
A Fuzzy Neural Network for System Modeling

Xie Wei and Wang Lipo
Nanyang Technological University, School of Electrical and Electronic Engineering

Block S1, Nanyang Avenue, Singapore 639798
E-mail: p144328827@ntu.edu.sg; elpwang@ntu.edu.sg

Abstract

In this paper, we describe an incrementally generated fuzzy
neural network (FNN) for fuzzy system modelling. This
FNN combines the features of initial fuzzy model self-
generation, fast input selection, partition validation,
parameter optimisation and rule-base simplification.
Experimental studies demonstrate that the FNN is able to
achieve accuracy comparable to or higher than both a
feedforward crisp neural network i.e. NeuroRule, and a
decision tree i.e. C4.5, with more compact rule bases for
most of the data sets used in our experiment. In addition,
the FNN is insensitive to the problem of small disjuncts
that affects decision trees. This can be very useful in real-
world situations, since the data of interest can often be
only a small fraction of the available data.

1. Introduction

System modeling has been an important issue in both
engineering and non-engineering areas. To overcome the
problems confronted by conventional modeling methods,
fuzzy neural modeling have been proposed as viable
alternatives and successfully employed in various areas
where conventional approaches fail to provide satisfactory
solutions.

In the literature, crisp neural networks often have a fixed
architecture, i.e., a pre-determined number of layers with
pre-determined numbers of neurons. The weights are
usually initialized to small random values. Knowledge-
based networks [4], [11] use crude domain knowledge to
generate the initial network architecture. This helps in
reducing the search space and time required for the
network to find an optimal solution. There have also been
mechanisms to generate crisp neural networks from scratch,
i.e., initially there are no neurons or weights which are
generated and then refined during training. For example,
Mezard and Nadal's tiling algorithm [9], Fahlman and
Lebiere's cascade-correlation [3], and Giles et al's
constructive learning of recurrent networks [5] are very
useful.

For FNNs, it is also desirable to shift from the traditional
fixed architecture design methodology [13] to self-
generating approaches. Higgins and Goodman [6]

proposed an algorithm to create an FNN according to input
data. New membership functions are added at the point of
maximum error on an as-needed basis, which will be
adopted in the present paper. Juang and Lin [14] proposed
a self-constructing FNN with on-line learning. New
membership functions are added based on input-output
space partitioning using a self-organizing clustering
algorithm. Chao and Chen [2] applied fuzzy similarity
measure to eliminate redundant fuzzy logic rules.

Frayman and Wang [15] proposed a FNN using fuzzy
similarity measure to remove irrelative inputs and rule
applicability coefficient was used for rule-base
simplification. We proposed a new FNN, with much
simpler and effective input selection and rule-base
simplification abilities.

The paper is organized as follows. Section 2 describes the
implementation of our FNN. Some experimental results on
data classification using our FNN and comparisons with
the pruned feedforward crisp neural network and decision
tree approaches are shown in section 3. Section 4
concludes the paper.

2. Implementation of Our FNN

The structure of our FNN is shown in Figure1. The
network consists of four layers, i.e., the input layer, the
input membership function layer, the rule layer, and the
output layer [15].

In databases, data fields are either numerical or categorical.
The input membership function layer generates input
membership functions for numerical inputs, i.e., numerical
values are converted to categorical values.

Each rule node is connected to all input membership
function nodes and output nodes for this rule. Each rule
node performs a product of its inputs. The input
membership functions act as fuzzy weights between the
input layer and the rule layer. Links between the rule layer,
the output layer and the input membership functions are
adaptive during learning. In the output layer each node
receives inputs from all rule nodes connected to this output
node and produces the actual output of the network.

 Figure 1: Structure of FNN

The structure generation and learning algorithm of the
FNN are as follows in Figure 2.

N o

S ta r t

 F N N I n i t i a l i z a t i o n

 S u p e r v i s e d L e a r n in g

I n p u t s S e l e c t io n

A d d /C o m b in e M F s

R u le e l im in a t io n

I s t h e r e s u l t g o o d ?

N o

I s t h e r e s u l t g o o d ?

Y e s

S to p

Y e s

Figure 2: Flow chart of the FNN algorithm

2.1 FNN Initialization

 Firstly we create n nodes for the input layer and m nodes
for the output layer, where n and m are the number of the
input variables (attributes) and the output variables
(classes), respectively. The rule layer is empty, i.e., there
are initially no rules in the rule base [15].
Two equally spaced triangular membership functions are
added along the operating range of each input variable. In
such a way these membership functions will satisfy ε-
completeness. Piecewise-linear triangular membership
function is chosen for computational efficiency [6].

