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ABSTRACT

This paper presents a new approach 10 address image de-
noising based on a new neural network, called noisy chaotic
neural network (NCNN). The original Bayesian framework
of image denoising is reformulated into a constrained opti-
mization problem using continuous relaxation labeling. The
NCNN, which combines the simulated annealing technique
with the Hopfield neural network (HNN), is employed o
solve the optimization problem. It effectively overcomes
the local minima problem which may be incurred by the
HNN. The experimental results show that the NCNN could
offer good quality solutions.

1. INTRODUCTION

The objective of image denoising is to estimate the origi-
nal image from the noisy image with some knowledge of
the degradation process. There are many existing models
and algorithms for solving this problem {1] [2] [3] [4]. Here
we adopt a Bayesian framework because it is highly parallel
and it can decomposite a complex computation into a net-
work of simple local computation [3], which is important in
hardware implementation of neural networks. In this study
the approach computes the maximum a posteriori (MAP)
estimate of the original image given the noisy image. The
MAP estimation involves the prior distribution of the origi-
nal image and the conditional distribution of the data. The
prior distribution of the original images imposes the con-
textual constraints, and can be modeled by Markov random
field (MRF) or equivalently Gibbs distribution. Maximiz-
ing the a posteriori problem is equivalent to maximizing the
energy function in the Gibbs distribution. The MAP-MRF
principle centers on applying MAT estimation on the MRF
modeling of the images,

Li proposed the augmented Lagrange Hopfield method
to solve the optimization problem [5]. He transformed the
combinatorial optimization problem into real consirained
optimization using the notion of continuous relaxation la-
beling. The HNN was then used to solve the real con-
strained optimization.
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Previous studies have shown that neural networks are
powerfui for solving optimization problems [6] [7]. The
HNN is an artificial neural network that is capable of solv-
ing quadratic optimization problems. However, it suflers
from convergence to local minima [8]. To overcome this
shortcoming, different simulated annealing techniques have
been combined with the HNN to solve optimization prob-
lems [9] [8] [10] {11] [12]. Kajiura et al [11} proposed
the gaussian machine which combines stochastic simulated
annealing (SSA) with neural network for solving assign-
ment problems. Convergence to globally optimal solutions
is guaranieed if the cooling schedule is sufficiently slow,
i.c., no faster than logarithmic progress [3]. SSA secarches
the entire solution spaces, which is time consuming. Chen
and Aihara [9] proposed a transiently chaotic neural net-
work (TCNN) which adds a large negative self-coupling
with slow damping in the Euler approximation of the contin-
uous HNN so that neurodynamics eventually converge from
strange attractors to an equilibrium point. This Chaotic sim-
ulated annealing (CSA) can search efficiently because of
its reduced search spaces. The TCNN showed good per-
formance in solving traveling salesman problem. However
CSA is deterministic and is not guaranteed to settle down
at a global minimum. In view of this, Wang and Tian [12]
proposed a novel algotithm called stochastic chaotic sim-
ulated annealing (SCSA) which combines both stochastic
manner of SSA and chaotic manner of CSA. In this paper
the NCNN, which performs SCSA algorithm, is applied to
solve the constrained optimization in the MAP-MRF fomu-
lated image denoising. Experimental results show that the
NCNN outperforms the HNN and the TCNN.

The rest of the paper is organized as follows: Section 2
introduces the MAP-MRF framework in image restoration
and the transformation of the combinatorial optimization to
a real unconstrained optimization. Section 3 presents the
NCNN and the derivation of the neural network dynamics,
The experimental results arc shown in Section 4. Section 5
concludes the paper.
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2. MAP-MRF IMAGE RESTORATION

Let & = {1,..., N} indexes the set of sites corresponding
to the image pixels, = = {x; |1 € 8}, 2 = {& i e &}
and y = {y, | # € S} are the random variables denoting the
original image, the restored image and the degraded image
respectively.

When the original image is degraded by identical inde-
pendently distributed (i.i.d.) Gaussian noise, the degraded
image is modeled by:

Yy, =+ g (1

where e; ~ N (0,57} is the zero mean Gaussian distribution
with standard deviation . The objective of image denoising
is to find an & that approximates .

