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Abstract—For high dimensional data, if no preprocessing is car- Feature extraction creates a number of new features through a
ried 0(;“ bE‘fOt:e itnput:ting paFtterns to C||61$Stgiefsy thg COTE}ggtion ﬂ?t- transformation of the raw features. Linear discriminant analysis
quired may be too heavy. For example, the number of hidden units . )
of a radial basis function (RBF) neural network can be too large. (LI.DA) [31, [7], [11], [13], [14] and prlnC|paI_ components anal
This is not suitable for some practical applications due to speed and ysis _(PCA) [4], [6] are two popular teChn'que.S for feature_ ex-
memory constraints. In many cases, some attributes are not rele- traction. Although these types of transformations are designed
vant to concepts in the data at all. In this paper, we propose a novel to maintain concepts in the data, it is difficult to prevent artifacts
separability-correlation measure (SCM) to rank the importance of ~ from affecting the original concepts in the data detrimentally.
attributes. According to the attribute ranking results, different at- Feature selection techniques select the best subset of features
tribute subsets are used as inputs to a classifier, such as an RBF ., . . .
neural network. Those attributes that increase the validation error ou_t of the original ;et. Thg a‘_ttr'bUteS that are important to ma'r,"
are deemed irrelevant and are deleted. The complexity of the clas- tain the concepts in the original data are selected from the entire
sifier can thus be reduced and its classification performance im- attribute set. How to determine the importance level of attributes
proved. Computer simulations show that our method for attribute s the key to feature selection technique. The idea of ranking fea-
importance ranking leads to smaller attribute subsets with higher e imnortance for further selecting features out of the original
accuracies compared with the existing SUD and Relief-F methods. . ) .

We also propose a modified method for efficient construction of an feature set ‘?"?”V?S from th? fact that Qn‘ferent features contribute
RBF classifier. In this method we allow for |arge Over|aps between to the CIaSS|f|Cat|0n taSk d|ﬁerent|y, l.e., Irl‘elevant features de-
clusters corresponding to the same class label. Our approach sig- grade the performance of classification both in the classifica-

nificantly reduces the structural complexity of the RBF network  tion accuracy and the complexity of representing classification

and improves the classification performance. results. Mutual information based feature selection (MIFS) [3],
Index Terms—Classifier, data dimensionality reduction, over- [1] is a common method of feature selection, in which “the in-
laps, RBF neural networks, SCM. formation content” of each attribute (feature) is evaluated with

regard to class labels and other attributes. By calculating mutual
information, the importance levels of features are ranked based
. o . on their ability to maximize the evaluation formula. However, in
I HE amount of data stored in organizations, both in termg|Fs, the number of features to be selected needs to be pre-de-
_of the number of patterns (samples) and the number fed. Dashet al. [10] use an entropy measure (SUD) to eval-
attributes (variables), is increasing rapidly. Data dimensionalifiate the relative importance of attributes. The entropy measure
reduction (DDR) aims at reducing the number of attributgg hased on the similarities of different instances without consid-
under consideration. DDR has become an important aspgfhg the class labels. Attribute subsets were then selected based
of data mining, since human experts and corporate managgksattribute importance ranking and classification accuracy with
are able to make better use of lower-dimensional data th@n 5. Kononenko [9] proposed Relief-F to rank attribute impor-
higher-dimensional data. In addition, DDR can decrease thgce. In the Relief-F method, for a given instante nearest
computational burde_n for yarious. automated processes, fjférighbors are searched frahf different classes. A pair of in-
example, when a radial basis function (RBF) neural network dgances is formed including the given instance and one of its
used to classify data. Reduced data dimensionality leads to Igggrest neighbors. Together with the nearest neighbor from the
complicated network structure and thus increases efficiencydime class, there ané + 1 pairs of instances. The difference
processing data. Removal of irrelevant data can significanilyan attribute in each pair of instances is calculated. The proba-
improve the accuracy of a classifier. ~bilities of these differences are used to evaluate the importance
DDR is to map high-dimensional patterns onto lower-dimenys the attribute.
sional patterns. Techniqyes for DDR may be classified into WO |n this paper, we propose a novel separability-correlation
categories: feature (attribute) extraction and feature selectigfegsure (SCM) for determining the importance of the original
attributes. The SCM includes two parts, the intra-class distance
Manuscript received May 28, 2000; revised April 21, 2002. This paper wég inter-class dlstapce ratio and an at.trlbute-class gorrelatlon
recommended by Assaciate Editor P. K. Willett. measure. The attribute-class correlation measure is used to
The authors are with the School of Electrical and Electronic Engpygluate the power of each attribute affecting the class label
neering, Nanyang Technological University (NTU),  Singapore (e'mai*:or each pattern. The larger the correlation factor is, the more
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patterns. The relative importance of a feature is given by it is the mean of all patterns in the data set
relative magnitude of the SCM. . n o

Once attribute importance ranking is obtained using the SCM, = 2iz1 kg Xik . (5)
a classifier needs to be used to select the attribute subset that n
leads to the lowest classification error. In this paper, the RBF is the total number of patterns in the data set, V5 n; +
neural network is used as a classifier. no + -+ + Ne.

We propose a simplified RBF classifier by allowing for large The greaterS, is and the smalle§,, is, the better the sepa-
overlaps between patterns of the same class. The RBF neuadility of the data set is. Therefore, the ratio%f andS, can
network has attracted much attention in recent years dueb®used to measure the distinction of the classes: the smaller the
its simple architecture and its ability to escape from the locadtio, the better the separability [5].
minima from which multilayer perceptrons suffer. Usually, its If removing attributek; from the data set leads to less class
kernel function is Gaussian. Each Gaussian kernel functionsisparability, i.e., a greatét,,/S;, compared to the case where
a cluster serving mainly a certain class. The boundary of ta#tribute k2 is removed, one may consider attribute more
receptive field of the kernel function is a hyper-sphere. Thmportant for classification of the data set than attribkies,
Euclidean distance between a pattern and the center of #m vice versa. Hence we may rank the importance of the at-
cluster measures the probability that a pattern belongs tdridutes by calculating the intraclass-to-interclass distance ratio
class. with each attribute omitted in turn.

