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Abstract—For high dimensional data, if no preprocessing is car-
ried out before inputting patterns to classifiers, the computation re-
quired may be too heavy. For example, the number of hidden units
of a radial basis function (RBF) neural network can be too large.
This is not suitable for some practical applications due to speed and
memory constraints. In many cases, some attributes are not rele-
vant to concepts in the data at all. In this paper, we propose a novel
separability-correlation measure (SCM) to rank the importance of
attributes. According to the attribute ranking results, different at-
tribute subsets are used as inputs to a classifier, such as an RBF
neural network. Those attributes that increase the validation error
are deemed irrelevant and are deleted. The complexity of the clas-
sifier can thus be reduced and its classification performance im-
proved. Computer simulations show that our method for attribute
importance ranking leads to smaller attribute subsets with higher
accuracies compared with the existing SUD and Relief-F methods.
We also propose a modified method for efficient construction of an
RBF classifier. In this method we allow for large overlaps between
clusters corresponding to the same class label. Our approach sig-
nificantly reduces the structural complexity of the RBF network
and improves the classification performance.

Index Terms—Classifier, data dimensionality reduction, over-
laps, RBF neural networks, SCM.

I. INTRODUCTION

T HE amount of data stored in organizations, both in terms
of the number of patterns (samples) and the number of

attributes (variables), is increasing rapidly. Data dimensionality
reduction (DDR) aims at reducing the number of attributes
under consideration. DDR has become an important aspect
of data mining, since human experts and corporate managers
are able to make better use of lower-dimensional data than
higher-dimensional data. In addition, DDR can decrease the
computational burden for various automated processes, for
example, when a radial basis function (RBF) neural network is
used to classify data. Reduced data dimensionality leads to less
complicated network structure and thus increases efficiency in
processing data. Removal of irrelevant data can significantly
improve the accuracy of a classifier.

DDR is to map high-dimensional patterns onto lower-dimen-
sional patterns. Techniques for DDR may be classified into two
categories: feature (attribute) extraction and feature selection.
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Feature extraction creates a number of new features through a
transformation of the raw features. Linear discriminant analysis
(LDA) [3], [7], [11], [13], [14] and principal components anal-
ysis (PCA) [4], [6] are two popular techniques for feature ex-
traction. Although these types of transformations are designed
to maintain concepts in the data, it is difficult to prevent artifacts
from affecting the original concepts in the data detrimentally.

Feature selection techniques select the best subset of features
out of the original set. The attributes that are important to main-
tain the concepts in the original data are selected from the entire
attribute set. How to determine the importance level of attributes
is the key to feature selection technique. The idea of ranking fea-
ture importance for further selecting features out of the original
feature set derives from the fact that different features contribute
to the classification task differently, i.e., irrelevant features de-
grade the performance of classification both in the classifica-
tion accuracy and the complexity of representing classification
results. Mutual information based feature selection (MIFS) [3],
[1] is a common method of feature selection, in which “the in-
formation content” of each attribute (feature) is evaluated with
regard to class labels and other attributes. By calculating mutual
information, the importance levels of features are ranked based
on their ability to maximize the evaluation formula. However, in
MIFS, the number of features to be selected needs to be pre-de-
fined. Dashet al. [10] use an entropy measure (SUD) to eval-
uate the relative importance of attributes. The entropy measure
is based on the similarities of different instances without consid-
ering the class labels. Attribute subsets were then selected based
on attribute importance ranking and classification accuracy with
C4.5. Kononenko [9] proposed Relief-F to rank attribute impor-
tance. In the Relief-F method, for a given instance,nearest
neighbors are searched from different classes. A pair of in-
stances is formed including the given instance and one of its
nearest neighbors. Together with the nearest neighbor from the
same class, there are pairs of instances. The difference
in an attribute in each pair of instances is calculated. The proba-
bilities of these differences are used to evaluate the importance
of the attribute.

In this paper, we propose a novel separability-correlation
measure (SCM) for determining the importance of the original
attributes. The SCM includes two parts, the intra-class distance
to inter-class distance ratio and an attribute-class correlation
measure. The attribute-class correlation measure is used to
evaluate the power of each attribute affecting the class label
for each pattern. The larger the correlation factor is, the more
important the attribute is for determining the class labels of
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patterns. The relative importance of a feature is given by its
relative magnitude of the SCM.