Then we create the initial rule base layer using the
following form for rule i:

Rule i: IF x1 is Ai
x1 and … xn is Ai

xn

 Then y1=ω1
i,…, ym=ωm

i, ---- (1)

where xj (j=1,2,.., n), and yl (l=1,2,.., m) are the inputs and
the outputs, respectively. ωl

i is a real number. Ai
q (q=x1,

x2,… xn) is the membership function of the antecedent part
of rule i for node q in the input layer[16].

The membership value µi of the premise of the ith rule is
calculated as fuzzy AND, using the product operator

 ---- (2))()()(2211 n

i
xn

i
x

i
xi xAxAxA ×⋅⋅⋅⋅××=µ

The output yl of the fuzzy inference is obtained using the
weighted average [17].

 yl= ∑
∑ ×

i i

i
i

li

µ
ωµ

 ----(3)

2.2 FNN Training

The network is trained using the following general learning
rule [18].

i
l

li
l

i
l y

kyky
∂
∂

−=+
εη)()1(----(4)

The learning rules for ωl
i and Ai

j are:

i
l

li
l

i
l kk

ω
εηωω

∂
∂

−=+)()1(----(5)

i
q

li
q

i
q A

kAkA
∂
∂

−=+
εη)()1(----(6)

where η is the learning rate. The objective is to minimize
an error function

 2)(
2
1

dlll yy −×=ε ----(7)

where yl is the current output, and ydl is the target output.

2

We let the learning rate η vary to improve the speed of
convergence, as well as the learning performance
(accuracy). We update η according to the following two
heuristic rules:

1) If the error measure undergoes five consecutive
reductions, increase η by 5%.

2) If the error measure undergoes three consecutive
combinations of one increase and one reduction,
decrease η by 5%.

Furthermore, due to this dynamical update strategy, the
initial value of η is usually not critical as long as it is not
too large.

The learning error εl is reduced towards zero or a pre-
specified small value εdef > 0 as the iteration number k
increases.

2.3 Input Selection

Based on the initial fuzzy model that incorporates all
possible input variables, we can evaluate the importance of
each input variable. The objective of this work is to reduce
the input dimensionality of the model without significant
loss in accuracy. Elimination of redundant input features
may even improve accuracy.

It is known that the change of system output is contributed
to by all input variables. The larger the output change
caused by a specified input variable, the more important
this input may be. The fuzzy inference system provides an
easy mechanism to test the importance of each input
variable without having to generate new models [7]. The
basic idea is to let the antecedent clauses associated with a
particular input variable i in the rules be assigned a truth-
value of 1 and then compute the fuzzy output, which is due
to the absence of input i. Then we rank those fuzzy
outputs from worst to best, and the worse result indicates
the associated input is most important.

Further more, we have to decide how many inputs should
be selceted. We start from using the most important input
as the only input to the FNN, setting antecedents
associated with all other inputs to 1. In the following steps,
each time we add one more input according to the ranking
order. The subset with best output result is selected as the
inputs group; other inputs and associated membership
functions are deleted. This approach is proved to be very
simple, fast and effective.

2.4 Partition Validation

If the degree of overlapping of membership functions is
greater than a threshold, we need to combine them [2]. We
use the following fuzzy similarity measure [19]

 E (A1, A2)=
)(
)(

21

21

AAM
AAM

∪
∩

 ----(8)

where ∩ and ∪ denote the intersection and union of two
fuzzy sets A1 and A2, respectively. M (•) is the size of a
fuzzy set, and 0≤ E (A1, A2) ≤1.

From the formula above, we find that the computation of
the similarity of two fuzzy sets requires calculating the size
of intersection and union of two triangular membership
functions. As triangular membership functions are used in
our FNN, it makes such calculations simple and
straightforward.

If an input variable ends up with only one membership
function, which means that this input is irrelevant, we
delete the input. We can thus eliminate irrelevant inputs
and reduce the size of the rule base. If the classification
accuracy of the FNN is below the requirement, and the
number of rules is less than the specified maximum, we
modify the rule base following the method introduced in
next section.

2.5 Rule Base Modification

An additional membership function is added for each input
at its value at the point of the maximum output error,
following Higgins and Goodman [6]. One vertex of the
additional membership function is placed at the value at
the point of the maximum output error and has the
membership value unity; the other two vertices lie at the
centers of the two neighboring regions, respectively, and
have membership values zero. As the output of the
network is not a binary 0 or 1, but a continuous function in
the range from 0 to 1, by firstly eliminating the error
whose deviation from the target value is the greatest, we
can speed up the convergence of the network substantially.

The rules generated above are then evaluated for accuracy
and simplicity. We use a weighting parameter between
accuracy and simplicity, which is the compatibility grade
(CG) of each fuzzy rule. CG of rule j is calculated by the
product operator as:
)()()()(21211 njnjjj xxxx µµµµ ×⋅⋅⋅⋅××= ---- (9)
when the system provides correct classification result.

