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Abstract: Data dimensionality reduction is usually carried out before patterns
are input to classifiers. In order to obtain good results in data mining, selecting
relevant data is desirable. In many cases, irrelevant or redundant attributes are
included in data sets, which interfere with knowledge discovery from data sets.
In this paper, we propose a rule-extraction method based on a novel
separability-correlation measure (SCM) ranking the importance of attributes.
According to the attribute ranking results, the attribute subsets that lead to the
best classification results are sclected and used as inputs to a classifier, such as
an RBF neural network in our paper. The complexity of the classifier can thus
be reduced and its classification performance improved. Qur method uses the
classification results with reduced attribute sets to extract rules. Computer
simulations show that our method leads to smaller rule sets with higher
accuracies compared with other methods.
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1 Introduction

Data dimensionality reduction (DDR) aims at removing irrelevant attributes while
maintaining the information of data sets. DDR has become an important aspect of data
mining since human experts and corporate managers are able to make better use of lower-
dimensional data compared to higher-dimensional ones. In addition, DDR can decrease
the computational burden for various automated processes. for example, when a radial
basis function (RBF) neural network is used to classify data. Reduced data
dimensionality leads to less complicated network structure and thus increases efficiency
in processing data. Removal of irrelevant data can significantly improve the accuracy of a
classifier. In addition, with a fewer number of attributes obtained by DDR techniques,
concise rules with higher accuracies can be obtained in rule-extraction tasks.

DDR techniques may be classified into feature (attribute) extraction and feature
selection. Feature extraction creates a number of new features through a transformation
of the raw features. Linear discriminant analysis (LDA) (Bollacker and Ghosh, 1996:
Kawatani and Shimizu, 1998; Liu and Wechsler, 1998) and principal component analysis
(PCA) (Kambhatla and Leen, 1993) are two popular techniques for feature extraction.
Although these types of transformations are designed to maintain concepts in the data, it
is difficult to prevent by-products from affecting the original concepts in the data
detrimentally.

In feature selection techniques, the attributes that are important for maintaining the
concepts of the original data are selected from the entire attribute set. No new features or
unwanted by-products are generated with feature selection. How to determine the
importance level of attributes is the key to feature selection techniques. The idea of
ranking feature importance for selecting features out of the original feature set derives
from the fact that different features contribute to classification differently, i.e., irrelevant
features degrade the performance of classification both in the classification accuracy and
the complexity of representing classification results.

Mutual information based feature selection (MIFS) (Bollacker and Ghosh. 1996;
Battiti. 1994) is a common method of feature selection. in which ‘the information
content’ of each attribute (feature) is evaluated with regard to class labels and other
atiributes. By calculating mutual information. the importance levels of features are
ranked based on their ability to maximise the evaluation formula. However, in the MIFS,
the number of features to be selected needs to be pre-defined. Dash et al. (1997) use an
entropy measure (SUD) to evaluate the relative importance of attributes. The entropy
measure is based on the similarities of different instances without considering class
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labels. Attribute subsets were then selected based on attribute importance ranking and
classification accuracy with C4.5.

Kononenko (1994) proposed Relief-F to rank attribute importance, in which M
nearest neighbours are searched from Af different classes for a given instance. A pair of
instances is formed including the given instance and one of its nearest neighbours.
Together with the nearest neighbour from the same class. there are M+ 1 pairs
of instances. The difference in an attribuie in each pair of instances is calculated.
The probabilities of these differences are used to evaluate the importance of the attribute.

Rule extraction is an important task in data mining. Without rule extraction, trained
neural networks are sometimes criticised as black boxes, since they do not offer explicit
explanations as to how the trained networks work. Usually, a rule consists of an IF part
and a THEN part. The premise parts of rules are combinations of attributes. There are
three kinds of rule decision boundaries, i.e., hyper-rectangular. hyper-plane, and
hyper-ellipse. Due to its explicit form and perceptibility, hyper-rectangular decision
boundaries are often employed in rule extraction, such as rules extracted from the MLPs
{Bologna and Pellegrini. 1998: Ishibuchi and Nii, 1996; Lu et al., 1996) and from RBF
neural networks (McGarry et al., 1999: McGarry and Maclntyre, 1999). In order to obtain
svmbolic rules with hyper-rectangular decision boundaries, a special interpretable MLP
(IMLP) was constructed in Bologna and Pellegrini (1998). In an IMLP network, each
hidden neuron receives a connection from only one input unit. and the activation function
used for the first hidden layer neurons is the threshold function. In Lu et al. (1996), the
range of each input attribute was divided into intervals. The attribute was then encoded as
a binary string accordingly. Rules with hyper-rectangular decision boundaries were thus
obtained. Ishibuchi and Nii (1996) extracted fuzzy IF-THEN rules. To determine the
threshold function. sub-intervals, and membership functions. prior knowledge on how to
divide the ranges of the attributes is desirable. Unsuitable division of attribute ranges
leads to low rule accuracy. The division will then have to be adjusted. and the training
procedure and the rule-extraction procedure will have to be repeated.