The paper is organized as follows. The SCM measure forHowever, the ratiaS,,/S;, does not always work well as a
ranking the importance of attributes is proposed in Section tlass separability measure. For example, consider two classes,
Section Il introduces how to construct the modified RBF neuralith one class surrounding the other, but are completely
network classifier efficiently. Experimental results on reducingrable Sinceniq, 7, andm defined in (4) and (5) are equal,
data dimensionality and obtaining a simpler architecture of ti$ — 0, which indicate totainseparability Therefore there is
RBF classifier are shown in Section IV. Finally, we conclude the need to have other importance measures.
paper in Section V.

B. Attribute-Class Correlation Measure
Il. SEPARABILITY-CORRELATION MEASURE FORFEATURE In addition to the separability of classes in the data set, the
IMPORTANCE RANKING correlation between the changes in attributes and their corre-
sponding changes in class labels should be taken into account
B S _when ranking the importance of attributes. This correlation di-

The probability of correct classification is large, when the diggcqy links features with class labels. To two different patterns,
tances between different classes are large. Therefore, to idenfify\qir class labels are different, the variations of attributes in
a subset of features that can maximize the separability betwggg 1y patterns are considered to be the affecting factor for the
classes is a desirable objective of feature selection. _ variation of class labels and should be weighted positively; if the

Class Separability may be measured by the intraclass distapegs |apels are the same, the variations in the attributes are irrel-
(the distance of patterns within class) and the interclass dis- o\ ant in deciding the classes and should be weighted negatively.
tance (the distance between patterns of different clastdS]  thg correlation measure can be a useful factor by combining to-

C p o - ] gether with our class separability measure.
Sw = Z _— Z[(Xik — ) (Xiw — i) T2 Q) We propose the following correlation between th¢h at-
i=1 "M =1 tribute and the class labels in the data set

A. Class Separability Measure

and

Cr = [Xir — Xji| - magn(y; — y;) (6)
c i#j
S = Zpi[(m’i = ) (i — )] (@) whereX,, and X 1, are thek-th attributes of the-th pattern
=1 and thej-th pattern, respectively,; andy; are the class labels
HereC is the number of classes in the data sgis the number of the i-th pattern and thg-th pattern, respectively. For any
of patterns in thé-th class P; is the probability of the-th class. y,magn(y) = 1if |y| > 0 andmagn(y) = —t¢if |y| = 0.
X’ik is the normalized data vector, whogth attribute, X ;. (j) A great magnitude of’;, shows that there is a close correlation
is normalized as between class labels and theh attribute, which indicates the
- Xin(j) great importance of attributke in classifying the patterns, and

Xir(j) = V() — Min(z) (3) vice versa.

whereMax(z:;) andMin(z;) are the maximum and minimum C. Separability-Correlation Measure for Attribute Importance
of the j-th attribute in the data set respectively= 1,2,...,n. Ranking
n is the number of attributes;(7) is the original (unnormal- ~ We propose the following separability-correlation measure

ized) datas; is the mean vector of theth class (SCM) to evaluate the importance levels of attributes by com-
n = bining the above two measures
> fe1 X ik
m; = - .

e ) Ry, = xS + (1 - x)Cr 7
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WhereSk B (ka/Sbk)7S—k = (Sk — Mm(Sk))/(Max(Sk) — input Output
Min(Sy)) is the normalization o6}. Max(S;) and Min(Sy) 2|
are the maximum and minimum of alfy, respectively. e
k = 1,2,...,n. n is the number of attributesS,,x, and Sy,
are intraclass and interclass distances calculated witl:-the
attribute omitted from each pattern, respectively. For example,
. = —Xo—
the i-th patternXi = {xil,wig, v Tk Tkt 1y e - szn} be-
Comes)?{ = {.’L’il, Ti2y ey Lik—1,Tikt1s--- :vm} whenRy, is bias

calculated.C), = (Cy — Min(Cy))/(Max(Cy) — Min(Cy))
is the normalization of”y. x is the parameter to weight thegiy 1 Architecture of an RBF neural network.

two items for the final measure. Hefle< y < 1 andy is

determined empirically: the best choice pfshould lead t0 & ¢ strategy of using the classification accuracy as evaluation for
subset of attributes which results in the highest Class'f'cat'%lecting features is used widely. We use suboptimal search and

accuracy. _ _ RBF classifiers as evaluators in this paper.

The importance levels of attributes are ranked using the
values of R,. The greater the magnitude dt,, the more . M ODIFIED METHOD FOR CONSTRUCTING AN
important thek-th attribute. We will demonstrate the use of our EEFICIENT RBE OLASSIFIER

SCM method in Section IV. )
We use a combination of two measures, i.e., class separabilifRBF neural networks [15], [17], [18] are widely used for

and attribute class correlation, because either of them alone d tion approximation, patt_e_rn cIaSS|f|cat|(_)n and so on. In this
gPer, we use an RBF classifier together with the SCM to select

not work well, as shown in our experimental results resent%_l )
P P the best subsets of attributes. In the RBF neural network, the ac-

later in the paper. tivation of a hidden unit is determined by the distance between

D. Bottom-Up, Top-Down, and Exhaustive Search for Rankiﬁ'@e, input vector.and the .center vector of the hidden unit. The

Attributes weights connecting the hidden layer and the output layer can be
. determined by a linear least square (LLS) method [2], which is