All rules whose CG falls below a pre-defined threshold are
deleted. Elimination of rule nodes is rule by rule, i.e., when
a rule node is deleted, its associated input membership
nodes and links are deleted as well. By varying the CG
threshold the user is able to specify the degree of rule base
compactness. The size of the rule base can thus be kept
minimal. If the classification accuracy of the FNN after the
elimination of rule nodes is below the prescribed

3

requirement we will add another rule as described above,
otherwise we stop the process.

Our FNN contains the powerful features of initial fuzzy
model self-generation [16], fast input selection, partition
validation [2], [6], parameter optimisation [18] and rule-
base simplification, and combines them together to achieve
better performance. Our fast inputs selection is added as
an effective supplementation, which is much simpler than
others’ method, such as [14], [15].

3. Experimental Evaluation

To test the FNN we used ten classification problems of
different complexity defined by R.Agrawal in [1] on
synthetic database with nine attributes. Attributes elevel,
car and zipcode are categorical, and all others are non-
categorical.

The first classification problem has predicates on the
values of only one attribute. The 2nd to 3rd problems have
predicates with two attributes, and the 4th to 6th problems
have predicates with three attributes. Problems 7 to 9 are
linear functions and problem 10 is a non-linear function of
attribute values.

For comparisons with the FNN, we used decision tree
construction algorithms C4.5 and C4.5rules [10] on the
same data sets. C4.5 and C4.5rules Release 8 from the
pruned trees with default parameters were used. We also
compared our results with those of a pruned feedforward
crisp neural network (NeuroRule) [8] for the classification
problems.

Table 1 shows the accuracy on each test data set and the
number of rules for all three approaches for the problems.

Func Accuracy (%) Number of Rules
 NR C4.5 FNN NR C4.5 FNN

1 99.9 100 100 2 3 2
2 98.1 95.0 93.6 7 10 5
3 98.2 100 97.6 7 10 7
4 95.5 97.3 94.3 13 18 8
5 97.2 97.6 97.1 24 15 7
6 90.8 94.3 95.0 13 17 8
7 90.5 93.5 95.7 7 15 13
8 N/A 98.6 99.3 N/A 9 2
9 91.0 92.6 94.1 9 16 15

10 N/A 92.6 96.2 N/A 10 8

Table 1 Experimental Results 1

Compared to NeuroRule, the FNN produces rule bases of
less complexity for all problems, except problem 7 and 9.

The FNN gives better accuracy for problems 6, 7 and 9,
and comparable but lower accuracy for the rest. Compared
to C4.5rules, the FNN gives less complex rules for all
problems. The FNN gives higher accuracy than C4.5rules
on problems 6 to 10, and comparable but lower accuracy
for the rest. The results for problems 8 and 10 were not
reported in [8] (indicated by “N/A” in Table 1).

If very high accuracy is required, without consideration of
compactness of rule base, we can set a lower threshold for
rule elimination stage. From Table 2, it is found that we
got higher accuracy compared with both methods in most
of problems, except in problem 3 and 5. However, rule
base becomes much larger than results in Table 1, which
may make the analysis of database more difficult.

Func Accuracy (%) Number of Rules (%)
 NR C4.5 FNN NR C4.5 FNN

1 99.9 100 100 2 3 11
2 98.1 95.0 98.5 7 10 25
3 98.2 100 99.3 7 10 36
4 95.5 97.3 98.1 13 18 120
5 97.2 97.6 97.2 24 15 81
6 90.8 94.3 96.5 13 17 50
7 90.5 93.5 97.7 7 15 52
8 N/A 98.6 99.1 N/A 9 15
9 91.0 92.6 95.2 9 16 65

10 N/A 92.6 97.7 N/A 10 50

Table 2 Experimental Results 2

4. Discussion and Conclusions

In Table 1, we attempted to obtain the most compact rule
base for the FNN to allow for easy analysis of the rules for
very large databases, and subsequently easy decision
making in real-world situations. If accuracy is more
important than compactness of the rule base, it is possible
to use the FNN with more strict accuracy requirements, i.e.,
a lower threshold for pruning the rule base, thereby
producing more accurate results at the expense of a higher
rule base complexity. The final decision regarding
complexity versus accuracy of the rules is application
specific.

Moreover, the performance of the FNN is significantly
better for classes with relatively small amounts of available
data, in comparison with C4.5rules, i.e., the FNN approach
to data mining is insensitive to the problem of small
disjuncts, in contrast to decision tree approaches such as
C4.5rules [12]. This is due to the fact that the IG-FNN
treats all classes with equal importance, while decision
trees give preference to more commonly occurred classes
and treat classes with less data as less important. This

4

property of the FNN can be very useful for real-world
situations, e.g., medical diagnosis, where important
information may be contained in a small fraction of the
available data.

