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ABSTIUCT 
This paper presents a uew approach to address image de- 
ilnising hnsed on a uew neural network, called noisy chaotic 
wurd network (NCNN). The original Bayesian framework 
nf image denoising is reformulated into a coostrained opti- 
mization problem using continuous relaxation labeling. The 
NCNN, which combines the simulated ainealing technique 
with the I-Iopfield neural network (HNN), is employed to 
solve the optimization problem. I t  effectively overcomes 
the local minima problem which may be incurred by the 
HNN. The experimenlal results show that the NCNN could 
offer good quality solutions. 

1. INTRODUCTION 

The objective of image denoising is to estimate the origi- 
nal image from the noisy image with some knowledge of 
the degradation process. There are many existing models 
and algorithms for solving this problem 111 [21 [31 [41. Here 
we adopt a Bayesian framework because it is highly parallel 
and it can decomposite a complex computation into a net- 
work of simple local computation [3], which is imponant in 
hardware implementation of neural networks. In this study 
the approach. computes the maximum a posteriori (MAP) 
estimate of the original image given the noisy image. The 
MAP estimation involves the prior distribution of the origi- 
nal image and the conditional distribution of the data. The 
prior distribution of the original images imposes the con- 
textual constraints, and can be modeled by Markov random 
field (MRF) or equivalently Gibbs distribution. Maximiz- 
ing the aposteriori problem is equivalent to maximizing the 
energy function in the Gihbs distribution. The MAP-MRF 
principle centen: on applying M A P  estimation on the MRF 
modeling of the images. 

Li proposed the augmented lagrange Hopfield method 
to solve the optimization problem [51. He transformed the 
combinatorial optimization problem into real constrained 
optimization using the notion of continuous relaxation la- 
beling. l h e  HNN was then used to solve the real con- 
strained optimization. 

Previous studies have shown that ticural networks arc 
powerful fnr solving optimization problems 161 171. The 
HNN is an artificial neural network that is capahle of sdv-  
ing quadratic optimization prohlcnis. However, it sullkrs 
from convergence to local muiima [XI .  To overcome this 
shortcoming, different simulated annealing techniques have 
been combined with the HNN to solve optimization proh- 
lcms [Y]  [ X I  [ IO]  [ I l l  [12]. Kajiura et al [ I l l  proposed 

n machine which comhhies stochastic simulated 
annealing (SSA) with neural network lor solving assign- 
ment problems. Convergence tu globally optimal solutions 
is guaranteed if the cooling schedule is sufficiently slow, 
i.e., no faster than logarithmic progress [31. SSA searches 
the entire solution spaces, which is time consuming. Chen 
and Aihara 191 proposed a transiently chaotic neural net- 
work (TCNN) which adds a large negative self-coupling 
with slow damping in the Euler approximation of the contin- 
uous HNN so that neurndynamics eventually couverge from 
strange attractors to an equilibrium point. This Chaotic sim- 
ulated annealing (CSA) can search efficiently because of 
its reduced search spaces. The TCNN showed good per- 
formance in solving traveling salesman problem. However 
CSA is deterministic and is not guaranteed to settle down 
at a global minimum. In view of this, Wang and Tian [12] 
proposed a novel algorithm called stochastic chaotic sim- 
ulated annealing (SCSA) which combines both stochastic 
mauler of SSA and chaotic manner of CSA. In this paper 
the NCNN, which performs SCSA algorithm, is applied to 
solve the constrained optimization in the MAP-MRF fomu- 
lated image denoising. Experimental results show that the 
NCNN outperfoms the HNN and the TCNN. 

The rest of the paper is organized as follows: Section 2 
introduces the MAP-MRF framework in image restoration 
and the transformation of the combinatonal optimization to 
a real unconstrained optimization. Section 3 presents the 
NCNN and the derivation of the neural network dynamics. 
The experimental results are shown in Section 4. Section 5 
concludes the paper. 
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2. MAP-MRF IMAGE RESTORATION 

Let S = {I , .  . . , N }  indexes the set of sites corresponding 
to the image pixels. :c = {xi I i E S}, j: = {ti 1 i E S} 
mid y = {v. I i E S} are the random variables denoting the 
original image, the restored image aid the degraded image 
respectively. 