Either bottom-up search or top-down search can be used {8&; and free of local minima, in contrast to the multilayer per-
ranking attribute importance. In a bottom-up search, we begiBptron neural network.
froman empty set. The SCMiis used for evaluating each attribute’rhere are three |ayers in the RBF neural network, i.e., the
by omitting this attribute from each pattern, i.e., the attribute jput layer, the hidden layer with Gaussian activation functions,
considered to be more important if its corresponding SCM magnd the output layer. The architecture of the RBF neural network
nitude is larger than others. The selected attribute is includgtshown in Fig. 1. In this paper, we use the RBF network for
to the empty attribute subset. This operation is continued untlbssification. If there ard/ classes in the data set, we write
n attributes are included. The order of attributes entering thige m-th output of the network as
attribute set indicates the importance order of attributes. In a %
bottom-up se_arch, the num_b_er of at_tribut(_e combinations in the Yo (X) = Z Wi j0;(X) + Wb 8)
SCM calculation for determining attribute importance equals to =
n (n is the number of attributes). ) . _ .

In a top-down search, we start from the complete attribute sE€"®: X is the n-dimensional input pattern vector,
Each attribute is removed from the attribute set temporarily faf — 1,2,...,M,K Is th_e numbe_r of hidden pmtﬂ IS
calculating its SCM. Then the least important attribute, Who%{e numbgr of outpuky.; is the We'g.ht conr_lectmg t.hﬁth
corresponding value in SCM is the smallest, is eliminated fro dden unit to then-th output nodeby, is the biasuwn, Is the

the current attribute set. The steps are iterated until only Jyeight connecting the bias and theth output noded; (X) is
attribute is left in the attribute set. The number of attribute com-

O activation function of thg-th hidden unit
binations in the SCM calculationis+ (n — 1) +---+ 1 = HX;CZJ'HQ
n(n + 1)/2. In Section IV, the differences of the two searches 0;(X)=e 9)

will be shown. . . _ whereC; ando; are the center and the width for tfth hidden
In an exhaustive search, all the possible attribute subsets & respectively, which are adjusted during learning.

examined. The number of attr(ibu}()a combinations needed to bq:inding the centers, widths, and the weights connecting
checked isC,, + O +--- + G 7' + C;p = 2" — L. Inthe  pigden nodes to the output is the key for constructing and
branch and bound algorithm, some attribute sets need not tgning the RBF classifier. Both the dimensionality and the
examined, which leads to the saving in computation; howevefstribution of the input patterns affect the number of the hidden
the number of calculations still grows exponentially within  ynits. If the dimensionality is reduced, the number of hidden
addition, the computational saving is achieved by assuming th&its will also be decreased.
feature selection evaluation functions is monotonic [5]. Overlapped receptive fields of different clusters can improve
Due to the computational burden of optimal search methodge performance of the RBF classifier when dealing with noisy
one has to resort to suboptimal feature selection methods.data [12]. In [8] and [19], overlapping Gaussian kernel func-
classification tasks, since the goal is to obtain better classifidg#@ns are created to map out the territory of each cluster with
tion accuracy with less complicated construction of classifiera,smaller number of Gaussians. In those previous methods, the
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We therefore use the following algorithm to construct an ef-
ficient RBF classifier, incorporating the above modification to
the existing algorithms [19], [20].

1) Initialize for training.

a) We divide the data set into three parts, the training
data set, the validation data set, and the test data set.
b) Inorder to derive the widths of the kernel functions,
a general scale of neighborhoéglis obtained by
calculating the standard deviation of the data set

(a) (b) [19].

Fig. 2. Comparison between (a) existing algorithms: small overlaps between 2) Setstagd, = 1 (L indicates the steps In one training pro-

clusters, and (b) the modified algorithm with reduced number of clusters: ~ Cedure)(L) = do,6 = a - 6o, wheres(L) is the initial
small overlaps between clusters of different classes, but large overlaps between  radius of clusters at training stadie(training stage indi-

clusters of the same class. cates the status of the training procedure, in which initial
radius of clusters are affected), the a@nid the increment

clusters are formed as follows. A pattern is randomly selected _ Step for the radiusx is the change rate of radius.

from the data set’ as the initial center of a cluster. The radius 3) Generaté’., a copy of the original training data st

of this cluster is chosen in such a way that the ratio between the?) Forming clusters.

number of patterns of a certain class (in-class patterns) and the a) Count the number of patterns in classed/in If

total number of patterns in the cluster is not less than a pre-de- the number of patterns in a class is fewer than a
fined valued. Once this cluster is formed, all patterns inside this predefined number (we use four in this paper), the
cluster are “removed” from the data set and do not participate in patterns in the class will not be selected.
the formation of other clusters. The valuedo$ determined em- b) Set sub-stagé, = 1 (L, indicates the shrinking
pirically and is related to an acceptable classification error rate. degree in the radius of cluster in a sub-stage
Sincef determines the radii of the clusters, it also indirectly de- training procedure)§(L,) = §(L).
termines the degree of overlaps between different clusters. Gen- c) Select randomly a pattern frofi. as an initial
erally, a larged leads to small radii of clusters, thus it leads to cluster center, search i all the patterns within
small overlaps between the Gaussians for different clusters and 8(L)-neighborhood of the center pattern. Thus
a small classification error rate for the training data set. Since large overlaps are permitted among clusters of the
a small classification error is desired, there usually exist small same class, as proposed above.
overlaps between the Gaussians representing the clusters. d) Check whether the ratio between in-class patterns

Let us consider a simple example. Suppése- 0.8, i.e., and the total patterns in the subset is greater than a
there must have at least 80% in-class patterns in each cluster. pre-defined valud. If the ratio is less thad, set
In Fig. 2(a), suppose cluster A has been formed and its mem- L, =L, +1,ands(L,) = §(L,) — 6. Search the
bers “removed” from the data sEt Suppose pattern 2 is subse- patterns withirs (L, )-neighborhood of the selected
quently selected as the initial center of a new cluster and cluster pattern. Stop only if the ratio criterion is met or if
B is thus formed. Clusters C through G are then formed sim- L, > (1/(2a)). Count the number of epocH, , if
ilarly in sequence. We see that clusters B, C, and D are quite N, > D -i (i is the number of patterns ., D is
small and therefore the effectiveness of the above clustering al- an integer. EmpiricallyD = 3.), 6 = 0.99. Repeat
gorithm needs to be improved. 4 until the training sev, is empty.