Each site in S takes on a discrete value in the label set
£ =1,..., M. The spatial relationship of the sites is deter-
mined by a neighborhood system A = {N; | ¢ € S} where
N7 is the set of sites neighboring 4. A single site or a set
of neighboring sites form a clique denoted by ¢. C is the
set of all cliques. In this paper only the pair-site cliques are
considered.

There are many different ways the pixels can influence
each other through contextual interactions. Such contex-
tual interactions can be modeled as MRFs. According to
Markov-Gibbs equivalence, an MRF is equivalent to a Gibbs
distribution. Therefore, the prior distribution of the original
image which imposes the contextual constraints can be ex-
pressed in terms of the MRF clique potentials.

In (1) the noise is independent Gaussian noise. The con-
ditional distribution can be expressed in terms of y, = and
o. Knowing the prior distribution and the conditional dis-
tribution, the energy in the posterior distribution is given by
[4]

E(z)=Y_ Gk DM > Velzwe) (2
: 27 ) R
eS8 {i,i’}eC
where (iiyec Vo(x;, ) is the pair-site clique potential
of the MRF model.

Among various MRFs, the multi-level logistic (MLL)
model is a simple mechanism for encoding a large class of
spatial pattems [13]. In MLL, the pair-site clique potentials
take the form; Vy{z;, zy) = — . if sites in the clique {z,3'}
have the same label; otherwise, Vo (xx;, ) = . where .is
a parameter associated with the type of the clique c. How-
ever as the MLL pair-sitc potentials are strong constraints,
we adopt the modified potential as:

Vz(-’fi,fﬂi') =— xg(x;,Ty) 3

where g(z;, zy) = 2e1%2l/7 _ ], 7 is a positive con-
siant. g{z;, z;) in the modified potential function is an ex-
ponential function in (—1,1]. Compared to the potential

function in the MLL model, the modified potential function
allows the pixel to be slightly different from the neighbor-
ing pixels. This is logical as most real images have smooth
non-uniform regions.

As image pixels can only take discrete values, the mini-
mization in (2) is a combinatorial optimization problem. It
can be transformed into a constrained optimization in real
space using continuous relaxation labeling. Let p;(7) €
[0, 1] represent the strength with which label T is assigned
to +, the energy with the p variables is given by

St + *
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where [ = Ty, I = €Ly, ?',;(I) = ‘/}(lly} = (I - yi)z/2r.72
is the single-site clique potential funciion and r; 3/ (1, I') =
VoI, I'|y) = Vo (!, I') is the pair-site cligue potential func-
tion in the posterior distribution P{x|y). _

With such a representation, the combinatorial minimiza-
tion is reformulated as the following constrained minimiza-
0non

nin E(p) : (3)

2
subject to Cipy=0 =) (6)
p{l) >0 Vie S, ¥ie £ (7)

where Ci(p) = >, ps(J) —1=0.

The final solution p* is subject to additional constraints;
pi(f) € {0,1}. The HNN is prone to trappings at local
minima. In view of this, we propose a new network NCNN
to perform the optimization.

3. NOISY CHAOTIC NEURAL NETWORK

Let u;(I) denote the internal state of the neuron (4, 1) and
p;(]) denote the output of the neuron (¢, I). p;(I) € [0,1]
represents the strength that the pixel at location ¢ takes the
value 7. The NCNN is formulated as follows [12]:

1

) = = 8
p1 ( ) 1+eéu§t)(f)/e ( )
w0 = k) - OGP = 1)+ 0t 4
N M
(S0 3T Terpd () +Tu(D)
if=1,i'#i I'=1
©)
A — (1 - )z (10)
A[ﬂ(tﬂ)] =(1- ﬂ)A[n(‘)] an
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where
Tirere
(4,1);
Z;(I) : input bias of neuron {4, I'),
k- damping factor of nerve membrane (0 & 1)

: posilive scaling parameter for inputs;
¢ : steepness parameter of the output function (e > 0);
z : self-feedback connection weight or refractory strength
(z > 0y,
I, : positive parameter,
n : random noise injected into the neurons;

» . positive parameter (0 < . < 1)

n - positive parameter (0 <, < 1)
Aln] : the noise amplitude.

