental Results 2 
 
4. Discussion and Conclusions  
 
In Table 1, we attempted to obtain the most compact rule 
base for the FNN to allow for easy analysis of the rules for 
very large databases, and subsequently easy decision 
making in real-world situations. If accuracy is more 
important than compactness of the rule base, it is possible 
to use the FNN with more strict accuracy requirements, i.e., 
a lower threshold for pruning the rule base, thereby 
producing more accurate results at the expense of a higher 
rule base complexity. The final decision regarding 
complexity versus accuracy of the rules is application 
specific. 
 
Moreover, the performance of the FNN is significantly 
better for classes with relatively small amounts of available 
data, in comparison with C4.5rules, i.e., the FNN approach 
to data mining is insensitive to the problem of small 
disjuncts, in contrast to decision tree approaches such as 
C4.5rules [12]. This is due to the fact that the IG-FNN 
treats all classes with equal importance, while decision 
trees give preference to more commonly occurred classes 
and treat classes with less data as less important. This 
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property of the FNN can be very useful for real-world 
situations, e.g., medical diagnosis, where important 
information may be contained in a small fraction of the 
available data.  
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