In this paper, we propose an algorithm to reduce the number
of clusters as follows. We first make a copy of the original 5) Calculate the center and width of each cluster: the center
data set’. When a qualified cluster (the ratio of in-class pat- IS the mean pattern of all patterns in the cluster and the
terns should be higher thdi), e.g., cluster A in Fig. 2(b) [same width is the standard deviation of these patterns.

asin Fig. 2(a)], is generated, the members in this cluster are “re-6) Obtain weights by the LLS method [2].

moved” from the copy data s&t, but the patterns in the original  7) Calculate, (the classification error of the training set)
data seti’ remain unchanged. Subsequently, the initial center ~ andE, (the classification error of the validation set). Stop
of the next cluster is selected from tbepy data set,, but the if both of E, and E, are smaller than a pre-specified
candidate members of this cluster are patterns inotiginal value Ep. In this paper,tip = Epre (Epr. is a prede-
data setV/, and thus include the patterns in the cluster A. Sub-  fined value of classification error ratép,. = 2% in this
sequently when pattern 2 is selected as an initial cluster center, Paper). Else:

a much larger cluster B, which combines clusters B, C, and D If E,(L) < Ey(L —1),setL = L+1andé(L) =
in Fig. 2(a), can still meet thé-criterion and can therefore be 6(L) —6/2.Goto 3.

created. By allowing for large overlaps between clusterstfer If Ee.(L) > Ew(L—1)andE,(L) > E,(L—1),L =
same classwe can further reduce the number of clusters sub- L+1,6(L)=06(L)—6,9g0t03.

stantially. This will lead to more efficient construction of RBF If L > (1/a)orE, > Eo goto 2.

networks, and will be demonstrated by computer simulations inCompared to Rot al’s original algorithm [19], [20], we
the next section. have made following changes.
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1) In Step 4, large overlaps among clusters of the same class TABLE |

are allowed in order to reduce the number of hidden uningDUCHON IN THE NUMBER OF HIDDEN UNITS IN THE RBF NETWORK WHEN
LARGE OVERLAPS ARE ALLOWED BETWEEN CLUSTERS FOR THESAME CLASS.

without reducing the classification accuracy. . ALL ATTRIBUTES IN EACH DATA SET ARE USED ASINPUTS
2) In Step 6, the LLS method [2] is used to obtain the weights
between the hidden layer and the output layer. Data set Iris Monk3 | Thyroid | Breast

3) In [19], six training stages were used corresponding €, ceation | small overlap | 0.0373 | 0.0591 | 0.0465 | 0.0202
6 = {50%, 60%, ..., 100%}, respectively. In each stage,
6 is unchanged and all clusters of this stage should met
the §-criterion. A classification result is obtained for this number of | small overlap | 5.2 32 |17 34
6. The classification error rate from a stage is compared ti hidden units | large overlap | 4 19.6 8 11
that in the previous stage. Whether to continue to the next
training stage is determined by a comparison in the classi-
fication results. If the classification accuracy is better than Based on the attribute importance ranking, we further pro-
the previous stage, i.e., it is possible to obtain a highgbse to reduce the structural complexity and to improve the
accuracy iff is increased. Thus, the data is trained agagerformance of the RBF network as follows. According to the
using a larger. Otherwise, the training is stopped. Al-rank of importance level obtained by the algorithm described in
though a largef leads to a higher accuracy in the trainingsection I1,.J most important attributes are used for classifica-
data set, it may lead to poorer generalization in the testifign with the RBF neural network fof = 1,2,..., N — 1, N.
data set. Hence, in our algorithm (Step 2)s automat- The classification error rate is calculated for eathThus, N
ically adjusted according to the training condition, i.eglassification error rates are calculated corresponding swib-
how many patterns of the class concerned are left. Wiglets of attributes. For small, classification error rate decreases
the decreasing number of patterfigs decreased by a cer-as J increases until all relevant attributes are included..As
tain factor, say 0.9 in our simulations. increases further, the classification error rate may remain un-
changed or even increase because redundant or irrelevant at-

The aim of the modification proposed above, i.e., allowmg 1E(}Fibutes are included. The best subset of attributes is the one with
large overlaps among clusters of the same class, is to decre[ﬂﬁesmallest classification error rate

the number of Gaussian hidden units without reducing the

classification accuracy. Overlaps between clusterdifférent

classes affect the classification error rate, i.e., the larger the

overlaps between clusters differentclasses, often the larger

the classification error rate. However, in our paper, large V. EXPERIMENTAL RESULTS
overlaps between clusters of treame class are allowed,
which is not expected to degrade the classification accuracy.
Since large overlaps between clusters of the same class
help combine small clusters into larger ones, and noise

error rate large overlap | 0.0467 | 0.0688 | 0.0465 0.0146

1ris, Monk3, Thyroid, and Breast Cancer data sets from the
Repository of Machine Learning Databases [16] are used
AR ' '@tpis paper to test our algorithms for ranking attribute impor-
thus be suppressed by these combinations, the accuracy 0 : L
e . ance and constructing a simplified RBF network. Each data set
classification may even be improved. o . : L S
o o is divided into three parts, i.e., training, validation, and test sets.
The cost of the modification is increased training time. ASp/e sety = 0.1 andf = 100% in our experiments. Each exper-

sume the number of patterns in the data se¥isThe number jent s repeated five times with different initial conditions and
of hidden units isM; when allowing for large overlaps amongy, average results are recorded

clusters of the same class, and the number of hidden udifs is
Table | shows that when large overlaps among clusters of

without allowing for large _over_laps. For a certain hidden un{he same class are permitted, the number of hidden units is
k, the number of patterns in this clusterig. The processing . ' e .
gecreased while nearly the same classification error rate is

time for one pattern i€’ in the training procedure. Assume tha

both algorithms (with the modification and without the modimaintained.