In this paper. we first introduce a separability-correlation measure (SCM) for
determining the importance of the original attributes (Section 2) (Fu and Wang, 2003).
We describe a simplified RBF classifier by allowing for large overlaps between patterns
of the same class (Section 3).

We then propose a rule-extraction method based on DDR (Section 4). In an RBF
classifier, the boundary of the receptive field of the kernel function is a hyper-sphere.
Rules with hyper-rectangular decision boundaries are extracted based on the training
result of the RBF neural network using gradient descent.

Experimental results on reducing data dimensionality. obtaining a simpler
architecture of the RBF classifier, and extracting rules are shown in Section 3. Finally,
we conclude the paper in Section 6.

2 Separability-correlation measure for feature importance ranking

2.1 A class separability measure

The probability of correct classification is large when the distances between different
classes are large. Therefore, the subset of features that can maximise the separability
between classes is a desirable objective of feature selection.
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Class separability may be measured by the intraclass distance (the distance of patterns
within class) S, and the interclass distance (the distance between pattems
of different classes) S, (Devijver and Kittler, 1982):
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Here C is the number of classes in the data set. n, is the number of patterns in the

ith class. P; is the probability of the ith class. E,‘k is the normalised data vector. whose
Jjth attribute. X;; (j) is normalised as:
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where Max(x;) and Min(x,) are the maximum and minimum of the jth attribute in the data
set. respectively. j=1. 2,...n » is the number of attributes. Xu{j) is the original
(unnormalised) data. m; is the mean vector of the jth class:
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N is the total number of patterns in the data set. i.e., N=nm+n. + - + n,.

The greater S, is and the smaller S, is, the better the separability of the data set.
Therefore. the ratio of S,, and S, can be used to measure the distinction of the classes: the
smaller the ratio. the better the separability (Devijver and Kittler, 1982).

If removing attribute &, from the data set leads to less class separability, i.e.. a greater
S./Ss, compared to the case where attribute %, is removed, one may consider attribute
k, more important for classification of the data set than attribute k&, is. and vice versa.
Hence. we may rank the importance of the attributes by calculating the
intraclass-to-interclass distance ratio with each attribute omitted in turn.

However, the ratio §,/S, does not always work well as a class separability measure.
For example, consider two classes, with one class surrounding the other. but are
completely separable. Since and , m, and /7 defined in equation (4) and equation (5)

are equal. §, — 0. which indicates total inseparability. Here there is a need to have other
importance measures.
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2.2  An attribute-class correlation measure

In addition to the separability of classes in the data set, the correlation between the
changes in attributes and their corresponding changes in class labels should be taken into
account when ranking the importance of attributes. This correlation directly links features
with class labels. To two different patterns, if their class labels are different, the
variations of attributes in the two patterns are considered to be the affecting factor for
the variation of class labels and should be weighted positively; if the class labels are the
same, the variations in the attributes are irrelevant in deciding the classes and should be
weighted negatively. The correlation measure can be a useful factor by combining
together with our class separability measure.

We introduce the following correlation between the kth attribute and the class labels
in the data set:

Cr = Z|ff ik = f?zk|><rnagn(y,- =Yik (6)
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where E,‘k and X jkare the kth attributes of the ith pattern and the jth pattern,

respectively. y, and y, are the class labels of the ith pattern and the jth pattern respectively.
For any y. magn(y) = 1 if j)f > 0 and magn(y) = -0.05 if [ = 0. A great magnitude of

C; shows that there is a close correlation between class labels and the kth attribute, which

indicates the great importance of attribute % in classifying the patterns. and vice versa.

2.3 The separability-correlation measure for attribute importance ranking

We introduce the following separability-correlation measure (SCM) to evaluate the
importance levels of attributes by combining the above two measures:

Re = ¥k +(1- 2)Cy. ™

where 5= Su/Spe. Sk = Sp— Min(S,)/Max(S,) - Min(S,) is the normalisation
of Si Max(Sy) and Min(S,) are the maximum and minimum of all S
respectively. k=1, 2. ..n. n is the number of attributes. S, and Sy are intraclass
and interclass distances calculated with the kth attribute omitted from each
pattern. respectively. For example. the ith pattern Xy = {X0- X2, oo Xipo] Xpkals oo Xin}
becomes X ={xi0, %2, oo s Xkl Xikt s -oe s Xin} when R, is  calculated.
C; = Cy —Min(Cy YMax(Cy ) —Min(Cy ) is the normalisation of Cy. % is the parameter to
weight the two items for the final measure. Here 02y 21 and x is determined
empirically: the best choice of x should lead to a subset of attributes. which results in the
highest classification accuracy.

The importance levels of attributes are ranked using the values of R;. The greater the
magnitude of Ry, the more important the 4th attribute. We will demonstrate the use of our
SCM method in Section 4.

