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ABSTRACT 
 
Transiently chaotic neural network with continuous neural 
states is implemented to restore gray level images. The 
neural network is modeled to represent the image whose 
gray level function is the simple sum of the neuron state 
variables. The restoration consists of two phases: 
parameter estimation and image reconstruction. During the 
first phase, parameters are estimated by comparing the 
energy function of the neural network to a constraint error 
function. The neural network is updated using stochastic 
chaotic simulated annealing. Hopfield neural network is 
also implemented to compare the results. Experiments 
show that transiently chaotic neural network could get 
good results in much shorter time compared to Hopfield 
neural network. 
 
 

1. INTRODUCTION 
 

Image restoration has great application in various fields of 
signal processing. As most imaging systems are imperfect 
and they tend to produce noisy blurred images. Image 
restoration seeks to recover the true image using objective 
criteria and some prior knowledge about the original 
image. Restoration techniques are applied to remove 1) 
system degradations such as blur due to optical system 
aberrations, atmospheric turbulence, motion and 
diffraction; and 2) statistical degradations due to noise. 

Various methods have been proposed for image 
restoration, such as inverse filter, Wiener filter [1], Kalman 
filter [2]. One of the major drawbacks of most of the 
image restoration algorithms is the computational 
complexity, so much so that many simplifying 
assumptions such as wide sense stationary (WSS), 
availability of second-order image statistics have been 
made to obtain computationally feasible algorithms. 

The inverse filter method works only for extremely 
high signal-to-noise ratio images. The wiener filter is 
usually implemented only after the wide sense stationary 
assumption has bee made for images. Furthermore, 

knowledge of the power spectrum or correlation matrix of 
the undegraded image is required. Often times, additional 
assumptions regarding boundary conditions are made so 
that fast orthogonal transforms can be used. The Kalman 
filter approach can be applied to nonstationary image, but 
is computationally very intensive. It is desirable to develop 
a restoration algorithm that does not make WSS 
assumptions and can be implemented in a reasonable time. 

An artificial neural network system that can perform 
extremely rapid computations seems to be very attractive 
for image restoration in particular and image processing 
and pattern recognition in general. Zhou et al [3] proposed 
a method using a neural network model containing 
redundant neurons with discrete neuron states to restore 
gray level images degraded by a known shift-invariant blur 
function and noise. Paik and Katsaggelos [7] modified the 
model to eliminate the energy check steps by ensuring the 
energy always decreases during neural updating so that the 
network eventually converges to a fixed point. However 
different fix points represent different image quality.  
Starting from the same initial state the modified neural 
network may converge to different quality with different 
neural updating sequences. Sun [8] [9] proposed a 
generalized updating rule (GUR) and 
eliminating-highest-error (EHE) criterion to ensure 
network convergence and improve quality by trying to find 
the best neural updating sequence. However EHE is very 
time consuming as it tries to find the neuron that could 
mostly decrease the energy function before each neural 
updating step. 

Simulated annealing is a general method for 
obtaining approximate solutions of combinational 
optimization problems. Since the optimization processing 
is undertaken in a stochastic manner, it is also called 
stochastic simulated annealing (SSA). In recent years, a 
large amount of work has been done in chaotic simulated 
annealing (CSA). CSA can search efficiently because of its 
reduced search spaces. Chen and Aihara [4] proposed a 
transiently chaotic neural networks (TCNN) which adds a 
large negative self-coupling with slow damping in the 
Euler approximation of the continuous Hopfield neural 



network so that neurodynamics eventually converge from 
strange attractors to an equilibrium point. The TCNN 
showed good performance in solving traveling salesman 
problem (TSP). In this paper we try to solve image 
restoration problem using TCNN. 

Comparing the restoration results requires a 
measurement of image quality. One commonly used 
measurement is peak signal-to-noise ration. Another image 
quality measurement m1 is extracted from video quality 
measurements based on human perception [5]. The 
equation for m1 is given by 
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where SI is the spatial information defined by 
 
 SI[F]=STDspace {Sobel [F]} (2) 
 
STDspace is the standard deviation operator over the 
horizontal and vertical spatial dimensions in a frame, and 
Sobel is the sobel filter operation. We will use these two 
measurements to qualify our experimental results. 

This paper is organized as follows. Section II reviews 
neural network representation for an image. In Section III 
the TCNN is reviewed, and the network parameters are 
estimated in Section IV. The restoration algorithm is 
presented in Section IV. Our experimental results appear in 
Section V, followed by concluding remarks. 
 