fication) have the same initial conditions. The initial center of Attribute importance rankings using the SCM with different
each candidate cluster is selected randomly. Thus, the aver¥ge[S€e (7)] are shown in Table II, which shows thaaffects
number of trials in two algorithms for searching qualified clushe order of attribute importance rankingy's are used, i.e.,

ters may be assumed to be the same, &gy With the mod- x = 0.0,0.4,0.5,0.7, and 1.0. In order to determine which
ification, all N patterns in the data set will be checked whefirder is better, different subsets of attributes are input to the
searching for a qualified cluster in each trial. The time requird®BF classifier for each order, so as to find the best subset for
for one trial is thusV T'. For M, trials, the total time required is that order. If there are original attributes in the data set, there
M, - NT. Without the modification, if a cluster is considered t@ren candidate subsets of attributes as discussed in Subsection
be qualified, the patterns included in this cluster will be removeatiD. The classification results are used to evaluate the attribute
from the data set. Thus, the total time required for classificaubsets. We select the subset of attributes corresponding to the

tion without the modification i$~2 (N — Y."' N) = lowest classification error rate for each data set and each ranking
(MgN — Mo s  Ny)T < MyNT. Thus, more time is order. According to the experimental results (details for each

needed when applying the modification. However, the cost dgita set are given below), whgn= 0.4, the importance ranking
worthwhile in that less complicated classifiers with higher acesults for the four data sets lead to the lowest or nearly the
curacy are found in most cases. lowest validation error rates with the smallest attribute subsets.
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TABLE I
ATTRIBUTE IMPORTANCE RANKING USING THE SCM WITH
DIFFERENT x OBTAINED BY BOTTOM-UP SEARCH

X Iris Monk3 Thyroid | Breast
x =00 | 4312 ] 54,2]16,3 | 2,3,5,1,4 | 7,2,4,3,8,
9,5,6,1
x=041]4312]| 524,163 | 2,3,54,1 | 2,7,3,4,9,
5,8,6,1
x=0514132 (524,163 | 2,354,1 | 2,7,3,4,9,
5,1,8,6
x=07]14.23|5,24,1,6,3 | 2,5,3,4,1 | 2,7,1,34,
9,5,8,6
x=1011,24,3 | 523,6,4,1 | 2,5,34,1 | 1,2,7,3,4,
9,5,8,6
TABLE Il

CLASSIFICATION ERRORRATES FORIRIS DATA SET WITH DIFFERENT SUBSETS
OF ATTRIBUTES ACCORDING TO THEIMPORTANCE RANKING SHOWN IN
TABLE Il WHEN x = 0.0 AND y = 0.4. ATTRIBUTE SUBSET WITH
THE LOWESTVALIDATION ERRORIS HIGHLIGHTED IN BOLD

Attributes Error Rate

used Training set | Validation set | Test set

4 0.1222 0.0667 0.1333

4,3 0.0333 0.0000 0.0333

4,3,1 0.0556 0.0333 0.1000

4,3,1,2 0.0889 0.1000 0.1000
TABLE IV

SAME AS TABLE IIl, WHEN x = 0.5

Attributes Error Rate

used Training set | Validation set | Test set
1 0.3333 0.2333 0.4333
1,4 0.0778 0.0000 0.1000
1,4,2 0.0556 0 0.0333
1,4,2,3 0.0556 0 0.0333

A. Iris Data Set

There are four attributes in Iris data set. 150 patterns of Iris
data set are divided into three sets, i.e., 90 patterns for training,
30 for validation, and 30 for testing.

In Tables IlI-VI, classification error rates are shown for all
attribute subsets corresponding to different attribute importance
ranking results based on differepts. x = 0.4 is selected for
that it leads to the smallest attribute subjsett} with the nearly
lowest classification error rate.

B. Monk3 Data Set

SAME AS TABLE I, WHEN y = 0.7

TABLE V
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Attributes Error Rate

used Training set | Validation set | Test set

4 0.3333 0.3667 0.4667

4,1 0.1111 0.2000 0.1000

4,1,3 0.3333 0.2333 0.4333

4,1,3,2 0.0778 0.1000 0.0333
TABLE VI

SAME AS TABLE lIl, WHEN y = 1.0

Attributes Error Rate

used Training set | Validation set | Test set

1 0.4556 0.5667 0.3667

1,2 0.1889 0.3333 0.2333

1,24 0.0778 0.0667 0.1667

1,2,4,3 0.0444 0.0667 0.0333
TABLE VIl

CLASSIFICATION ERROR RATES FORMonk3 DATA SET WITH DIFFERENT
SUBSETS OFATTRIBUTES ACCORDING TO THEIMPORTANCE RANKING SHOWN
IN TABLE Il WHEN WHEN x = 0.0. THE ATTRIBUTE SUBSET WITH THE

LOWEST VALIDATION ERRORIS HIGHLIGHTED IN BOLD

Attributes Error Rate

used Training set | Validation set | Test set
5 0.2705 0.2328 0.2100
5,4 0.2541 0.3060 0.2450
5,4,2 0.0902 0.0991 0.0650
5,4,2,1 0.1967 0.2371 0.2050
5,4,2,1,6 0.1148 0.0948 0.1000
5,4,2,1,6,3 0.1885 0.2112 0.2600