When the origuial image is degraded by identical inde- 
pendently distrihuted (Lid.) Gaussian noise. the degraded 
image is modeled by: 

(1) !,I = :ci + e; 

where e ;  - N ( 0 ,  u2)  is the zero mean Gaussian distrihution 
with staiidard deviation n. The objective of image denoising 
is to find ai <: that apprnximalcs :c. 

liach site in S takes on a discrete value in the I a k l  set 
C = I , .  . . , M. The spatial relationship of the sites is deter- 
rniiicd by a neighborhood system N = {Ni I i € S} where 
Ni is the set of sites neighboring 6 .  A single site o r  a set 
of neighbriiig sites form a clique denoted by c. C is the 
set of all cliques. hi this paper only the pair-site cliques arc 
considered. 

There ;uc many different ways the pixels c m  influence 
each other through contextual interactions. Such contex- 
tual interactions ciui be modeled as MRFs. According tu 
Markov-Gihbs equivalence, a11 MRF is  equivalent to a Gihhs 
distribution. Therefore, the prior distribution of the original 
image which imposes the contextual constraints can be ex- 
pressed in terms of the MRF clique potentials. 

In ( I )  the noise is independent Gaussian noise. The con- 
ditional distribution can be expressed in terms of y, z and 
cr, Knowing the prior distribution and the conditional dis- 
tribution, the energy in the posterior distribution is given hy 
I41 

where &i,i , )EC V2(zi, z i r )  is the pair-site clique potential 
of the MRF model. 

Among various MRFs, the multi-level logistic (MLL) 
model is a simple mechanism for encoding a large class of 
spatial pattems [ 131. In MLL, the pair-site clique potentials 
take the form: V,(z,, zip) = - if sites in the clique { i ,  i ' }  
have the same label; otherwise,Vz(z;, 5;') = where is 
a parameter associated with the type of the clique c. How- 
ever as the MLL pair-site potentials are strong constraints, 
we adopt the modified potential as: 

V,(Zi,Zl') = - * g ( z a , z i . )  (3) 

where y(z i , z i , )  = 2e-12*-z.4T - 1, T is a positive cun- 
stant. y ( z i ,  zi,) in the modified potential function is an ex- 
ponential function in (-l,l], Compared to the potential 

function in the M I L  model, the modified potential function 
allows the pixel to hc slightly din'crent from the neighbor- 
ing pixels. This is logical as most real images have smooth 
non-uniform regions. 

As image pixels can only take discrete values, the min-  
mization in (2 )  is a comhinatorial optimization problem. I t  
can be trmslormed into a constrained optimization in real 
space using coiitinuous relaxation labeling. Let p i ( 1 )  t 
[0,1] represent the strength with which label I is assigned 
to i, the energy with the p variables is given by 

where I = :ci, I' = : c i f ,  ~ ~ ( 1 )  = r/, ( I  lg) = ( I  - 
is the single-site clique potential function and r;, i ,(1,  f') = 
V l ( / ,  r'lu) = V 2 ( f ,  I ' )  is the pair-site clique potential h~iic- 
tioti in the pnsterior distrihution P(:clg).  

With such a representation. the comhinatorial minimiza- 
tion is reformulated as the following constrained minimiza- 
tinn 

niin E(p)  ( 5 )  

subject to C i ( p )  = 0 1 E S (6) 

pi(r) 2 o vi E s, VI E c (7) 

P 

where C,(p)  = C I p i ( I )  - 1 = 0. 
The final solutionp' is subject to additional constraints: 

p:(f) E {O,l}. The H I "  is prone to trappings at Iocd 
minima. In view of this, we propose a new network NCNN 
to perform the optimization. 

3. NOISY CHAOTIC NEURAL NETWORK 

Let .<(I) denote the inremal state of the neuron ( a ,  I )  and 
pi(I) denote the output of the neuron ( i ,  I ) .  p i ( 1 )  E [0,1] 
represents the strength that the pixel at location i takes the 
value I .  The NCNN is formulated as follows [12]: 
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whcre 
Til;..,. : connection weight h m  neurnn (it, I ' )  to neuron 

Z.(I) : input bias of neuron ( i ,  I ) ;  
k : damping factor of nerve membraie (0 k 1) 

c : steepness parameter of the output function (t 2 0); 
3 : self-feedhack coniiectioii weight or  refractory strciigth 
(i p 0); 
I,, : positive parameter; 
1). : raidom noise injected uito the neuroiis; 