Once attribute importance ranking is obtained using the SCM,
a classifier needs to be used to select the attribute subset that
leads to the lowest classification error. In this paper, the RBF
neural network is used as a classifier.

We propose a simplified RBF classifier by allowing for large
overlaps between patterns of the same class. The RBF neural
network has attracted much attention in recent years due to
its simple architecture and its ability to escape from the local
minima from which multilayer perceptrons suffer. Usually, its
kernel function is Gaussian. Each Gaussian kernel function is
a cluster serving mainly a certain class. The boundary of the
receptive field of the kernel function is a hyper-sphere. The
Euclidean distance between a pattern and the center of the
cluster measures the probability that a pattern belongs to a
class.

The paper is organized as follows. The SCM measure for
ranking the importance of attributes is proposed in Section II.
Section III introduces how to construct the modified RBF neural
network classifier efficiently. Experimental results on reducing
data dimensionality and obtaining a simpler architecture of the
RBF classifier are shown in Section IV. Finally, we conclude the
paper in Section V.

II. SEPARABILITY-CORRELATION MEASURE FORFEATURE

IMPORTANCERANKING

A. Class Separability Measure

The probability of correct classification is large, when the dis-
tances between different classes are large. Therefore, to identify
a subset of features that can maximize the separability between
classes is a desirable objective of feature selection.

Class Separability may be measured by the intraclass distance
(the distance of patterns within class) and the interclass dis-
tance (the distance between patterns of different classes)[5]

(1)

and

(2)

Here is the number of classes in the data set.is the number
of patterns in the-th class. is the probability of the-th class.

is the normalized data vector, whose-th attribute,
is normalized as

(3)

where and are the maximum and minimum
of the -th attribute in the data set respectively. .

is the number of attributes. is the original (unnormal-
ized) data. is the mean vector of the-th class

(4)

is the mean of all patterns in the data set

(5)

is the total number of patterns in the data set, i.e.,
.

The greater is and the smaller is, the better the sepa-
rability of the data set is. Therefore, the ratio of and can
be used to measure the distinction of the classes: the smaller the
ratio, the better the separability [5].

If removing attribute from the data set leads to less class
separability, i.e., a greater , compared to the case where
attribute is removed, one may consider attribute more
important for classification of the data set than attributeis,
and vice versa. Hence we may rank the importance of the at-
tributes by calculating the intraclass-to-interclass distance ratio
with each attribute omitted in turn.

However, the ratio does not always work well as a
class separability measure. For example, consider two classes,
with one class surrounding the other, but are completelysep-
arable. Since and defined in (4) and (5) are equal,

, which indicate totalinseparability. Therefore there is
a need to have other importance measures.

B. Attribute-Class Correlation Measure

In addition to the separability of classes in the data set, the
correlation between the changes in attributes and their corre-
sponding changes in class labels should be taken into account
when ranking the importance of attributes. This correlation di-
rectly links features with class labels. To two different patterns,
if their class labels are different, the variations of attributes in
the two patterns are considered to be the affecting factor for the
variation of class labels and should be weighted positively; if the
class labels are the same, the variations in the attributes are irrel-
evant in deciding the classes and should be weighted negatively.
The correlation measure can be a useful factor by combining to-
gether with our class separability measure.

We propose the following correlation between the-th at-
tribute and the class labels in the data set

(6)

where and are the -th attributes of the-th pattern
and the -th pattern, respectively. and are the class labels
of the -th pattern and the-th pattern, respectively. For any

if and if .
A great magnitude of shows that there is a close correlation
between class labels and the-th attribute, which indicates the
great importance of attribute in classifying the patterns, and
vice versa.

C. Separability-Correlation Measure for Attribute Importance
Ranking

We propose the following separability-correlation measure
(SCM) to evaluate the importance levels of attributes by com-
bining the above two measures

(7)
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where
is the normalization of . and

are the maximum and minimum of all , respectively.
. is the number of attributes. and

are intraclass and interclass distances calculated with the-th
attribute omitted from each pattern, respectively. For example,
the -th pattern be-
comes when is
calculated.
is the normalization of . is the parameter to weight the
two items for the final measure. Here and is
determined empirically: the best choice ofshould lead to a
subset of attributes which results in the highest classification
accuracy.