2. NEURAL NETWORK REPRESENTATION FOR 

IMAGE 
 

The neural network containing redundant neurons, which 
was proposed by Zhou et al [3], is used. The model consists 
of L2 ×  M mutually interconnected neurons where L is the 
size of image and M is the maximum value of the gray level 
function. Let V={vi,k where 1≤ i ≤L2, 1≤ k ≤M} be a state 
set of the neural network with vi,k denoting the state of the 
( i, k)th neuron. U={ui,k where 1≤ i ≤L2, 1≤ k ≤M} denotes 
the internal state of neuron {i,k}. Let Ti,k;j,l denote the 
strength (possibly negative) of the interconnection between 
neuron (i,k) and neuron (j,l). We require symmetry: 

Ti,k;j,l = Tj,l; i,k    for 1≤ i,j ≤L2 and 1≤ l,k ≤M. (3) 
We also allow for neurons to have self-feedback, i.e., 

Ti,k;i,k ≠ 0. In this model, each neuron (i,k) is randomly and 
asynchronously updated. The image is described by a finite 
set of gray level functions {x(i,j) where 1≤ i,j ≤L} with x(i,j) 
denoting the gray level of the pixel (i,j). The image gray 
level function can be represented by a simple sum of the 
neural state variables as 
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where m=(i-1)L +j.  By using the lexicographic notation, 
the image degradation model can be written as Y=HX+N, 
where H is the blur matrix corresponding to a blur function, 
N is the signal independent white noise, and X and Y are 
the original and degraded images, respectively. 

The shift-invariant blur function can be written as a 
convolution over a small window. For instance, it takes the 
form 
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The blur matrix H will be a block Toeplitz or block 
circulant matrix. The block circulant matrix corresponding 
to above h can be written as: 
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where 
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3. TRANSIENTLY CHAOTIC NEURAL NETWORK 

 
The transiently chaotic neural network is defined as follows 
[4]: 
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 z(t+1) = (1-β) z(t) (9) 

 
where  
vik :  output of neuron (i,k); 
uik :  internal state of neuron (i,k); 

Tikjl= Tjlik; ik

L

ijj

M

kll
ikjlikjl xEIvT ∂−∂=+∑ ∑

≠= ≠=

/
2

,1 ,1

 :  

connection weight from neuron (j, l) to neuron (i, k); 



Iik :  input bias of neuron i, k; 
k :   damping factor of nerve membrane (0≤ k ≤1); 
α :   positive scaling parameter for inputs; 
z(t):  self-feedback connection weight or refractory 
strength (z(t) ≥ 0); 
Io :   positive parameter; 
ε :    steepness parameter of the output function (ε > 0); 

Note when the “temperature” z(t) tends toward zero 
with time evolution, equations (7)-(9) eventually stabilize. 
 

4. PARAMETER ESTIMATION 
 

The neural model parameters including the interconnection 
strengths, and bias inputs can be determined using the 
energy function of the neural network. The energy function 
of the neural network can be written as [6] 
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  (10) 
Image restoration seeks to recover the true image from 

the degraded image. In order to use the spontaneous 
energy-minimization process of the neural network, Zhou 
et al [3] reformulated the restoration process as one of the 
minimizing an error function with constraints defined as 
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where Z  is the L2 norm of Z and λ is a constant. Such a 
constrained error function is widely used in the image 
restoration problems. In general D is a high-pass filter. A 
common choice of D is a second-order differential operator, 
which can be approximated as a local window operator in 
the 2-D discrete case. For instance, D may be a Laplacian 
operator. 

The first term in (11) is to seek an X̂  such that H X̂  
approximates Y in a least squares sense. Meanwhile, the 
second term is a smoothness constraint on the solution X̂ . 
The constant λ determines their relative importance. 

λ=∞:  X̂  is smooth, but we ignore the data; 
λ=0: X̂  approximate X, but X̂ may not be 

smooth. 
Expanding (11) and then replacing xi by (4), we have  
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By comparing the terms above to the corresponding 
terms in (10) and ignoring the constant term ∑
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can determine the interconnection strengths and bias inputs 
as 
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where hi,j and di,j are the elements of the matrices H and D 
respectively. Two interesting aspects of (12) and (13) 
should be pointed out: 1) the interconnection strengths are 
independent of subscripts k and l and the bias inputs are 
independent of subscript k, and 2) the self-connection 
Ti,k;j,l is not equal to zero which requires self-feedback for 
neurons. 