TABLE VIII

SAME AS TABLE VII, WHEN y = 0.4, x = 0.5 AND y = 0.7

Attributes Error Rate

used Training set | Validation set | Test set
5 0.1880 0.3000 0.2870
5,2 0.1780 0.2830 0.2690
5,2,4 0.0242 0.0585 0.067
5,2,4,1 0.0899 0.3360 0.1830
5,2,4,1,6 0.0498 0.1897 0.1320
5,2,4,1,6,3 0.0328 0.2030 0.1240

In Tables VIl to IX, classification error rates are shown for all

There are six attributes in Monk3 data set. Monk3 data hastiribute subsets corresponding to different attribute importance
training set with 122 patterns and a test set with 421 patternanking results based on differegts. y = 0.4 is selected for
We divide the test set into 200 patterns for validation and 22iat it leads to the smallest attribute sub§t4, 5} with the

patterns for testing.

lowest classification error rates.
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TABLE IX TABLE XII
SAME AS TABLE VII, WHEN Y = 1.0 CLASSIFICATION ERROR RATES FORBREAST CANCER DATA SET WITH
DIFFERENT SUBSETS OFATTRIBUTES ACCORDING TO THEIMPORTANCE

Attribut E Rat RANKING SHOWN IN TABLE Il WHEN x = 0.0. THE ATTRIBUTE SUBSETWITH
ributes rror nate THE LOWESTVALIDATION ERRORIS HIGHLIGHTED IN BOLD
used Training set | Validation set | Test set
5 0.2705 0.2328 0.2100 Attributes Error Rate
5,2 0.2213 0.1853 0.2050 used Training | Validation Test
52,3 0.1967 0.1638 0.1400 set set set
5,2,3,6 0.1066 0.0690 | 0.0700 7 0.1100 | 0.0803 | 0.1022
5,2,3,6,4 0.2131 0.1767 0.1700 2 0.0954 0.0803 0.0949
5,2,3,6,4,1 0.1230 0.1552 0.1600 7,24 0.0391 0.0511 0.0219
7,2,4,3 0.0318 0.0438 0.0073
7,2,4,3,8 0.0367 0.0365 0.0219
TABLE X
CLASSIFICATION ERRORRATES FORTHYROID DATA SET WITH DIFFERENT 7,2,4,389 0-0244 0.0365 0.0146
SUBSETS OFATTRIBUTES ACCORDING TO THEIMPORTANCE RANKING SHOWN 7,2,4,3,8,9,5 0.0318 0.0438 0.0146
IN TABLE Il WHEN x = 0.0. THE ATTRIBUTE SUBSET WITH THE LOWEST
VALIDATION ERRORIS HIGHLIGHTED IN BOLD 7,2,4,3,8,9,5,6 0.0342 0.0365 0.0146
7,2,4,3,8,9,5,6,1 | 0.0342 0.0511 0.0219
Attributes Error Rate
used Training | Validation | Test
TABLE Xl
set set set SAME As TABLE XII, WHEN x = 0.4
2 0.1860 0.1628 0.2093
2,3 0.0698 | 0.0698 | 0.2093 Attributes Error Rate
used Training | Validation | Test
2,3,5 0.0543 | 0.0465 | 0.0930
set set set
2,3,5,1 0.0543 0.0465 | 0.1163
2 0.1100 0.0803 0.1022
2,3,5,1,4 0.0388 0.0465 | 0.1395
2,7 0.0709 0.0657 0.0876
2,7,3 0.0269 0.0365 0.0073
TABLE XI 2,7,3,4 0.0391 0.0438 0.0365
SAME AS TABLE X, WHEN Y = 0.4,y = 0.5, x = 0.TAND xy = 1.0
2,7,3,4,9 0.0269 0.0365 0.0219
Attributes Error Rate 2,7,3,4,9,5 0.0342 0.0365 0.0146
used Training | Validation | Test 2,7,3,4,9,5,8 0.0293 0.0438 0.0073
set set set 2,7,3,4,9,5,8,6 0.0269 0.0438 | 0.0146
2 0.0930 0.0930 | 0.0930 2,7,3,4,9,5,8,6,1 | 0.0342 0.0365 | 0.0146
2,3 0.0698 0.0465 0.0698
2,3,5 0.0343 | 0.0233 | 0.0233 attribute are removed. Of the 683 patterns left, 444 were be-
2,3,5,4 0.0543 0.0233 | 0.0465 nign, and the rest were malign. In 683 patterns, 274 patterns for
2,3,5,4,1 0.0388 0.0233 0.0233 training, 204 for validation, 205 for testing.

For5yx’s, there are five different attribute importance ranking
results. In Tables XII-XVI, classification error rates for all at-
C. Thyroid Data Set tribute subsets corresponding to different attribute importance

ranking results based on differeps are showny = 0.4 is se-

There five attributes in Thyroid data set. There are 215 pécted for that it leads to the smallest attribute sulges, 7}
terns in Thyroid data set. 115 patterns for training, 50 for valjyiin the lowest classification error rates.

dation, and 50 for testing.
In Tables X and XI, classification error rates for all attributgs. Comparisons Between Top-Down and Bottom-Up Search

subsets corresponding to different attribute importance rankiggd With Other Methods

results based on differents are shown,y = 0.4 is selected

for that it leads to the smallest attribute subet3, 5} with the

lowest classification error rates.

In this subsection, we compare results obtained from the
SCM using bottom-up and top-down search foe= 0.4. We
also compare with results derived from the attribute importance
ranking by Relief-F [9] and SUD [10].