The importance levels of attributes are ranked using the
values of . The greater the magnitude of , the more
important the -th attribute. We will demonstrate the use of our
SCM method in Section IV.

We use a combination of two measures, i.e., class separability
and attribute class correlation, because either of them alone does
not work well, as shown in our experimental results presented
later in the paper.

D. Bottom-Up, Top-Down, and Exhaustive Search for Ranking
Attributes

Either bottom-up search or top-down search can be used for
ranking attribute importance. In a bottom-up search, we begin
from an empty set. The SCM is used for evaluating each attribute
by omitting this attribute from each pattern, i.e., the attribute is
considered to be more important if its corresponding SCM mag-
nitude is larger than others. The selected attribute is included
to the empty attribute subset. This operation is continued until

attributes are included. The order of attributes entering the
attribute set indicates the importance order of attributes. In a
bottom-up search, the number of attribute combinations in the
SCM calculation for determining attribute importance equals to

( is the number of attributes).
In a top-down search, we start from the complete attribute set.

Each attribute is removed from the attribute set temporarily for
calculating its SCM. Then the least important attribute, whose
corresponding value in SCM is the smallest, is eliminated from
the current attribute set. The steps are iterated until only one
attribute is left in the attribute set. The number of attribute com-
binations in the SCM calculation is

. In Section IV, the differences of the two searches
will be shown.

In an exhaustive search, all the possible attribute subsets are
examined. The number of attribute combinations needed to be
checked is . In the
branch and bound algorithm, some attribute sets need not to be
examined, which leads to the saving in computation; however,
the number of calculations still grows exponentially with. In
addition, the computational saving is achieved by assuming the
feature selection evaluation functions is monotonic [5].

Due to the computational burden of optimal search methods,
one has to resort to suboptimal feature selection methods. In
classification tasks, since the goal is to obtain better classifica-
tion accuracy with less complicated construction of classifiers,

Fig. 1. Architecture of an RBF neural network.

the strategy of using the classification accuracy as evaluation for
selecting features is used widely. We use suboptimal search and
RBF classifiers as evaluators in this paper.

III. M ODIFIED METHOD FOR CONSTRUCTING AN

EFFICIENT RBF CLASSIFIER

RBF neural networks [15], [17], [18] are widely used for
function approximation, pattern classification and so on. In this
paper, we use an RBF classifier together with the SCM to select
the best subsets of attributes. In the RBF neural network, the ac-
tivation of a hidden unit is determined by the distance between
the input vector and the center vector of the hidden unit. The
weights connecting the hidden layer and the output layer can be
determined by a linear least square (LLS) method [2], which is
fast and free of local minima, in contrast to the multilayer per-
ceptron neural network.

There are three layers in the RBF neural network, i.e., the
input layer, the hidden layer with Gaussian activation functions,
and the output layer. The architecture of the RBF neural network
is shown in Fig. 1. In this paper, we use the RBF network for
classification. If there are classes in the data set, we write
the -th output of the network as

(8)

Here, is the -dimensional input pattern vector,
is the number of hidden units. is

the number of output. is the weight connecting the-th
hidden unit to the -th output node. is the bias. is the
weight connecting the bias and the-th output node. is
the activation function of the-th hidden unit

(9)

where and are the center and the width for the-th hidden
unit, respectively, which are adjusted during learning.

Finding the centers, widths, and the weights connecting
hidden nodes to the output is the key for constructing and
training the RBF classifier. Both the dimensionality and the
distribution of the input patterns affect the number of the hidden
units. If the dimensionality is reduced, the number of hidden
units will also be decreased.