We use a combination of two measures, i.e.. class separability and attribute-class
correlation, because either of them alone does not work well, as shown in our
experimental results presented later in the paper.
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2.4 Bottom-up, top-down, and exhaustive search for ranking attributes

Either bottom-up search or top-down search can be used for ranking attribute importance.
In bottom-up search, we begin from an empty set. The SCM is used for evaluating each
attribute by omitting this attribute from each pattern, i.e., the attribute is considered to be
more important if its corresponding SCM magnitude is larger than others. The selected
attribute is included in the empty attribute subset. This operation is continued until »
attributes are included. The order of attributes entering the attribute set indicates the
importance order of attributes. In bottom-up search. the number of SCM calculations is n
(n is the number of attributes).

In top-down searches, we start from the complete attribute set. Each attribute is
removed from the attribute set temporarily for calculating its SCM. Then the least
important attribute. whose corresponding value in SCM is the smallest, is eliminated
from the current atiribute set. The steps are iterated until only one attribute is left
in the attribute set. The number of SCM calculations for class separability measure is
n+(n-1)+--+1=n(n+1)2. In Section 4. the differences of the two searches are
shown.

In exhaustive search, all the gossible attribute subsets are examined. The number of
computations needed is Ch+CZ+--+CI+C? =2"~1. In the branch and bound
algorithm, some attribute sets are avoided examining. which leads to the saving in
computation; however. the number of calculations still grows exponentially with 7. In
addition, the computational saving is achieved by requesting the feature selection
evaluation function being with the monotonicity property (Devijver and Kittler. 1982).
The classification accuracy of a neural network classifier is often used as the feature
selection evaluation. With the interference of irrelevant attributes for the classification
accuracy, the evaluation results trom classifiers may not obey the montonicity property.

Due to the computational burden of optimal search methods, one has to resort to
suboptimal feature selection methods. In classification tasks. since the goal is to obtain
better classification accuracy with less complicated construction of classifiers. the
strategy of using the classification accuracy as evaluation for selecting features is used
widely. We use suboptimal search and RBF classifiers as evaluators in this paper.

3 A modified method for constructing an efficient RBF classifier

RBF neural networks are widely used for function approximation, pattern classification,
and so on. In this paper, we use an RBF classifier together with the SCM to select the
best subsets of attributes. In the RBF neural network. the activation of a hidden unit is
determined by the distance between the input vector and the centre vector of the hidden
unit. The weights connecting the hidden layer and the output layer can be determined by
a linear least square (LLS) method (Bishop. 1995). which is fast and free of local minima,
in contrast to the multilayer perceptron neural network.

There are three layers in the RBF neural network. i.e.. the input layer, the hidden
layer with Gaussian activation functions, and the output layer. The architecture of the
RBF neural network 1s shown in Figure 1. In this paper, we use the RBF network for
classification. If there are A classes in the data set. we write the mth output of the
network as follows:
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X
ym(x) = Z wmjgj (X) + mebm‘ (8)
j=l

Here X is the n-dimensional input pattern vector, m=1, 2. ..., M. K is the number of
hidden units. M is the number of output. w,, is the weight connecting the jth hidden unit
to the mth output node. b, is the bias. wo is the weight connecting the bias and the
mth output node. g,(X) is the activation function of the jth hidden unit:

Jx-cf

o, (X)=e X ©®)

where C, and g are the centre and the width for the jth hidden unit. respectively. which
are adjusted during leamning.

Figure 1 Architecture of an RBF neural network

input Output

X2

Finding the centres. widths, and the weights connecting hidden nodes to the output is the
key for constructing and training the RBF classifier. Both the dimensionality and
the distribution of the input patterns affect the number of the hidden units. If the
dimensionality is reduced. the number of hidden units will also be decreased.

Overlapped receptive fields of different clusters can improve the performance
of the RBF classifier in rejecting noise when dealing with noisy data (Maffezzoni and
Gubian, 1994). In Roy et al. (1995) and Kaylani and Dasgupta (1994). overlapping
Gaussian kemel functions are created to map out the territory of each cluster with a
smaller number of Gaussians. In those previous methods. the clusters are formed as
follows. A pattern is randomly selected from the data set ¥ as the initial centre of a
cluster. The radius of this cluster is chosen in such a way that the ratio between the
number of patterns of a certain class (in-class patterns) and the total number of patterns in
the cluster is not less than a pre-defined value 8. Once this cluster is formed, all patterns
inside this cluster are ‘removed’ from the data set and do not participate in the formation
of other clusters.
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The value of @is determined empirically and is related to an acceptable classification
error rate. Since 8 determines the radii of the clusters. it also indirectly determines the
degree of overlaps between different clusters. Generally, a large € leads to small radii of
clusters; thus it leads to small overlaps between the Gaussians for different clusters and a
small classification error rate for the training data set. Since a small classification error is
desired, there usually exist small overlaps between the Gaussians representing the
clusters.