When we set 2649 = 01in (93, the NCNN becomes TCNN.
When we further set 2 = 0, the TCNN becomes similar
to the HNN with stable fixed point dynamics. The basic
difference between the HNN and the TCNN is that a non-
lingar term =(p!7(T) = 1,) is added to the HNN. Since
the “temperature™ () tends toward zero with time evolu-
tion, the updating equations of the TCNN eventually reduce
t0 those of the HNN. In (9) the variable =® can be inter-
preted as the strength of negative self-feedback connection
of each neuron, the damping of ) produces successive bi-
furcations so that the neurodynamics eventually converge
from strange attractors to a stable equilibrium point [8].

CSA is deterministic and is not guaranteed to settle down
to a global minimum. In view of this, Wang and Tian [12]
added a noise term n(* in (9). The noise term continues to
search for the optimal solution after the chaos of the TCNN
disappears.

From (5)-(7) and (9), we obtain the dynamics of the
NCNN:

connection weight from neuron (¢', /') to neuron

al ) = k(1) = 20O (1) - L)+ 0@+ ¢{()

(12)
where 3L (o)
(n=_o=wy
ql(I) Bp,,([)
L (p7) = B(p) + Y nCelp) + 5 3 _[Ce )}
kES k€S

v are the Lagrange multipliers and > 0 is the weight
for the penalty term. Note that the Lagrange multipliers are
updated with neural outputs according to 'y,(:“) = 'y,(:) +

Ci(p).

4. EXPERIMENTAL RESULTS

The experimental results presented here demonstrate the per-
formance of the NCNN on image restoration.

We chose the Lena image of size 128 128 with M =
256 gray levels. The label set £ = {0,1,2,...,255}. The

degraded image was generated by adding zcro-mean identi-
cal independently distributed Gaussian noise with standard
deviation o = 16.

The degraded image was set to be the input of the ncural
networks. After the neural networks were initialized, each
neuron was updated using (12) and (8). After all neurons
in the ncural networks were updated once, i, = and » arc
updated. The updating scheme is cyclic and asynchronous.
When all the neurons are updated once, we call it one iter-
ation. Once the state of a neuron is updated, the new state
information is immediately available to other neurons in the
network (asynchronous).

The parameters that we used for the NCNN are: & = 1,
¢ =001, = 0.0001, I = 065 ) = 0.05 2" =
0.01. is increased from 1 to 50 according o — 1.01 .
The decreasing rate of z and n, . and , are 0.005. For
the TCNN and the HNN we usc the same parameters as the
NCNN except that n = 0 for the TCNN, # =0and : =0
for the HNN. The MRF pair-site clique potential parameter

~=8.

Table 1 shows the required iteration numbers and the
peak signal-to-noise ratio (PSNR) of the restored images.
The higher the PSNR, the better the image quality. It can
be seen from the table that the NCNN offers the best perfor-
mance. The PSNR of the restored image using the NCNN
is higher than those of the restored images using the HNN
and the TCNN. In addition, the NCNN use less iterations to
converge than the HNN and the TCNN. The restored images
are shown in Fig. 1.

Table 1. Numerical restoration results of the Lena image
(PSNR,: PSNR of the restored image, PSNR;: PSNR of
the degraded image)

Iterations { PSNR, | PSNR,

“HNN' 1489 | 25.6227 | 24.0549
TCNN | 1173 | 25.9077 | 24.0549
?CNN 1114 | 26,7554 | 24.0549

5. CONCLUSION

A new neural network, called noisy chaotic neural network
(NCNN), is used to address the MAP-MRF formulated im-
age denoising problem. SCSA effectively overcomes the
local minima problem. We have shown that the NCNN
gives better quality solutions compared to the HNN and the
TCNN.
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Fig. 1. Restoration of Lena Image: (a) Original image. (b)

Degraded image. (c)-(e) Restored images using the HNN,

the TCNN and the NCNN, respectively
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