( & I ) ;  

: positive scaling parmeter for inputs; 

: positive parameter (0 < < 1); 
: positive parameter (0 < ,, < 1); 

A[n] : the noise amplitude. 
When we set )!I1) = 0 in  (9). the NCNN becomes TCNN, 

When we further set L(') = 0, the 'I'CNN hecnmes similar 
to the HNN with stable fixed point dynamics. The hasic 
difference betweeti the I-INN aid the ' K N N  is that a non- 
linear term ~ ( ' ) ( p ; ' ' ) ( r )  - I,) is added to the HNN. Siiicc 
the "temperature" d'.) tends tnward zero with time evolu- 
tioil,' the updating equations ofthe TCNN eventually reduce 
to those of the HNN. hi (9) thc variable i(t) can be inter- 
preted as the strength of negative self-feedback coiinectioii 
of each neuron, the damping of dt) produces successive hi- 
furcations so that the iieurodynamics eventually converge 
from strange attractors to a stable equilibrium point [SI. 

CSA is deterministic and is not guaranteed to settle down 
to a global minimum. In view of this, Wang and Tim 1121 
added a noise term n( t )  in (9). The noise term continues to 
search for the optimal solution after the chaos of the TCNN 
disappears. 

From (5)-(7) and (9). we obtain the dynamics of the 
NCNN: 

$+I)(,) = k.$)(I)  - t ( q p j q I )  -Io) +n(t) + $ ) ( I )  
(12) 

(P,Y) = E ( d  + x r k C k ( P )  + 5 xIckb)l2 
k E S  k t S  

-yh are the Lagrange multipliers and > 0 is the weight 
for the penalty term. Note that the Lagrange multipliers are 
updated with neural outputs according to y y ' )  = ~ f )  + 

C,(P't'). 

4. EXPERIMENTAL RESULTS 

The experimental results presented here demonstrate the per- 
formance of the NCNN on image restoration. 

We chose the Lena image of size 128 128 with M = 
256 gray levels. The label set L = {0,1,2,. . . ,255} .  The 

degraded image was generatcd by adding zero-mean identi- 
cal independently distributed Gaussian noise with standard 
deviation U = 16. 

The degraded image was set to hc the input of the ncural 
networks. After the ncural networks: wcre initialized, each 
neurnn was updated using (12) and (8). After all neurons 
in the ncurdl networks wcre updated once, ~ t .  i and n are 
updated. The updating scheme is cyclic a i d  asynchronous. 
When all the neurons are updated once, we call it one iter- 
ation. Once the state of a neumii is updated, thc ncw state 
information is immediately available to mher iieurons in the 
network (asynchronous). 

The parameters that wc uscd fix the NCNN are: k = 1, 
e = 0.01, = o.ooni, Io = O.fis, I(") = 0.05, ~ ( 0 )  = 
0.01. is increased from 1 to 50 according to + 1.01 . 
The decreasing rate of L arid (1 ,  ~ and arc 0.005. Fnr 
the TCNN and the HNN we usc the same parameters as the 
NCNN except thnt 71, = 0 for the TCNN, 'n = 0 and L = 0 
for the 1-1". The MRF pair-sitc clique potential parameter 

Table I shows the required iteration numbers aid the 
peak signal-to-noise ratio (PSNR) of the restored images. 
Thc higher the PSNR, the better the image quality. It call 
he scen from the table that the NCNN offers the best perfor- 
mance. The PSNR of the restored image using the NCNN 
is higher than those of the restored images using the HNN 
aid the TCNN. In addition. the NCNN use less iterations to 
converge thai the HNN aiid theTCNN. The restored images 
are shown in Fig. 1. 

c=8. 

Table 1. Numerical restoration results of the Lena image 
(PSNR,: PSNR of the restored image, PSNRd: PSNR of 
the degraded image) 

Iterations PSNR, PSNRd 

NCNN 1114 26.7554 24.0549 

5. CONCLUSION 

A new neural network, called noisy chaotic neural network 
(NCNN), is used to address the MAP-MRF formulated im- 
age denoising problem. SCSA effectively overcomes the 
local minima problem. We have shown that the NCNN 
gives better quality solutions compared to the €1" and the 
TCNN. 
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