Let us consider a simple example. Suppose 8= 0.8, i.e., there must have at least 80%
in-class patterns in each cluster. In Figure 2(a), suppose cluster A has been formed and its
members ‘removed’ from the data set V. Suppose pattern 2 is subsequently selected as the
initial centre of a new cluster and cluster B is thus formed. Clusters C through G are then
formed similarly in sequence. We see that clusters B, C, and D are quite small, and
therefore the effectiveness of the above clustering algorithm needs to be improved.

Figure2 A comparison between (a) existing algorithms: small overlaps between clusters, and
(b) the modified algorithm with reduced number of clusters: small overlaps between
clusters of different classes, but large overlaps between clusters of the same class

We describe an algorithm to reduce the number of clusters as follows. We first make a
copy V. of the original data set V. When a qualified cluster (the ratio of in-class patterns
should be higher than 6). e.g.. cluster A in Figure 2(b) (same as in Figure 2(a)). is
generated. the members in this cluster are ‘removed’ from the copy data set V., but the
patterns in the original data set ¥ remain unchanged. Subsequently, the initial centre of
the next cluster is selected from the copy data set V.. but the candidate members of this
cluster are patterns in the original data set V, and thus include the patterns in the cluster
A. Subsequently when pattern 2 is selected as an initial cluster centre, a much larger
cluster B, which combines clusters B, C. and D in Figure 2(a). can still meet the
@ criterion and can therefore be created. By allowing for large overlaps between clusters
for the same class, we can further reduce the number of clusters substantially. This will
lead to more efficient construction of RBF networks. and is demonstrated by computer
simulations in the following section.



Data dimensionality reduction with application 73

We therefore use the following algorithm to construct an eFFcient RBF classifier,
incorporating the above modification to the existing algorithms (Roy et al., 1993, 1997):

1 Initialise for training

¢ we divide the data set into three parts: the training data set, the validation data
set, and the test data set.

e in order to derive the widths of the kernel functions, a general scale of
neighbourhood Jy is obtained by calculating the standard deviation of the data
set (Kononenko, 1994; Hruschka and Ebecken, 1999; Ishibuchi and Nii, 1996;
Liu and Wechsler, 1998; Dash et al., 1997).

2 Setstage L =1 (L indicates the steps in one training procedure); &L) = &.
0= ax &. where &L) is the initial radius of clusters at training stage L (training
stage indicates the status of the training procedure, in which initial radius of clusters
are affected). and s the increment step for the radius. s the changing rate of
radius.

Generate V., a copy of the original training data set V.
4  Forming clusters

(a) Count the number of patterns in classes in V. If the number of patterns in a class
is fewer than a pre-defined number (we use 4 in this paper). the patterns in the
class will not be selected.

(b) Setsub-stage L, = 1 (L, indicates the shrinking degree in the radius of cluster in
a sub-stage training procedure), &L;) = &L).

(¢) Select randomly a pattern from ¥, as an initial cluster centre, search in ¥ all the
patterns within &L)-neighbourhood of the centre patiern. Thus, large overlaps
are permitted among clusters of the same class as we described earlier.

(d) Check whether the ratio between in-class patterns and the total patterns in the
subset is greater than a pre-defined value 6. If the ratio is less than &, set
Li=L;+1.and &L,) = &L,) - & Search the patterns within
A& L;)-neighbourhood of the selected pattern. Stop only if the ratio criterion is
met or if L, 2 1/2a. Count the number of epochs N,, if N, 2 Di (i is the number
of patterns in V. D is an integer. Empirically, D =3.), 6= 0.96. Repeat 4 until
the training set ¥, is empty.

5  Calculate the centre and width of each cluster: the centre is the mean pattern of all
patterns in the cluster and the width is the standard deviation of these patterns.

6  Obtain weights by the LLS method (Bishop, 1995).

7 Calculate £, (the classification error of the training set) and E, (the classification
error of the validation set). Stop if both E; and E, are smaller than a pre-specified
value Ey. In this paper. Ey= Ep,. (Epy. is a pre-defined value of classification error
rate. Ep,. = 2% in this paper). Else:

o IfE(L)<E(L-1),setL=L+1and &L)= &L)- &2. Go to 3.
o IHfE(L)>E(L-1)and ELL)>E(L-1).L=L+1. &L)=(L)-J.goto 3.
o IfL>laorE,>Eygoto?2.
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Compared to Roy et al.’s (1995, 1997) original algorithm. we have made the following
changes:

1 In Step 4, large overlaps among clusters of the same class are allowed in order to
reduce the number of hidden units without reducing the classification accuracy.

2 In Step 6, LLS method (Bishop, 1995) is used to obtain the weights between the
hidden layer and the output layer.

3 InRoy et al. (1993), six training stages were used corresponding to
8= {50%, 60%. .... 100%}, respectively. In each stage, 8 is unchanged and all
clusters of this stage should meet the &-criterion. A classification result is obtained
for this 8. The classification error rate from a stage is compared to that in the
previous stage. Whether to continue to the next training stage is determined by a
comparison in the classification results. If the classification accuracy is better than
the previous stage. i.e.. it is possible to obtain a higher accuracy if & is increased.
Thus, the data are trained again using a larger 8. Otherwise. the training is stopped.
Although a larger @leads to a higher accuracy in the training data set, it may lead to
poorer generalisation in the testing data set. Hence. in our algorithm (Step 2). 8is
automatically adjusted according to the training condition, i.e.. how many patterns of
the class concerned are left. With the decreasing number of patterns, §is decreased
by a certain factor, say 0.9 in our simulations.