For an L ×  L image with M gray levels, L2M neurons 
and 1/2L4M2 interconnections are required to represent the 
image. The space complexity is O(L4M2), which is difficult 
to represent on a conventional computer. However 
simplification is possible if the neurons are sequentially 
updated. As noted earlier, the interconnection strengths 
given in (12) are independent of subscripts k and l and the 
bias inputs given in (13) are independent of subscript k; the 
M neurons used to represent the same image gray level 
function have the same interconnection strengths and bias 
inputs. Hence, the dimensions of the interconnection matrix 
T and bias input matrix I can be reduced [3]. 
 

5. RESTORATIONS 
 
Restoration consists of two steps: neural evaluation and 
image construction. Once the parameters Ti,k;j,l and Ii,k are 
obtained using (12) and (13), each neuron can randomly 
and asynchronously evaluate and update its state using (8) 
and (7) accordingly. When one quasi-minimum energy 
point is reached, the image can be constructed using (4). 

The neural network energy does not decrease 
monotonically. To successfully restore the image the 
neural network has to find an optimal solution, which 
corresponding to the minimum energy of the network.  

Define the state change kiv ,∆  of the neuron (i,k) 
and energy change E∆  as 
 old

ki
new

kiki vvv ,,, −=∆  and oldnew EEE −=∆  



Consider the energy function in (10), the change E∆  due 
to a change kiv ,∆  is given by 
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At any one time only one neuron is updating. The 

new state new
kiv ,  of neuron (i,k) is calculated according to 

(7)-(9), and the energy change E∆  is calculated 
according to (14). If E∆ ≤ 0, then new state of neuron (i,k) 

new
kiv ,  is accepted, and the network with new neural state is 

used as the starting point of the next step. Then case E∆ ≥ 
0 is treated probabilistically: then probability that the new 
neural state new

kiv ,  is accepted is 
)/exp()( TkEEP B∆−=∆ . Random numbers uniformly 

distributed in the interval (0,1) are a convenient means of 
implementing then random part of the algorithm. One such 
number is selected and compared with )( EP ∆ . If it is less 
than )( EP ∆ , then new state is retained; if not, the original 
state is used. 

The algorithm is summarized as below: 
1) Set the initial state of the neurons. 
2) Sequentially visit all numbers (image pixels). For 

each number, use (7)-(9) to update it repeatedly 
until there is no further change. 

3) Check the energy function; if the energy variation 
is less than a limit, go to step 4); otherwise go 
back to step 2). 

4) Construct the image using (4). 
 

6. EXPERIMENTAL RESULTS 
 
Experimental results presented here demonstrate the 
performance of noisy chaotic neural network on image 
restoration. Performances of Hopfield neural network and 
transiently chaotic neural network are also shown.  

We used Lena image of size 128 ×  128 with 256 
gray levels. The image was degraded by a 5 ×  5 blur 
function: 
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Then we further degraded the image by adding a 
small amount of quantization noise.  

The high pass filter we use to impose the smoothing 
constraint is  

 6/
141
4204
141
















−=D  

The neural network starts from three different initial 
states. The three initial states are randomly generated. 

The simulation results are shown in Figure 1 and 
Table 1. The PSNR and m1 of the degraded image are 
24.7036 and 0.2882, respectively.  

Both neural networks improve the degraded image. 
The restoration results starting from the three random initial 
states are consistent. HNN takes more than 100 iterations to 
converge to a stable point, TCNN takes around 20 iterations 
to stabilize. HNN can improve the PSNR from 25 dB to 41 
dB, TCNN to 37 dB. The other measurement, m1, shows 
consistent result with PSNR. 

 
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig. 1. Restoration of noisy blurred real image. (a) 

Original image. (b) Blurred image. (c)-(d) Restored image 
using Hopfield neural network and transiently chaotic 
neural network, respectively. 
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Table 1. Restoration results in terms of PSNR and m1 

 
7. CONCLUSION 

 
In this report we have implemented Hopfield neural 
network and transiently chaotic neural network to restore an 
image. The  restoration procedure consists of two phases: 
parameter estimation and image reconstruction. The 
restored image is generated iteratively by updating the 
neurons representing the image gray levels via a simple 
sum scheme. The networks were updated in stochastic 
manners. From the simulation results we see that transiently 
chaotic neural network is capable of  generating good 
restoration results in much shorter time compared to 
Hopfield neural. 
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   Iterations PSNR m1 

Random 
initial 
state1 

HNN 107 41.4912 0.0132 

TCNN 24 37.1758 0.0309 

Random 
initial 
state2 

HNN 106 41.483 0.0132 

TCNN 21 37.1433 0.0313 

Random 
initial 
state3 

HNN 106 41.4678 0.0133 

TCNN 26 37.2336 0.0309 
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