
Optimal Size of a Feedforward Neural Network: How Much does it Matter?

Lipo Wang
College of Information Engineering

Xiangtan University
Xiangtan, Hunan, China

lipowang@126.com

Hou Chai Quek
School of Electrical and Electronic Engineering

Nanyang Technological University
Block S1, 50 Nanyang Avenue, Singapore 639798

elpwang@ntu.edu.sg

Keng Hoe Tee
School of Electrical and Electronic Engineering

Nanyang Technological University
Block S1, 50 Nanyang Avenue, Singapore 639798

ecrwan@ntu.edu.sg

Nina Zhou
School of Electrical and Electronic Engineering

Nanyang Technological University
Block S1, 50 Nanyang Avenue, Singapore 639798

ZHOU0034@ntu.edu.sg

Chunru Wan
School of Electrical and Electronic Engineering

Nanyang Technological University
Block S1, 50 Nanyang Avenue, Singapore 639798

ecrwan@ntu.edu.sg

Abstract

In this paper, we attempt to answer the following ques-
tion with systematic computer simulations: for the same
validation error rate, does the size of a feedforward neural
network matter? This is related to the so-called Occam’s
Razor, that is, with all things being equal, the simplest so-
lution is likely to work the best. Our simulation results in-
dicate that for the same validation error rate, smaller net-
works do not tend to work better than larger networks, that
is, Occam’s Razor does not seem to apply to feedforward
neural networks. In fact, our results show no trend between
network size and performance for a given validation error.

1. Introduction

Artificial neural networks represent a technology rooted
in many disciplines. They are endowed with some powerful

attributes: universal approximation of any arbitrary input-
output mapping, the ability to learn from and adapt to their
environment, and the ability to generalize from incomplete
knowledge based on input data.

A feedforward neural network, or multilayer perceptron
(MLP), shown Fig.1 has an input layer, an output layer, and
one or more hidden layers. This type of networks can be
trained with the error back propagation algorithm and its
many variants. Since a neural network with one hidden
layer is capable of approximating any arbitrary function, in
this paper we will consider only neural networks with only
a single layer of hidden layer.

One of the most important problems in neural network
design is deciding on the optimal size of the hidden layer (or
the optimal number of hidden neurons) in order to achieve
the best performance for a given application. In this pa-
per, we will concentrate on classification. For a given data
set, how does one decide on the optimal size of the hidden
layer (or the optimal number of hidden neurons) that leads
to the highest classification accuracy for the

�������
data set



after training?

 

Figure 1. A Simple Multilayer Perceptron.

In general, a neural network with too small a hidden
layer is unable to learn the input-output mapping, i.e., the
network is not able to work sufficiently well even for the
training data, no matter how many epochs the network is
trained. However, if too many hidden neurons are used,
overfitting can occur, that is, although the network can be
trained to work very well for the training data, it performs
poorly for test data not used in training, or in other words,
the network is not able to generalize well.

In order for the network to learn the desired mapping and
at the same time avoid overfitting, validation or early stop-
ping is often used: one uses a sufficiently large network, and
one uses a part of the training data to check the classifica-
tion accuracy during training, but these validation data are
not used to adjust network weights. Training stops if this
validation error (rather than the error for the training data
set) reaches a minimum.

To minimize the risk of overfitting, one is tempted to use
the smallest network possible. This is also consistent with
the Occam’s razor, the essence of which is that all things
being equal, the simplest solution tends to work the best.
As pointed out by Poggio and Girosi, smoothness of input-
output mapping is closely related the Occam’s razor, since
the smoothest mapping is the simplest. A regularization
term may be added in the training criterion to explicitly pe-
nalize the network complexity, which is also equivalent to
adding noise in training data, as shown by Bishop.

Caruana presented a tutorial at [5] with generalization
results on a variety of problems as the size of the networks
was varied. Caruana reported that large networks rarely do
worse than small networks on the problems investigated.
Caruana thus suggested that “backpropagation ignores ex-
cess parameters”.

Several theories for determining the optimal network
size have been proposed, e.g. the NIC (Network Infor-
mation Criterion) [9] which is a generalization of the AIC

(Akaike Information Criterion) [2][3] widely used in statis-
tical inference, the generalized final prediction error (GPE)
[8], and the Vapnik-Chervonenkis (VC) dimension [7][1][4]
which measures the expressive power of a network. NIC re-
lies on a single minimum and can be unreliable when there
are several local minima [10]. Very little computational ex-
perience of the NIC, the GPE, or the VC dimensions has
been published, since their evaluation can be very expen-
sive for large networks.

Lawrence, Giles, and Tsoi carried out a large scale nu-
merical study on the optimal size [6]. Similar to Caruana
[5], they also found that networks with sizes larger than op-
timal size can sometimes generalize better. They noted that
this is not in contradiction to Occam’s Razor, since these
different networks are solutions of different quality.

In this paper, we will carry out comparisons between net-
works of different sizes but the same quality. If we have
trained an assemble of networks with different numbers of
hidden neurons, but with the same validation error, Occam’s
razor indicates that the smaller networks would work better
than the larger networks during testing. We perform system-
atic simulations on some benchmarking data sets to show
that this trend is not apparent.

2. Simulations

Tests were conducted on the Iris Plants
data from the Machine Learning Repos-
itory of University of California Irvine
(http://www.ics.uci.edu/ mlearn/MLRepository.html).

The Iris Plants data contains 3 classes of 50 instances
each, where each class refers to a type of iris plants. One
class is linearly separable from the other 2; the latter are
NOT linearly separable from each other. The 3 classes are
Iris Setosa, Iris Versicolour and Iris Virginica.