REFERENCES

 [1] R. Agrawal, T. Imielinski, and A. Swami, “Database

Mining: A Performance Perspective,” IEEE Trans.
Knowledge and Data Engineering, vol. 5, no. 6, pp.
914-925, Dec. 1993.

 [2] C.T Chao, Y.J. Chen, and C.C. Teng, “Simplification
of Fuzzy-Neural Systems Using Similarity Analysis,”
IEEE Trans. Syst.,Man, Cybern, Part B: Cybernetics,
vol.26, no.2, pp.344-354, 1996.

 [3] S. E. Fahlman and C. Lebiere, “The cascade-
correlation learning ar-chitecture,” in Advances in
Neural Information Processing Systems II, D. S.
Touretzky, Ed. San Mateo, CA: Morgan Kaufmann,
1990, pp. 524-532.

 [4] L. M. Fu, “Knowledge-based connectionism for
revising domain theories,” IEEE Trans. Syst., Man,
Cybern., vol. 23, pp. 173-182, 1993.

 [5] C. L. Giles, D. Chen, G. Z. Sun, H. H. Chen, Y. C. Lee,
and M. W. Goudreau, “Constructive learning of
recurrent neural networks: Limitations of recurrent
cascade correlation and a simple solution,” IEEE Trans.
Neural Networks, vol. 6, pp. 829-836, 1995.

 [6] C.M. Higgins and R.M. Goodman, “Fuzzy rule-based
networks for control,” IEEE Transactions on Fuzzy
Systems, vol.2, no.1, pp. 82 -88, Feb. 1994.

 [7] J.R. Jang, “Input Selection for ANFIS Learning”,
Proceedings of the Fifth IEEE International
Conference on Fuzzy Systems, Vol.2, pp.1493-1499,
1996

 [8] H. Lu, R. Setiono, and H. Liu, “Effective Data Mining
Using Neural Networks,” IEEE Transactions on
Knowledge and Data Engineering, vol. 8, no. 6, pp.
957-961, Dec. 1996.

 [9] M. Mezard and J. P. Nadal, “Learning in feedforward
layered networks: The tiling algorithm.” J. Phys., vol.
22, pp. 2191-2204, 1989.

 [10] J. R. Quinlan, C4.5:Programs for Machine Learning,
Morgan Kaufmann: San Mateo, CA, 1993.

 [11] G. G. Towell and J. W. Shavlik, “Knowledge-based
artificial neural networks,” Artif. Intell., vol. 70, pp.
119-165, 1994.

 [12] G. M. Weiss, “Learning with rare cases and small
disjuncts,” Proceedings of the Twelfth International
Conference on Machine Learning, Morgan Kaufmann:
San Francisco, CA, pp. 558-565, July 1995.

[13] J.-S.R. Jang. “ANFIS: Adptive-Network-based Fuzzy
Inference Systems.” IEEE Transactions on Systems,
Man and Cybernetics, vol. 23, pp. 665-685, 1993.

[14] C. Juang and C. Lin, “A recurrent self-organizing
neural fuzzy inference network” IEEE Trans. Neural
Networks, vol. 10, no.4, pp. 828-845, 1999.

[15] Y. Frayman and L. Wang, “Data Mining Using
Dynamically Constructed Fuzzy Neural Networks,”
Research and Development in Knowledge Discovery
and Data Mining: Proceedings of the Second Pacific-
Asia Conference on Knowledge Discovery and Data
Mining (PAKDD-98), Springer-Verlag, Lecture Notes
in Artificial Intelligence, vol. 1394, pp. 122-131, April
1998.

[16] L. X. Wang and J. M. Mendel, “Generating fuzzy
rules by learning from examples,” IEEE Trans. Syst.,
Man, Cybern., vol. 22, pp. 1414-1427, 1992.

[17] M.Sugeno and G.T.Kang, “ Structure identification of
fuzzy model,” Fuzzy Sets Syst., vol. 28, pp. 15-33,1988.

[18] P.Werbos, “Beyond regression:New tools for
prediction and analysis in the behavioral sciences,”
Ph.D. dissertation, Harvard Univ.,Cambridge, MA,
1974.

[19] D.Dubois and H.Prade, “A unifying view of
comparision indices in a fuzzy set theoretic
framework,” Fuzzy Sets and Possibility Theory: Recent
Developments, R.R.Yager,Ed. New York: Pergaon,
1982.

5

	Introduction
	2. Implementation of Our FNN
	
	
	
	2.2 FNN Training
	2.4 Partition Validation
	2.5 Rule Base Modification

	3. Experimental Evaluation
	4. Discussion and Conclusions
	REFERENCES