The aim of the modification described above, i.e., allowing for large overlaps among
clusters of the same class, is to decrcase the number of Gaussian hidden units without
reducing the classification accuracy. Overlaps between clusters of different classes affect
the classification error rate. i.e.. the larger the overlaps between clusters of different
classes, often the larger the classification error rate. However, in our paper, large overlaps
between clusters of the same class are allowed, which is not expected to degrade the
classification accuracy. Since large overlaps between clusters of the same class can help
combine small clusters into larger ones, and noise may thus be suppressed by these
combinations, the accuracy of classification may even be improved.

The cost of the modification is increased training time. Assume the number of
patterns in the data set is N. The number of hidden units is M, when allowing for large
overlaps among clusters of the same class. and the number of hidden units is A, without
allowing for large overlaps. For a certain hidden unit k, the number of patterns in this
cluster is N,. The processing time for one pattern is T in the training procedure. Assume
that both algorithms (with the modification and without the modification) have the same
initial conditions. The initial centre of each candidate cluster is selected randomly. Thus,
the average number of trials in two algorithms for searching qualified clusters may be
assumed to be the same. say M. With the modification, all ¥ patterns in the data set will
be checked when searching for a qualified cluster in each trial. Time required for one trial
is thus NT. For M, trials. the total time required is My x N7. Without the modification,
if a cluster is considered to be qualified, the patterns included in this cluster will be
removed from the data set. Thus, the total time required for classification without the
modification is

M, m—1 Mg m
> T(N— > NkJ =(MON— > ZMJT < MoNT.
m=] k=1

m=lk=]
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Thus. more time is needed when applying the modification. However, the cost is
worthwhile for thless complicated classifiers with higher accuracy are desired in most
cases.

Based on the attribute importance ranking, we further reduce the structural
complexity and improve the performance of the RBF network as follows. According to
the rank of importance level obtained by the algorithm described in Section 2, J most
important attributes are used for classification with the RBF neural network for
J=1.2,....N-1, N. The classification error rate is calculated for each J. Thus,
N classification error rates are calculated corresponding to N subsets of attributes. For
small J. classification error rate decreases as J increases until all relevant attributes are
included. As J increases further, the classification error rate may remain unchanged or
even increase because redundant or irrelevant attributes are included. The best subset of
attributes is the one with the smallest classification error rate.

4 The rule-extraction method

The rule-extraction algorithm proposed here is based on the widths and the centres of the
Gaussian kernel functions. and the weights connecting the hidden neurons to the output
laver. Each hidden neuron of the RBF neural network is responsive to a subset of input
patterns (instances).
The rules extracted in our paper are in an [F-THEN form. Rule 7 (corresponding to

hidden neuron {) is written as follows:

[F input 1 is within the interval (L,,.U);)

AND input 2 is within the interval (L,,,U,)

AND input # is within the interval (L;.Uy)
THEN the class label of the input pattern is k,.

Here Uj and L;; are the upper limit and the lower limit of interval j in rule /. respectively.

The objective of tuning the rule premises is to determine the boundaries of rules so
that a high rule accuracy is obtained for the testing data set. Before starting the tuning
process. all of the premises of the rules must be initialised. Let us assume that the number
of attributes is n. The number of rules equals the number of hidden neurons in the trained
RBF network. The number of the premises of rules equals to n. The upper limit U(j, /)
and the lower limit L(j. i) of the jth premise in the ith rule are initialised according to the
trained.

RBF classifier as:

Ue(j. 1) = Hy t O, (10)
LO(j* i)=.uji— O;s (]1)

where u, is the jth item of the centre of the ith kernel function. ¢; is the width of the
ith kernel function.
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The upper limit U(j, i) and the lower limit L(j, i) of the jth premise in the ith rule are
tuned as follows:

AU,(i) = nf,[ aj(’j_,i)} (12)
AU (. =U,(j. D)+ AU (f.D), (13)
AL = nf,[ aLa(f_ i)]. (14)
L) = LG+ AL (D), (15)

where 7 is the tuning rate. Initially 7= 1/N; . where N} is the number of iteration steps for
adjusting a premise. N; is set to be 20 in our experiments. E is the rule error rate. If the

sign of f_(QE/QUYj, 1)) is different with the sign of fQEAQUY. i))). n = 1.17.

1 : (,34)“0
oU(j.1)
JE
- ’ [8U(j.i))|t>0
JE O o 9E ) _
% (aUu,f)J” f’"‘(auu.i)) ’ 1f[aU<j,i))"_0 (o)

OF o E Y, _
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for gN ; consecutive iterations.

