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Abstract
Broadcast scheduling problem (BSP) in packet ra-

dio(PR) networks is proved to be NP-complete. The goal of
this problem is to find a conflict free transmission schedule
in a fixed-length time-slots. This paper presents a novel al-
gorithm called ”Noisy Chaotic Neural Network (NCNN)”
to solve this problem. A two-phase optimization is adopted
with two different energy functions with which NCNN not
only find the minimal TDMA cycle length but also maxi-
mize the node transmissions. The performance is evaluated
through several benchmark examples. The results show
that NCNN always finds better TDMA cycles than existing
algorithms, such as mean filed annealing , mixed algorithm
of Hopfield neural network and genetic algorithm, sequen-
tial vertex coloring algorithm and the gradually neural net-
work.

1 Introduction

Packet Radio (PR) network [1] provide a good option
for high-speed wireless data communications, especially
over a broad geographic region. It uses shared radio chan-
nels as the broadcast medium to interconnect stations or
nodes. In order to avoid any collision and interference, a
time-division multiple-access (TDMA) protocol has been
used to schedule conflict free transmissions. A TDMA cy-
cle is divided into distinct frames consisting of a number of
time slots. A time slot has a unit time to transmit one data
packet between adjacent nodes. At each time slot, each
node can either transmit or receive a packet, but no more
than two packets can be received from neighbor nodes. If a
node is scheduled to both transmit and receive at the same
time slot, a primary conflict occurs. If two or more pack-
ets reach one node at the same time slot, a second conflict
occurs.

The BSP has been extensively studied [2]- [5]. In [2],
Funabiki and Takefuji proposed a parallel algorithm based
on an artificial neural network in a TDMA cycle with ���
neurons. In [3], Wang and Ansari proposed a mean field an-
nealing algorithm to find a TDMA cycle with the minimum
delay time. In [4], Chakraborty and Hirano used genetic al-
gorithm with a modified crossover operator to handle large
networks with complex connectivity. In [5], Funabiki and
Kitamichi proposed a binary neural network with a gradual
expansion scheme to find minimum time slots and maxi-
mum transmissions through a two-phase process. In [6],
Yeo et al proposed a algorithm based on the sequential ver-
tex coloring algorithm. In [7], Salcedo-Sanze et al pro-
posed a mixed algorithm which combines a Hopfield neural
network for constrain satisfaction and a genetic algorithm
for achieving a maximal throughput. In this paper, we
present a novel neural network model with complex neuro-
dynamics, i.e., noisy chaotic neural network (NCNN). Nu-
merical results show that this NCNN method outperforms
existing algorithms in both the average delay time and the
minimal TDMA length. The organization of this paper is as
follows. In section 2, we formulate the broadcast schedul-
ing problem. The Noisy Chaotic Neural network (NCNN)
model is proposed in section 3. In section 4, NCNN is ap-
plied to solving the optimal scheduling problem. Numeri-
cal benchmark instances are stated and the performance is
evaluated in section 5. Section 6 is the conclusion.

2 Problem Formulation

A packet radio network can be described by a graph G
= (I, E) where I is the set of vertices in graph G and E is
the set of edges. Each edge represents a link between two
nodes. If �� � � � , then the edge � � ��� �� � � if and only
if � can receive a transmission from �, or vice versa. Here



we consider only undirected graphs and the matrix � �� is
symmetric, i.e., ��� � ���� �	� 
 � �� �� ��� ��. If two nodes
are adjacent with ��� � �, then we define two nodes to
be one-hop-away, and the two nodes with the same neigh-
boring node to be two-hop-away. An N-node undirected
graph can be represented by an� �� connectivity matrix
 � ��� defined as:

��� �

�
� if node 	 and node 
 are adjacent�

� otherwise�

We form a new� �� matrix called compatibility ma-
trix � � ����� from connectivity matrix  � ����� and
defined below. Note that ��� � � and ��� � ���	. Matrix 
and� are both symmetric, i.e., ��� = ��� and ��� = ���.