Overlapped receptive fields of different clusters can improve
the performance of the RBF classifier when dealing with noisy
data [12]. In [8] and [19], overlapping Gaussian kernel func-
tions are created to map out the territory of each cluster with
a smaller number of Gaussians. In those previous methods, the
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Fig. 2. Comparison between (a) existing algorithms: small overlaps between
clusters, and (b) the modified algorithm with reduced number of clusters:
small overlaps between clusters of different classes, but large overlaps between
clusters of the same class.

clusters are formed as follows. A pattern is randomly selected
from the data set as the initial center of a cluster. The radius
of this cluster is chosen in such a way that the ratio between the
number of patterns of a certain class (in-class patterns) and the
total number of patterns in the cluster is not less than a pre-de-
fined value . Once this cluster is formed, all patterns inside this
cluster are “removed” from the data set and do not participate in
the formation of other clusters. The value ofis determined em-
pirically and is related to an acceptable classification error rate.
Since determines the radii of the clusters, it also indirectly de-
termines the degree of overlaps between different clusters. Gen-
erally, a large leads to small radii of clusters, thus it leads to
small overlaps between the Gaussians for different clusters and
a small classification error rate for the training data set. Since
a small classification error is desired, there usually exist small
overlaps between the Gaussians representing the clusters.

Let us consider a simple example. Suppose , i.e.,
there must have at least 80% in-class patterns in each cluster.
In Fig. 2(a), suppose cluster A has been formed and its mem-
bers “removed” from the data set. Suppose pattern 2 is subse-
quently selected as the initial center of a new cluster and cluster
B is thus formed. Clusters C through G are then formed sim-
ilarly in sequence. We see that clusters B, C, and D are quite
small and therefore the effectiveness of the above clustering al-
gorithm needs to be improved.

In this paper, we propose an algorithm to reduce the number
of clusters as follows. We first make a copy of the original
data set . When a qualified cluster (the ratio of in-class pat-
terns should be higher than), e.g., cluster A in Fig. 2(b) [same
as in Fig. 2(a)], is generated, the members in this cluster are “re-
moved” from the copy data set , but the patterns in the original
data set remain unchanged. Subsequently, the initial center
of the next cluster is selected from thecopy data set , but the
candidate members of this cluster are patterns in theoriginal
data set , and thus include the patterns in the cluster A. Sub-
sequently when pattern 2 is selected as an initial cluster center,
a much larger cluster B, which combines clusters B, C, and D
in Fig. 2(a), can still meet the-criterion and can therefore be
created. By allowing for large overlaps between clusters forthe
same class, we can further reduce the number of clusters sub-
stantially. This will lead to more efficient construction of RBF
networks, and will be demonstrated by computer simulations in
the next section.

We therefore use the following algorithm to construct an ef-
ficient RBF classifier, incorporating the above modification to
the existing algorithms [19], [20].

1) Initialize for training.

a) We divide the data set into three parts, the training
data set, the validation data set, and the test data set.

b) In order to derive the widths of the kernel functions,
a general scale of neighborhoodis obtained by
calculating the standard deviation of the data set
[19].

2) Set stage ( indicates the steps in one training pro-
cedure); , where is the initial
radius of clusters at training stage(training stage indi-
cates the status of the training procedure, in which initial
radius of clusters are affected), the andis the increment
step for the radius. is the change rate of radius.

3) Generate , a copy of the original training data set.
4) Forming clusters.

a) Count the number of patterns in classes in. If
the number of patterns in a class is fewer than a
predefined number (we use four in this paper), the
patterns in the class will not be selected.

b) Set sub-stage ( indicates the shrinking
degree in the radius of cluster in a sub-stage
training procedure), .

c) Select randomly a pattern from as an initial
cluster center, search in all the patterns within

-neighborhood of the center pattern. Thus
large overlaps are permitted among clusters of the
same class, as proposed above.

d) Check whether the ratio between in-class patterns
and the total patterns in the subset is greater than a
pre-defined value . If the ratio is less than, set

, and . Search the
patterns within -neighborhood of the selected
pattern. Stop only if the ratio criterion is met or if

. Count the number of epoch , if
( is the number of patterns in is

an integer. Empirically, .), . Repeat
4 until the training set is empty.

5) Calculate the center and width of each cluster: the center
is the mean pattern of all patterns in the cluster and the
width is the standard deviation of these patterns.

6) Obtain weights by the LLS method [2].
7) Calculate (the classification error of the training set)

and (the classification error of the validation set). Stop
if both of and are smaller than a pre-specified
value . In this paper, ( is a prede-
fined value of classification error rate. % in this
paper). Else:

If , set and
. Go to 3.