' 3E
1 ’ [BL(/'.:‘)J"<O
oF
-1 , — >0
dE (BL(N))
= 17
T ). (5o (n
T A AL(.H )"
L— Jfim1 (SZ%,:—)) if (%) 1= 0 for % N consecutive iterations.

Two rule tuning stages are used in our method. In the first tuning stage. the premises of m
rules (m is the number of hidden neurons of the trained RBF network) are adjusted using
gradient descent theory for minimising the rule error rate. Some rules do not make
contribution to the improvement of the rule accuracy. which is due to what is stated in the
following. The input data space is separated into several subspaces through training the
RBF neural network. Each subspace is represented by a hidden neuron of the RBF neural
network and is a hyper-ellipse. The decision boundary of our rules is hyper-rectangular.
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We use gradient descent for searching the premise parts of rules. Since overlaps
(Figure 3(a)) exist between clusters of the same class, some hidden neurons may be
overlapped completely when a hyper-rectangular rule is formed using gradient descent
(see Figure 3(b)). Thus, the rules overlapped completely are redundant for representing
data and should be removed from the rule set. It is expected that this action will not
reduce the rule accuracy. The number of rules will be less than the number of hidden
neurons.

Figure 3 (a) Clusters in an RBF network and (b) hyper-rectangular rule decision boundaries
corresponding to the clusters

E
IV .}\qa © o
..."0.\010
VY
B

(a) (b)

5 Experimental results

The Iris. Monk3. and Breast cancer data sets from the UCI Repository of Machine
Learning Databases (Murphy and Aha, 1994) are used in this paper to test our algorithms
for ranking attribute importance and constructing a simplified RBF network. Each data
set is divided into three parts, i.e., training. validation. and test sets. We set &=0.1 and
6= 100% in our experiments. Each experiment is repeated five times with different initial
conditions and the average results are recorded.

Table 1 shows that when large overlaps among clusters of the same class are
permitted. the number of hidden units is decreased while nearly the same classification
error rate is maintained.

Table 1 Reduction in the number of hidden units in the RBF network when large overlaps
are allowed between clusters for the same class. All attributes in each data set are
used as inputs

Daza set Iris Monk3 Breast

Classification error rate ~ small overlap 0.0373 0.0591 0.0292
large overlap 0.0467 0.0688 0.0146

Number of hidden units  small overlap 5.2 332 34

large overlap 4 19.6 1
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Attribute importance rankings using the SCM with different s (equation (7)) are shown
in Table 2, which shows that y affects the order of attribute importance ranking. 5 ts are
used. i.e., x=0.0, 0.4, 0.5, 0.7, and 1.0. In order to determine which order is better, a
different subset of attributes are input to the RBF classifier for each order, so as to find
the best subset for that order. If there are n original attributes in the data set, there are n
candidate subsets of attributes as discussed in Subsection 2.4. The classification results
are used to evaluate the attribute subsets. We select the subset of attributes corresponding
to the lowest classification error rate for each data set and each ranking order. According
to the experimental results (details for each data set are given below), when y= 0.4, the
importance ranking results for the four data sets lead to the lowest or nearly the lowest

validation error rates with the smallest attribute subsets.

Table 2 Attribute importance ranking using the SCM with different ¥

X Iris Monk3 Breast

0.0 4,3,1,2 5,4,2,1,6,3 7,2,4,3.8,9,5,6,1
04 43,12 5.2,4,1,6,3 2,7,3,49.5,86,1
05 4,1,3.2 5,2,4,1,6,3 2,7,3,49,5,1,8,6
0.7 1,4.23 5,2,4,1,6,3 2,7,1,3,4,9,58,6
1.0 1,2,4,3 5.2,3,6.4,1 1,2,7,3,4,9,5,8,6

5.1 Iris data set

There are four attributes in the Iris data set. 150 patterns are divided into three sets:

L.e., 90 patterns for training, 30 for validation, and 30 for testing.

In Tables 3-6. classification error rates are shown for all attribute subsets
corresponding to different attribute importance ranking results based on different ys.
Z=0.4 is selected for that it leads to the smallest attribute subset {3, 4} with the nearly
lowest classification error rate.

Table 3 Classification error rates for the Iris data set with different subsets of attributes

according to the importance ranking shown in Table 2 when y= 0.0 and y=0.4.
The attribute subset with the lowest validation error is highlighted in italics

Error rate
Attributes used Training set Validation set Test set
4 0.1222 0.0667 0.1333
4.3 00333 0.0000 0.0333
43,1 0.0556 0.0333 0.1000
14,3,1,2 0.0889 0.1000 0.1000
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Table 4 Classification error rates for the Iris data set with different subsets of
attributes according to the importance ranking shown in Table 2 when y=0.5.
The attribute subset with the lowest validation error is highlighted in italics

Error rate
Attributes used Training set Validation set Test set
1 0.3333 0.2333 0.4333
1.4 0.0778 0.0000 0.1000
14,2 0.0556 0 0.0333
1.4,2,3 0.0556 0 0.0333
Table 5 Classification error rates for the Iris data set with different subsets of

attributes according to the importance ranking shown in Table 2 when 7=10.7.
The attribute subset with the lowest validation error is highlighted in italics