��� �

���
��
� If node 	 and node 
 are one-hop-away

or two-hop-away�

� otherwise�

The final optimal solution for a � -node network is a
conflict-free transmission schedule consisting of � time
slots. Additional transmissions can be arranged provided
that the transmission does not violate the constrains. We
use an � �� binary matrix � � ����� to express such a
schedule [3], where

��� �

�
� if node 	 transmits in slot 
 in a frame�

� otherwise�

One of the indices to evaluate the solution quality is the
average time delay � for each node to broadcast packets
[5], where the � is defined as:
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where� is the time-slot cycle length and ��� is the neuron
output.

The goal of BSP is to find a transmission schedule with
the shortest TDMA frame length (i.e., � should be as
small as possible) which satisfied the above constrains, and
the total number of node transmissions is maximized.

3 Noisy Chaotic Neural Network Model

Since Hopfield neural network (HNN) can be easily
tramped in local minima, stochastic simulated annealing
(SSA) technique has been combined with the HNN [9].
Chen and Aihara [8][9] proposed chaotic simulated an-
nealing (CSA) by starting with a sufficiently large negative
self-coupling in the neurons and then gradually decreas-
ing the self-coupling to stabilize the network. They called
this model the transiently chaotic neural network (TCNN).
By adding decaying stochastic noise into the TCNN, Wang

and Tian [10] proposed a new approach to simulated an-
nealing using a noisy chaotic neural network (NCNN), i.e.,
stochastic chaotic simulated annealing (SCSA). This neu-
ral network model has been applied successfully in solv-
ing several optimization problems including the travelling
salesman problem (TSP) and the channel assignment prob-
lem (CAP) [10] [11]. The NCNN model is described as
follows [10]:
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���� �� � ��� ������� (4)

������ ��� � ��� ���������� (5)

where

��� : output of neuron 
� ;

��� : input of neuron 
� ;

����
 : connection weight from neuron 
� to neuron 	�,
with ����
 � ��
�� and ����� � �	
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����
��� � ��� � ��������

input to neuron 
� (6)

��� : input bias of neuron 
� ;

� : damping factor of nerve membrane �� � � � ��	

� : positive scaling parameter for inputs ;

�� : damping factor for neuronal self-coupling �� �
�� � ��	

�� : damping factor for stochastic noise �� � �� � ��	

���� : self-feedback connection weight or refractory
strength ����� � �� ;

�� : positive parameter;

� : steepness parameter of the output function (�  �� ;

� : energy function;

����: random noise injected into the neurons, in ������
with a uniform distribution;

����: amplitude of noise �.



4 Solving BSP Using Noisy Chaotic Neural
Network

4.1 Energy Function in Phase I

The energy function �� for phase I is given as follow-
ing:
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where !� and !� are weighting coefficients. The !�

term represents the constraints that each of N nodes must
transmit exactly once during each TDMA cycle. The !�

term indicates the constraint that any pair of nodes which
is one-hop away or two-hop away must not transmit simul-
taneously during each TDMA cycle.

From eqn. (3), eqn. (6), and eqn. (7), we obtain the
dynamics of NCNN for the BSP as below:
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In order to get a minimal number of frame length which
satisfied the constrains, we use a gradual expansion scheme
in which a initial value of frame length is set with a lower
bound value of� . If with current frame length there is no
feasible solution which satisfied the constrains, then this
value is gradually increased by 1, i.e., � � � � �. The
algorithm compute iteratively until every node can trans-
mit at least once in the cycle without conflicts, then the
algorithm stopped and the current value of � is the mini-
mal frame length. In this way, the scheduled frame length
would be minimized.

The lower bound "� of the initial frame length can be
found with many methods. In [5], the initial value is set
as the maximum clique of the compatibility matrix. We
use the same definition as in [3] and find the lower bound
using the following steps:

1) Find the node with the maximum degree ��# � in all
nodes. Here the node degree is defined as follows:

��#� �

��
���	� ���

��� (9)

2) Lower bound "� is defined as:

"� ��$����#�� � � (10)

4.2 Energy Function in Phase II

In phase II, the objective is to maximize the total num-
ber of transmissions based on the minimal TDMA length
� obtained in the previous phase. � and the scheduled
transmissions in phase I are fixed. In order to take advan-
tage of the results in phase I and . We use the energy func-
tion for phase II is defined as follow:
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Where !� and !� are coefficients. !� represents the
constraint term that any pair of nodes which is one-hop
away or two-hop away must not transmit simultaneously
during each TDMA cycle. !� is the optimization term
which maximized the total number of output firing neu-
rons.