If and
, go to 3.

If or go to 2.

Compared to Royet al.’s original algorithm [19], [20], we
have made following changes.
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1) In Step 4, large overlaps among clusters of the same class
are allowed in order to reduce the number of hidden units
without reducing the classification accuracy.

2) In Step 6, the LLS method [2] is used to obtain the weights
between the hidden layer and the output layer.

3) In [19], six training stages were used corresponding to
% % % , respectively. In each stage,

is unchanged and all clusters of this stage should meet
the -criterion. A classification result is obtained for this
. The classification error rate from a stage is compared to

that in the previous stage. Whether to continue to the next
training stage is determined by a comparison in the classi-
fication results. If the classification accuracy is better than
the previous stage, i.e., it is possible to obtain a higher
accuracy if is increased. Thus, the data is trained again
using a larger . Otherwise, the training is stopped. Al-
though a larger leads to a higher accuracy in the training
data set, it may lead to poorer generalization in the testing
data set. Hence, in our algorithm (Step 2),is automat-
ically adjusted according to the training condition, i.e.,
how many patterns of the class concerned are left. With
the decreasing number of patterns,is decreased by a cer-
tain factor, say 0.9 in our simulations.

The aim of the modification proposed above, i.e., allowing for
large overlaps among clusters of the same class, is to decrease
the number of Gaussian hidden units without reducing the
classification accuracy. Overlaps between clusters ofdifferent
classes affect the classification error rate, i.e., the larger the
overlaps between clusters ofdifferentclasses, often the larger
the classification error rate. However, in our paper, large
overlaps between clusters of thesame class are allowed,
which is not expected to degrade the classification accuracy.
Since large overlaps between clusters of the same class can
help combine small clusters into larger ones, and noise may
thus be suppressed by these combinations, the accuracy of
classification may even be improved.

The cost of the modification is increased training time. As-
sume the number of patterns in the data set is. The number
of hidden units is when allowing for large overlaps among
clusters of the same class, and the number of hidden units is
without allowing for large overlaps. For a certain hidden unit

, the number of patterns in this cluster is . The processing
time for one pattern is in the training procedure. Assume that
both algorithms (with the modification and without the modi-
fication) have the same initial conditions. The initial center of
each candidate cluster is selected randomly. Thus, the average
number of trials in two algorithms for searching qualified clus-
ters may be assumed to be the same, say. With the mod-
ification, all patterns in the data set will be checked when
searching for a qualified cluster in each trial. The time required
for one trial is thus . For trials, the total time required is

. Without the modification, if a cluster is considered to
be qualified, the patterns included in this cluster will be removed
from the data set. Thus, the total time required for classifica-
tion without the modification is

. Thus, more time is
needed when applying the modification. However, the cost is
worthwhile in that less complicated classifiers with higher ac-
curacy are found in most cases.

TABLE I
REDUCTION IN THE NUMBER OF HIDDEN UNITS IN THE RBF NETWORK WHEN

LARGE OVERLAPSARE ALLOWED BETWEENCLUSTERS FOR THESAME CLASS.
ALL ATTRIBUTES IN EACH DATA SET ARE USED ASINPUTS

Based on the attribute importance ranking, we further pro-
pose to reduce the structural complexity and to improve the
performance of the RBF network as follows. According to the
rank of importance level obtained by the algorithm described in
Section II, most important attributes are used for classifica-
tion with the RBF neural network for .
The classification error rate is calculated for each. Thus,
classification error rates are calculated corresponding tosub-
sets of attributes. For small, classification error rate decreases
as increases until all relevant attributes are included. As
increases further, the classification error rate may remain un-
changed or even increase because redundant or irrelevant at-
tributes are included. The best subset of attributes is the one with
the smallest classification error rate.

IV. EXPERIMENTAL RESULTS

Iris, Monk3, Thyroid, and Breast Cancer data sets from the
UCI Repository of Machine Learning Databases [16] are used
in this paper to test our algorithms for ranking attribute impor-
tance and constructing a simplified RBF network. Each data set
is divided into three parts, i.e., training, validation, and test sets.
We set and % in our experiments. Each exper-
iment is repeated five times with different initial conditions and
the average results are recorded.