Fig. 3(a) shows the classification error rates of the RBF

There are and nine attributes in Breast cancer data set. Thdessifier for different subsets of Iris attributes according to
are 699 patterns in Breast cancer data set. 16 patterns with loghmgy importance ranking obtained with SCM usibgttom-up

D. Breast Cancer Data Set
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TABLE XIV 4 4
SAME AS TABLE XII, WHEN Y = 0.5 o4 o4
0.35] 0.35)
Attributes Error Rate % %
E 0.25| 5 025
used Training | Validation | Test % 02 5 o
set set set 3 :
8 8
2 0.1443 0.1314 0.1387
2,7 0.0513 0.0511 0.0365
1 2 3 4
2,7,3 0.0269 | 0.0292 0.0073 Number of Attributes
2,7,3,4 0.0318 0.0511 0.0146 (2) (b)
2,7,3,4,9 0.0293 0.0438 0.0219
2,7,3,4,9,5 0.0269 0.0365 0.0292 045 045
2,7,3,4,9,5,1 0.0244 | 0.0438 0.0073 o4 o4
0.35) 0.35]
2,7,3,4,9,5,1,8 0.0318 0.0365 0.0146 03
2,7,3,4,9,5,1,8,6 | 0.0318 0.0365 0.0146 E 025 §
§ o2 §
K] 8
3 5
TABLE XV & 4
SAME AS TABLE XIl, WHEN y = 0.7
. 1 2 3 4
Attributes Error Rate Number of Attibutos
used Training | Validation | Test
& © @
set set set
2 0.1443 0.1314 0.1387 Fig. 3. Classification error rates of Iris data set for different numbers of
27 0.0538 0.0584 0.0438 attributes used according to attribute ranking results obtained from: (a) SCM

with bottom-up search, (b) SCM with top-down search, (c) relief-F, and
2,7,1 0.0685 0.0876 0.0730 (d) SUD. Solid line: training data set; dotted line: validation data set; dashed
line: test data set.

2,7,1,3 0.0342 | 0.0365 0.0146
2,7,1,3,4 0.0367 | 0.0365 0.0219 _ _ .

57 13.49 0260 | o0ms 00292 is seen from Fig. 3(a)—(b) that as the number of attributes used
ik i i . increases, the test error first decreases, reaches a minimum
2,7,1,3,4,9,5 0.0318 | 0.0511 0.0146 when the first 2 attributes in the attribute ranking queue are
2,7,1,34,958 | 0.0293 | 0.0365 0.0292 used, and then increases. Hence in the Iris data set, attributes
2,7,1,3,4,9,58,6 | 0.0391 | 0.0511 0.0292 3 and 4 are relevant attributes for classification and are then

selected, which improves the classification performance and
decreases the number of inputs and the number of hidden units
AN AS TATBTE';(FTI )\mENY 10 of the RBF neural network. The classification error rate is

’ ’ reduced from 0.0467 to 0.0333, and the number of Gaussian

Attributes Error Rate hidden units_ is reduced from 4 to 3. Table XVIII summarizes
— — results for different data sets.
used Training | Validation | Test . . . . .
Further, we carry out classification by inputting different at-

set set set tribute sets to the RBF classifiers based on the attribute impor-
1 0.3423 | 0.3869 0.3358 tance ranking results obtained by SUD [10] and Relief-F [9]
1,2 0.1467 | 0.1314 0.1460 methods (reproduced in Table XVII). We compare the classifi-
12,7 0.0660 | 0.0730 0.0511 cati_on error rates on test data_sets corresponding to the se_lected
1.2.7.3 0.0489 | 0.0292 0.0146 attribute subsets obtained using the SCM, SUD, and Relief-F

methods (Table XIX).

1,2,7,3,4 00416 | 0.0865 0.0146 In Fig. 3(c) and (d), we show that attributes 3 and 4 lead to
1,2,7,3,4,9 0.0367 | 0.0438 0.0292 the lowest error rates (Table XIX) in both SUD and Relief-F
1,2,7,3,4,9,5 0.0269 | 0.0365 0.0146 methods. Hence, the selected attribute subset for Iris data set is
1,27,3,4958 | 00318 | 0.0365 0.0219 {3,4} according to SUD and Relief-F, which is the same as the
1,2,7,3,4,9,5,8,6 | 0.0318 | 0.0365 0.0292 result based on our SCM method.

We obtained the same attribute ranking results and hence the
same attribute subsets using our SCM with both bottom-up and
search whery = 0.4. We obtained the same attribute rankingop-down search for Monk3 data set (Table XVII). Fig. 4(a)—(b)
results and hence the same attribute subsets from the SEMdw that attributes 2, 4, and 5 should be selected for Monk3
using bottom-up and top-down search (Table XVII) for Iris. Idata set, which decreases the classification error rate from
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TABLE XVII

407

COMPARISON BETWEEN IMPORTANCE RANKING RESULTS OBTAINED BY OUR SCM USING BOTTOM-UP AND TOP-DOWN SEARCH
WHEN y = 0.4, THE SUD AND RELIEF-F METHODS

Data set Decreasing order of importance
SCM (bottom-up) | SCM (top-down) | SUD Relief-F
Tris 4,3,1,2 4,3,1,2 3,4,1,2 4,3,1,2
Monk3 | 5,2,4,1,6,3 524163 5,2,4,1,6,3 2,5,4,3,6,1
Thyroid | 2,3,5,4,1 2,5,3,4,1 4,5,3,2,1 4,3,1,2,5
Breast | 2,7,3,4,95186 | 723495861 |17,32564,89 |6,2375,1,4,89
TABLE XVIII

COMPARISON OF THENUMBERS OFHIDDEN-UNITS AND CLASSIFICATION ERRORSBEFORE AND AFTER IRRELEVANT ATTRIBUTES ARE REMOVED
ACCORDING TO THESCM RANKING METHOD. (B) BEFOREREMOVAL, (A) AFTER REMOVAL