We used 2 training functions in the MATLAB Neural
Network Toolbox to train the network, namely, traingdx
and trainlm. They implement the gradient descent with
momentum and adaptive learning rate, and the Levenberg-
Marquardt back-propagation algorithms, respectively. We
carried our simulations in the following steps:

1. The data sets were randomly divided into 3 sets, i.e.,
50% of the entire data set for training, 25% for validation,
and 25% for test.

2. A single-hidden layer MLP with 2 hidden neurons,
3 output neurons (one for each class), and an appropriate
number of input neurons (equal to the number of input at-
tributes) was created. The network weights and bias were
then initialized randomly.

3. The network was trained using the training data
set and was validated using the validation data set. We
first used the Levenberg-Marquardt backpropagation algo-
rithms. Early stopping was used and the lowest validation



error was recorded.
4. The network was then tested using the test data set

and the test error was recorded.
5. Repeat Steps 3 - 4 using the gradient descent with

momentum and adaptive learning rate.
6. Repeat Steps 2 - 5 for 100 different initializations

of weights and bias.
7. Repeated Steps 1 - 6 for 3 different random shuffling

of the data.
8. Repeat Steps 1 - 7 for different numbers of hidden

neurons, i.e., 3 - 15.
9. The recorded validation errors were then sorted at

a 2% interval ranging from 0% -20% and the correspond-
ing test errors were plotted against the number of hidden
neurons (each simulation was denoted by a � in the follow-
ing figures). For each size of hidden layer, the mean of all
the test errors was calculated and was added to the plots (a
circle).

2.1. Results for Iris Data Set and Trainlm

We note that each � in the figures may represent more
than one simulations, i.e., these simulations ended up with
the same test error. For example, in Fig.2, with 2 hidden
neurons, the average test error for all simulations is about
1.2% which means that many simulations resulted 0% test
error.

 

Figure 2. Test errors vs. number of hidden
neurons for the Iris Data Set and Trainlm MAT-
LAB function, with 3% validation error. Cir-
cles: average test error corresponding to a
given number of hidden neurons.

There is no obvious trend in the plots that may indicate
for a give validation error whether the classification accu-

 

Figure 3. Same as Fig.2, for 6% validation er-
ror.

racy during test either increases or decreases with the num-
ber of hidden neurons.

Due to limited space, not all simulation results are in-
cluded here; however, the above observation stands for all
our simulations.

2.2. Results for Iris Data Set and Traindx

Similar results using the gradient descent with momen-
tum and adaptive learning rate training algorithm are pre-
sented Figures 8-13.

3. Discussion

In this paper, we have conducted systematic numeri-
cal experiments to find out whether small-sized neural net-
works perform better than larger networks for the same
valid accuracy, i.e., whether or not Occam’s Razor holds for
neural network training. From our results, there are trends
at all to support Occam’s Razor. This paper presents re-
sults only for the Iris data; however, we have also carried
out experiments with other datasets and the results are simi-
lar. From the result we have obtained, there is no indication
to convince us that Occam’s Razor is valid for neural net-
works. We claim from our results that there is no relation-
ship between the network size and its performance, that is,
Occam’s Razor does not apply for neural networks.

References

[1] Y. Abu-Mostafa. The vapnik-chervonenkis dimension: In-
formation versus complexity in learning. Neural Computa-
tion, 1(3):312–317, 1998.



 

Figure 4. Same as Fig.2, for 8% validation
error.

[2] H. Akaike. Statistical predictor identification. Annals of the
Institute for Statistical Mathematics, 22:203–217, 1970.

[3] H. Akaike. Information theory and an extention of the max-
imum likelihood principle. B.N. Petrov and F. Csaki, eds.
Proceedings 2nd International Symposium on Information
Theory, pages 267–281, 1973.

[4] P. Bartlett. Vapnik-chervonenkis dimension bounds for two-
and three-layer networks. Neural Computation, 5(3):371–
373, 1993.

[5] R. Caruana. Generalization vs. net size, Neural Information
Processing Systems. Tutorial, 1993.

[6] S. Lawrence, C. Giles, and A. Tsoi. What size neural net-
work gives optimal generalization? convergence properties
of backpropagation. University of Maryland Technical Re-
port, UMIACS-TR-96-22, 1996.

[7] W. Maass. Vapnik-chervonenkis dimension of neural net-
works. in M.A. Arbib, ed., The Handbook of Brain Theory
and Neural Networks, 1995.

[8] J. Moody. The effective number of parameters: An analysis
of generalization and regularization learning systems. in J.
Moody, S.J. Hanson, and R.P. Lippmann, eds., Advances in
Neural Information Processing, 4:847–854, 1992.

[9] K. Muller, M. Finke, K. Schulten, N. Murata, and S. Amari.
A numerical study on learning stochastic multi-layer feed-
forward networks. Neural Computation, 1996.

[10] B. Ripley. Statistical ideas for selecting network architec-
tures. Invited Presentation, Neural Information Processing
Systems 8, 1995.

 

Figure 5. Same as Fig.2, for 11% validation
error.

 

Figure 6. Same as Fig.2, for 14% validation
error.



 

Figure 7. Same as Fig.2, for 16% validation
error.

 

Figure 8. Test errors vs. number of hid-
den neurons for the Iris Data Set and Traindx
MATLAB function, with 3% validation error.
Circles: average test error corresponding to
a given number of hidden neurons.

 

Figure 9. Same as Fig.8, for 6% validation
error.

 

Figure 10. Same as Fig.8, for 8% validation
error.



 

Figure 11. Same as Fig.8, for 11% validation
error.

 

Figure 12. Same as Fig.8, for 14% validation
error.

 

Figure 13. Same as Fig.8, for 16% validation
error.