Error Rate
Attributes used Training set Validation set Test set
4 0.3333 0.3667 0.4667
4,1 0.1111 0.2000 0.1000
4,13 0.3333 0.2333 0.4333
4,132 0.0778 0.1000 0.0333

Table 6 Classification error rates for the Iris data set with different subsets of attributes
according to the importance ranking shown in Table 2 when 7= 1.0. The attribute
subset with the lowest validation errer is highlighted in italics

Error Rate
Attributes used Training set Validation set Test set
1 0.4556 0.5667 0.3667
1,2 0.1889 0.3333 0.2333
1,24 0.0778 0.0667 0.1667
1,243 0.0444 0.0667 0.0333

5.2 Monk3 data set

There are six attributes in the Monk3 data set. The Monk3 data have a training set with
122 patterns and a test set with 421 patterns. We divide the test set into 200 patterns for
validation and 221 patterns for testing.

In Tables 7-9, classification error rates are shown for all attribute subsets
corresponding to different attribute importance ranking results based on different
's. 7=04 is selected for that it leads to the smallest attribute subset {2. 4, 5} with the
lowest classification error rates.
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Table 7 Classification error rates for the Monk3 data set with different subsets of
attributes according to the importance ranking shown in Table 2 when = 0.0.
The attribute subset with the lowest validation ervor is highlighted in italics

Error Rate
Autributes used Training set Validation set Test set
5 0.2705 0.2328 0.2100
54 0.2541 0.3060 0.2450
3,42 0.0902 0.0991 0.0650
54,21 0.1967 0.2371 0.2050
5,4,2,1,6 0.1148 0.0948 0.1000
5,4,2,1,6,3 0.1885 0.2112 0.2600

Table 8 Classification error rates for the Monk3 data set with different subsets of attributes
according to the importance ranking shown in Table 2 when 7= 0.4, ¥ = 0.5 and
Z=0.7. The attribute subset with the lowest validation error is highlighted in italics

Error Rate

Atributes used Training set Validation set Test set
5 0.1880 0.3000 0.2870
5.2 0.1780 0.2830 0.2690
35.24 0.0242 0.0585 0.067

5,2,4,1 0.0899 0.3360 0.1830
5,2,4,1,6 0.0498 0.1897 0.1320
5,2,4,1,6,3 0.0328 0.2030 0.1240

Table 9 Classification error rates for the Monk3 data set with different subsets of attributes
according to the importance ranking shown in Table 2 when 7= 1.0. The anribute
subset with the lowest validation error is highlighted in italics

Error rate
Attributes used Training set Validation set Test set
5 0.2705 0.2328 0.2100
5.2 0.2213 0.1853 0.2050
52,3 0.1967 0.1638 0.1400
3,236 0.1066 0.0690 0.0700
5,2,3,6,4 0.2131 0.1767 0.1700

5,2,3,6.4,1 0.1230 0.1552 0.1600
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5.3 Breast cancer data set

There are nine attributes and 699 patterns in the Breast cancer data set. Sixteen pattemns
with missing attribute are removed. Of the 683 patterns left, 444 were benign. and the rest
were malign. In 683 patterns, 274 patterns for training, 204 for validation. 205 for testing.

For 5 p's. there are five different attribute importance ranking results.
In Tables 10-14. classification error rates for all attribute subsets corresponding to
different attribute importance ranking results based on different s are shown. y=0.4 is
selected for it leads to the smallest attribute subset {2, 3. 7} with the lowest classification

€rror rates.

Table 10  Classification error rates for the Breast cancer data set with different subsets of
attributes according to the importance ranking shown in Table 2 when 7= 0.0.
The attribute subset with the lowest validation error is highlighted in italics

Error rate
Attributes used Training set Validarion set Test set
7 0.1100 0.0803 0.1022
7,2 0.0954 0.0803 0.0949
7,2,4 0.0391 0.0511 0.0219
7.2,4.3 0.0318 0.0438 0.0073
7.2,43,8 0.0367 0.0365 0.0219
7,2,4,3,8,9 0.0244 0.0365 0.0146
7,2,4,3,8,9,5 0.0318 0.0438 0.0146
7,2,4,3,89.5,6 0.0342 0.0365 0.0146
7,2,4,3,895,6.1 0.0342 0.0511 0.0219

Table 11  Classification ervor rates for the Breas: cancer data set with different subsets of
attributes according to the importance ranking shown in Table 2 when =0.4.
The attribute subset with the lowest validation error is highlighted in italics