From eqn. (3), eqn. (6), and eqn. (11), we obtain the
dynamics of NCNN for phase II of the BSP as follow:
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In the above models of BSP, the network with � ��
neurons is updated cyclically and asynchronously. The
new state information is immediately available for the other
neurons in the next iteration. The iteration is terminated
once a feasible transmission schedule is obtained, i.e., the
transmission of all nodes are conflict free.

5 Simulation Results

We use two evaluation indices to compare with different
algorithms. One is the TDMA cycle length� . The second
is the average time delay � defined in eqn. (1). The another
definition of average time delay can be found in [3] and [6]
which is calculated with the Pollaczek-Khinchin formula
[12], which models the network as� ����� queues. We
will use both definitions in order to compare with other
methods.

We choose the set of parameters in eqn. (7), eqn. (8),
eqn. (11) and eqn. (12) as follow:
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Figure 1: Comparisons of channel utilization for three
benchmark problems. 1, 2, and 3 in the horizontal axis
stand for instance with 15, 30, and 40 nodes, respectively.
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�� �� �� �

Three benchmark problems from [3] have been chosen
to compared with other algorithms in [5],[6], and [7]. The
three examples are instances with 15-node-29-edge, 30-
node-70-edge, and 40-node-66-edge respectively.

The comparison of channel utilization for three bench-
mark problems is plotted in Fig. 1, which shows that the
NCNN can find solutions with the highest channel utiliza-
tion among all algorithms. The average time delay is plot-
ted in Fig. 2. From this figure, it can be seen that the time
delay experienced by the NCNN is much less than that of
the MFA algorithm in all three instances. In the 15-node
instance, the MFA, SVC and HNN-GA have the same de-
lay, but the delay obtained by our NCNN is less than them,
as we can see from Fig. 2(a). Also in other two instances,
time delay obtained by the NCNN is less than the MFA,
SVC and HNN-GA as we can see from 2(b), and 2(c).

The computational results are summarized in Table 1 in
comparison with the mixed HNN-GA algorithm from [7],
sequential vertex coloring (SVC) from [6], gradual neural
network (GNN) from [5] and mean field annealing (MFA)
from [3]. In respect of the frame length, our algorithm can
find optimal schedules for all three examples. In respect of
the average time delay, our algorithm outperforms the all
other algorithms in obtaining the minimal value of �.
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Figure 2: Comparison of average time delay and chan-
nel utilization among different approaches for three bench-
mark problems: (a) 15-node, (b) 30-node, (c) 40-node.



NCNN HNN-GA SVC GNN MFA
� / M � / M � / M � / M � / M

#1 6.8 / 8 7.0 / 8 7.2 / 8 7.1 / 8 7.2 / 8
#2 9.0 / 10 9.3 / 10 10.0 / 10 9.5 / 10 10.5 / 12
#3 5.8 / 8 6.3 / 8 6.76 / 8 6.2 / 8 6.9 / 9

Table 1: Comparisons of average delay time � and time
slot � obtained by the NCNN with other algorithms for
the three benchmark problems given by [3].

6 Conclusion

In this paper, we present a noisy chaotic neural net-
work model for solving broadcast scheduling problem in
packet radio networks. This noisy chaotic neural network
(NCNN) consists of � �� neurons for the � -node-� -
slot problem. We evaluate the NCNN in three benchmark
examples. We compare our results with existing methods
including mean filed annealing, HNN-GA, sequential ver-
tex coloring algorithm, and the gradually neural network.
The results of three benchmark instances show that NCNN
always finds better solutions with minimal average time de-
lay and maximal channel utilization.
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