Table I shows that when large overlaps among clusters of
the same class are permitted, the number of hidden units is
decreased while nearly the same classification error rate is
maintained.

Attribute importance rankings using the SCM with different
’s [see (7)] are shown in Table II, which shows thataffects

the order of attribute importance ranking. ’s are used, i.e.,
, and . In order to determine which

order is better, different subsets of attributes are input to the
RBF classifier for each order, so as to find the best subset for
that order. If there are original attributes in the data set, there
are candidate subsets of attributes as discussed in Subsection
II.D. The classification results are used to evaluate the attribute
subsets. We select the subset of attributes corresponding to the
lowest classification error rate for each data set and each ranking
order. According to the experimental results (details for each
data set are given below), when , the importance ranking
results for the four data sets lead to the lowest or nearly the
lowest validation error rates with the smallest attribute subsets.
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TABLE II
ATTRIBUTE IMPORTANCE RANKING USING THE SCM WITH

DIFFERENT� OBTAINED BY BOTTOM-UP SEARCH

TABLE III
CLASSIFICATION ERRORRATES FORIRIS DATA SET WITH DIFFERENTSUBSETS

OF ATTRIBUTES ACCORDING TO THEIMPORTANCERANKING SHOWN IN

TABLE II WHEN � = 0:0 AND � = 0:4. ATTRIBUTE SUBSET WITH

THE LOWESTVALIDATION ERRORIS HIGHLIGHTED IN BOLD

TABLE IV
SAME AS TABLE III, W HEN � = 0:5

A. Iris Data Set

There are four attributes in Iris data set. 150 patterns of Iris
data set are divided into three sets, i.e., 90 patterns for training,
30 for validation, and 30 for testing.

In Tables III–VI, classification error rates are shown for all
attribute subsets corresponding to different attribute importance
ranking results based on different’s. is selected for
that it leads to the smallest attribute subset with the nearly
lowest classification error rate.

B. Monk3 Data Set

There are six attributes in Monk3 data set. Monk3 data has a
training set with 122 patterns and a test set with 421 patterns.
We divide the test set into 200 patterns for validation and 221
patterns for testing.

TABLE V
SAME AS TABLE III, W HEN � = 0:7

TABLE VI
SAME AS TABLE III, W HEN � = 1:0

TABLE VII
CLASSIFICATION ERRORRATES FORMonk3 DATA SET WITH DIFFERENT

SUBSETS OFATTRIBUTESACCORDING TO THEIMPORTANCERANKING SHOWN

IN TABLE II WHEN WHEN � = 0:0. THE ATTRIBUTE SUBSET WITH THE

LOWESTVALIDATION ERRORIS HIGHLIGHTED IN BOLD

TABLE VIII
SAME AS TABLE VII, W HEN � = 0:4; � = 0:5 AND � = 0:7

In Tables VII to IX, classification error rates are shown for all
attribute subsets corresponding to different attribute importance
ranking results based on different’s. is selected for
that it leads to the smallest attribute subset with the
lowest classification error rates.
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TABLE IX
SAME AS TABLE VII, W HEN � = 1:0

TABLE X
CLASSIFICATION ERRORRATES FORTHYROID DATA SET WITH DIFFERENT

SUBSETS OFATTRIBUTESACCORDING TO THEIMPORTANCERANKING SHOWN

IN TABLE II WHEN � = 0:0. THE ATTRIBUTE SUBSET WITH THE LOWEST

VALIDATION ERRORIS HIGHLIGHTED IN BOLD

TABLE XI
SAME AS TABLE X, WHEN � = 0:4; � = 0:5; � = 0:7 AND � = 1:0

C. Thyroid Data Set

There five attributes in Thyroid data set. There are 215 pat-
terns in Thyroid data set. 115 patterns for training, 50 for vali-
dation, and 50 for testing.

In Tables X and XI, classification error rates for all attribute
subsets corresponding to different attribute importance ranking
results based on different’s are shown. is selected
for that it leads to the smallest attribute subset with the
lowest classification error rates.