Comparison Data set
Iris Monk3 Thyroid Breast
B|1,234]1,23456 | 1,2,3,4,5 | 1,2,3,4,5,6,7,8,9

Input attributes A 4,3 5,2,4 2,3,5 2,7,3

B 4 19.6 8 11

Number of hidden units | A 3 11.6 5 5
B | 0.0467 0.0688 0.0465 0.0146
Classification error rate | A [ 0.0333 0.067 0.0233 0.0073

0.4,

TABLE XIX
COMPARISON BETWEEN CLASSIFICATION ERROR RATES ON TESTING DATA
SETS WITH THE BEST ATTRIBUTE SUBSETSOBTAINED BY OUR SCM,
SUD AND RELIEF-F METHODS

0.35

g 8

Data set classification error rates % %

SCM | SUD | Relief-F Z ;é
Iris 0.0333 | 0.0333 0.0333
Monk3 0.067 0.0.067 0.09

1 2 3 4 5 6 1 2 3 4 5 6

Thyroid | 0.0233 | 0.093 0.1163 Number of Attibutes Number of Attibutes
Breast 0.0073 | 0.0146 | 0.0073 (a) (b)

0.4,

0.0688 to 0.067, the number of inputs from 6 to 3, and th

number of Gaussian hidden units from 19 to 11 (Table XVIII).

In Fig. 4(c) and (d), attributes 2, 4, and 5 should be selecte

according to both SUD and Relief-F methods which is the sarr §

as the attribute subset obtained based on our SCM method.
For Thyroid data set, the attribute ranking queue corre

sponding to our SCM with bottom-up search{i, 3,5,4,1}

and is{2, 5,3, 4, 1} with top-down search. Figs. 5(a)—(b) show

that, in both bottom-up and top-down search, attributes 2, : vz 3 4 5 s oz 3 4 5 6

and 5 are considered to be relevant for classification and a HumoerofAtutes fumberet Aubites

selected, which decreases the classification error rate fro (0 (d)

0.0465 to 0.0233, the number of inputs from 5 to 3, and the

number of Gaussian hidden units from 8 to 5 (Table XVIII). If'9- 4. Same as Fig. 3, Monk3 data set.

is shown in Fig. 5(c) that attributes 4, 5, 3, and 2 are selected

based on the ranking result of the Relief-F method. Fig. 5(d)ethod, SUD and Relief-F, respectively (Table XIX). Hence

shows that attributes 4, 3, 1 and 2 should be selected accordimg attribute subset based on our SCM method is smaller with

to SUD. The classification error rates on the test data set whagher accuracy compared to the SUD and Relief-F methods.

the respective selected attribute subsets are used as inputs féor Breast cancer data set, the attribute ranking queue

RBF classifiers are 0.0233, 0.093, and 0.1163 for our SCdbérresponding to our SCM with bottom-up search is

0.35]

Classification Error

Classification
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0.4, 0.4

0.36 0.3
0.32] 0.3
0.28 0.28]

0.24)
0.2]
0.16]

Classification Error
Classification Error

0.12

Number of Attributes Number of Attributes

(a) (b)

04,

Classification Error
Classification Error

1 2 3 4 5 1 2 3 4 5
Number of Attributes Number of Attributes

(c) (d)
Fig. 5. Same as Fig. 3, Thyroid data set.

0.12, 0.12
0.1p

008} \

Classification Error
Classification Error

) N P \ . N -

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of Attributes Number of Attributes

(2) (b)

Classification Error
Classification Error

"2 3 4 5 6 7 8 9 10 12 3 4 5 6 7 8 9 10
Number of Attributes Number of Attributes

(©) (d)

0.0146 to 0.0073, the number of inputs from 9 to 3, and the
number of hidden units of the RBF neural network from 11

to 5 (Table XVIII). Fig. 6(c) shows that the attribute subset
including the first five attributes (attributes 6, 2, 3, 7, and 5) in
the Relief-F attribute ranking queue leads to the lowest classifi-
cation error rates. According to the classification results shown

in Fig. 6(d) based on the ranking result of the SUD method,
attributes 1, 7, 3, 2, and 5 should be selected because the subset
leads to the lowest error rates. The classification error rates
on test data set when the selected attribute subsets are used as
inputs for RBF classifiers are 0.0073, 0.0146, 0.0073 for our
SCM, SUD and Relief-F, respectively (Table XI1X). Hence the
attribute subset based on our SCM method is the smallest with
the highest classification accuracy.

V. CONCLUSION

In this paper, data dimensionality reduction is carried out
in order to improve classification performance and to reduce
the number of attributes as well as the complexity of an RBF
neural network. The novel SCM is proposed to rank the im-
portance of attributes. According to the ranking results, dif-
ferent attribute subsets are used as inputs to RBF classifiers. The
attribute subsets with the lowest classification error rates and
the least numbers of attributes are selected. Although attribute
importance rankings obtained from the SCM with bottom-up
and top-down search may sometimes differ slightly, the same
selected attribute subsets are eventually obtained in the four
benchmark data sets tested. Compared to existing attribute im-
portance ranking methods, such as SUD [10] and Relief-F [9]
methods, the SCM leads to smaller attribute subsets and higher
classification accuracies in simulations. We have also proposed
a useful modification for the construction and training of the
RBF network by allowing for large overlaps among clusters of
the same class, which further reduces the number of hidden units
while maintaining the classification accuracy. Experimental re-
sults show that the proposed methods are effective in reducing
the attribute size, the structural complexity of the RBF neural
network, and the classification error rates. In future work, we
will extract simple and efficient rules from data sets using the
simplified RBF neural network classifiers.
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