D. Breast Cancer Data Set

There are and nine attributes in Breast cancer data set. There
are 699 patterns in Breast cancer data set. 16 patterns with losing

TABLE XII
CLASSIFICATION ERRORRATES FORBREAST CANCER DATA SET WITH

DIFFERENTSUBSETS OFATTRIBUTES ACCORDING TO THEIMPORTANCE

RANKING SHOWN IN TABLE II WHEN � = 0:0. THE ATTRIBUTE SUBSETWITH

THE LOWESTVALIDATION ERRORIS HIGHLIGHTED IN BOLD

TABLE XIII
SAME AS TABLE XII, W HEN � = 0:4

attribute are removed. Of the 683 patterns left, 444 were be-
nign, and the rest were malign. In 683 patterns, 274 patterns for
training, 204 for validation, 205 for testing.

For ’s, there are five different attribute importance ranking
results. In Tables XII–XVI, classification error rates for all at-
tribute subsets corresponding to different attribute importance
ranking results based on different’s are shown. is se-
lected for that it leads to the smallest attribute subset
with the lowest classification error rates.

E. Comparisons Between Top-Down and Bottom-Up Search
and With Other Methods

In this subsection, we compare results obtained from the
SCM using bottom-up and top-down search for . We
also compare with results derived from the attribute importance
ranking by Relief-F [9] and SUD [10].

Fig. 3(a) shows the classification error rates of the RBF
classifier for different subsets of Iris attributes according to
the importance ranking obtained with SCM usingbottom-up
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TABLE XIV
SAME AS TABLE XII, W HEN � = 0:5

TABLE XV
SAME AS TABLE XII, W HEN � = 0:7

TABLE XVI
SAME AS TABLE XII, W HEN � = 1:0

search when . We obtained the same attribute ranking
results and hence the same attribute subsets from the SCM
using bottom-up and top-down search (Table XVII) for Iris. It

Fig. 3. Classification error rates of Iris data set for different numbers of
attributes used according to attribute ranking results obtained from: (a) SCM
with bottom-up search, (b) SCM with top-down search, (c) relief-F, and
(d) SUD. Solid line: training data set; dotted line: validation data set; dashed
line: test data set.

is seen from Fig. 3(a)–(b) that as the number of attributes used
increases, the test error first decreases, reaches a minimum
when the first 2 attributes in the attribute ranking queue are
used, and then increases. Hence in the Iris data set, attributes
3 and 4 are relevant attributes for classification and are then
selected, which improves the classification performance and
decreases the number of inputs and the number of hidden units
of the RBF neural network. The classification error rate is
reduced from 0.0467 to 0.0333, and the number of Gaussian
hidden units is reduced from 4 to 3. Table XVIII summarizes
results for different data sets.

Further, we carry out classification by inputting different at-
tribute sets to the RBF classifiers based on the attribute impor-
tance ranking results obtained by SUD [10] and Relief-F [9]
methods (reproduced in Table XVII). We compare the classifi-
cation error rates on test data sets corresponding to the selected
attribute subsets obtained using the SCM, SUD, and Relief-F
methods (Table XIX).

In Fig. 3(c) and (d), we show that attributes 3 and 4 lead to
the lowest error rates (Table XIX) in both SUD and Relief-F
methods. Hence, the selected attribute subset for Iris data set is

according to SUD and Relief-F, which is the same as the
result based on our SCM method.

We obtained the same attribute ranking results and hence the
same attribute subsets using our SCM with both bottom-up and
top-down search for Monk3 data set (Table XVII). Fig. 4(a)–(b)
show that attributes 2, 4, and 5 should be selected for Monk3
data set, which decreases the classification error rate from
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TABLE XVII
COMPARISON BETWEEN IMPORTANCE RANKING RESULTS OBTAINED BY OUR SCM USING BOTTOM-UP AND TOP-DOWN SEARCH

WHEN � = 0:4, THE SUD AND RELIEF-F METHODS

TABLE XVIII
COMPARISON OF THENUMBERS OFHIDDEN-UNITS AND CLASSIFICATION ERRORSBEFORE ANDAFTER IRRELEVANT ATTRIBUTES ARE REMOVED

ACCORDING TO THESCM RANKING METHOD. (B) BEFOREREMOVAL, (A) AFTER REMOVAL

TABLE XIX
COMPARISONBETWEEN CLASSIFICATION ERRORRATES ON TESTING DATA

SETS WITH THE BEST ATTRIBUTE SUBSETSOBTAINED BY OUR SCM,
SUD AND RELIEF-F METHODS

0.0688 to 0.067, the number of inputs from 6 to 3, and the
number of Gaussian hidden units from 19 to 11 (Table XVIII).
In Fig. 4(c) and (d), attributes 2, 4, and 5 should be selected
according to both SUD and Relief-F methods which is the same
as the attribute subset obtained based on our SCM method.

For Thyroid data set, the attribute ranking queue corre-
sponding to our SCM with bottom-up search is
and is with top-down search. Figs. 5(a)–(b) show
that, in both bottom-up and top-down search, attributes 2, 3,
and 5 are considered to be relevant for classification and are
selected, which decreases the classification error rate from
0.0465 to 0.0233, the number of inputs from 5 to 3, and the
number of Gaussian hidden units from 8 to 5 (Table XVIII). It
is shown in Fig. 5(c) that attributes 4, 5, 3, and 2 are selected
based on the ranking result of the Relief-F method. Fig. 5(d)
shows that attributes 4, 3, 1 and 2 should be selected according
to SUD. The classification error rates on the test data set when
the respective selected attribute subsets are used as inputs for
RBF classifiers are 0.0233, 0.093, and 0.1163 for our SCM

Fig. 4. Same as Fig. 3, Monk3 data set.

method, SUD and Relief-F, respectively (Table XIX). Hence
the attribute subset based on our SCM method is smaller with
higher accuracy compared to the SUD and Relief-F methods.

For Breast cancer data set, the attribute ranking queue
corresponding to our SCM with bottom-up search is
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Fig. 5. Same as Fig. 3, Thyroid data set.

Fig. 6. Same as Fig. 3, Breast cancer data set (note that the scale for
classification error rates in (d) is different from those in (a)–(c)).

and is with
top-down search. It is shown in Fig. 6(a)–(b) that, in both
bottom-up and top-down search, attributes 2, 3, and 7 are
considered to be important for classification and are then
selected, which decreases the classification error rate from

0.0146 to 0.0073, the number of inputs from 9 to 3, and the
number of hidden units of the RBF neural network from 11
to 5 (Table XVIII). Fig. 6(c) shows that the attribute subset
including the first five attributes (attributes 6, 2, 3, 7, and 5) in
the Relief-F attribute ranking queue leads to the lowest classifi-
cation error rates. According to the classification results shown
in Fig. 6(d) based on the ranking result of the SUD method,
attributes 1, 7, 3, 2, and 5 should be selected because the subset
leads to the lowest error rates. The classification error rates
on test data set when the selected attribute subsets are used as
inputs for RBF classifiers are 0.0073, 0.0146, 0.0073 for our
SCM, SUD and Relief-F, respectively (Table XIX). Hence the
attribute subset based on our SCM method is the smallest with
the highest classification accuracy.

V. CONCLUSION

In this paper, data dimensionality reduction is carried out
in order to improve classification performance and to reduce
the number of attributes as well as the complexity of an RBF
neural network. The novel SCM is proposed to rank the im-
portance of attributes. According to the ranking results, dif-
ferent attribute subsets are used as inputs to RBF classifiers. The
attribute subsets with the lowest classification error rates and
the least numbers of attributes are selected. Although attribute
importance rankings obtained from the SCM with bottom-up
and top-down search may sometimes differ slightly, the same
selected attribute subsets are eventually obtained in the four
benchmark data sets tested. Compared to existing attribute im-
portance ranking methods, such as SUD [10] and Relief-F [9]
methods, the SCM leads to smaller attribute subsets and higher
classification accuracies in simulations. We have also proposed
a useful modification for the construction and training of the
RBF network by allowing for large overlaps among clusters of
the same class, which further reduces the number of hidden units
while maintaining the classification accuracy. Experimental re-
sults show that the proposed methods are effective in reducing
the attribute size, the structural complexity of the RBF neural
network, and the classification error rates. In future work, we
will extract simple and efficient rules from data sets using the
simplified RBF neural network classifiers.
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