Attributes used

Error rate

Training set Validation set Test set
2 0.1100 0.0803 0.1022
2,7 0.0709 0.0657 0.0876
2,73 0.0269 0.0365 0.0073
2,734 0.0391 0.0438 0.0365
27,349 0.0269 0.0365 0.0219
2,73.49,5 0.0342 0.0365 0.0146
2,7,3,49.5.8 0.0293 0.0438 0.0073
2,7,3.49,5,8,6 0.0269 0.0438 0.0146
2.7,3,49,5,8,6,1 0.0342 0.0365 0.0146
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Table 12 Classification error rates for the Breast cancer data set with different subsets of
attributes according to the importance ranking shown in Table 2 when y=0.5.
The attribute subset with the lowest validation error is highlighted in italics

Error Rate
Attributes used Training set Validation set Test set
2 0.1443 0.1314 0.1387
2.7 0.0513 0.0511 0.0365
2.7,3 0.0269 0.0292 0.0073
2,734 0.0318 0.0511 0.0146
2,7,3,49 0.0293 0.0438 0.0219
2,7,3,4,9,5 0.0293 0.0365 0.0292
2,734,951 0.0244 0.0438 0.0073
2,7,3,4,9.5,1,8 0.0318 0.0365 0.0146
2,7,3,4,9,5,1,8,6 0.0318 0.0365 0.0146

Table 13 Classification error rates for the Breast cancer data set with different subsets of
attributes according to the importance ranking shown in Table 2 when =0.7.
The attribute subset with the lowest validation error is highlighted in italics

Error rate
Attributes used Training set Validation set Test set
2 0.1443 0.1314 0.1387
2,7 0.0538 0.0584 0.0438
2,7,1 0.0685 0.0876 0.0730
2,713 0.0342 0.0355 00146
2,7,1,3.4 0.0367 0.0365 0.0219
2,7,1,34.9 0.0269 0.0438 0.0292
2,7,1,3,4,9,5 0.0318 0.0511 0.0146
2,7,1,3,49,5,8 0.0293 0.0365 0.0292
2,7,1,3,49.5,8,6 0.0391 0.0511 0.0292

Table 14 Classification error rates for the Breast cancer data set with different subsets of
attributes according to the importance ranking shown in Table 2 when 7= 1.0.
The atribute subset with the lowest validation error is highlighted in italics

Error rate

Attributes used Training set Validation set Test set
1 (0.3423 0.3869 0.3358
1,2 0.1467 0.1314 0.1460
1,2,7 0.0660 0.0730 0.0511

12,73 0.0489 0.0292 0.0146
1,2,7.3,4 0.0416 0.0365 0.0146
1,2,7,3,49 0.0367 0.0438 0.0292
1,2,7,3,4,9,5 0.0269 0.0365 0.0146
1,2,7,3,4,9,5,8 0.0318 0.0565 0.0219
1,2,7,3,4,9,5,8,6 0.0318 0.0365 0.0292
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5.4 Comparisons between top-down and bottom-up search and with other
methods

In this subsection. we compare results obtained from the SCM using bottom-up and
top-down search for 7=0.4. We also compare with results derived from the attribute
importance ranking by Relief-F (Kononenko, 1994) and SUD (Dash et al., 1997).

The classification error rates of the RBF classifier for different subsets of Iris
attributes according to the importance ranking obtained with SCM using bottom-up
search when y = 0.4. We obtained the same attribute ranking results. and hence the same
attribute subsets from the SCM using bottom-1p and top-down search (Table 15) for Iris.
It is seen that as the number of attributes used increases. the test error first decreases,
reaches a minimum when the first two attributes in the attribute ranking queue are used,
and then increases. Hence in the Iris data set, attributes 3 and 4 are relevant attributes for
classification and are then selected, which improves the classification performance and
decreases the number of inputs and the number of hidden units of the RBF neural
network. The classification error rate is reduced from 0.0467 to 0.0333, and the number
of Gaussian hidden units is reduced from 4 to 3 (Table 16 summarises results for
different data sets).

Table 15  Comparison between importance ranking results obtained by our SCM using
bottom-up and top-down search when ¥ = 0.4, the SUD and Relief-F methods

Decreasing order of importance

Dataset  SCM (bottom-up) SCM (top-down) SUD Relief-F
Iris 43.1.2 43,1,2 3,412 4,3,1,2
Monk3 5.2,4,1,6,3 5,2,4,1,6,3 5,2,4,1,6,3 2,54,3,6,1

Breast 2,7,3,4,9,5.1.8,6 7,2,3,49,58.6.1 1,7,3,2,5.6,4,8,9 6,2,3,7,5,1,4,8,9

Table 16  Comparison of the numbers of hidden units and classification errors before and after
irrelevant atributes are removed according to the SCM ranking method

Data set
Comparison Iris Monk3 Breast
Input attributes B 1,2,3,4 1,2,3,456 1,2,3,4,56,7,8,9
A 43 5,24 2,73
Number of hidden units B 4 19.6 11
A 3 11.6 5
Classification error rate B 0.0467 0.0688 0.0146
A 0.0333 0.067 0.0073

B: before removal, A: after removal.

Further, we carry out classification by inputting different atiribute sets to the
RBF classifiers based on the attribute importance ranking results obtained by SUD
(Dash et al., 1997) and Relief-F (Kononenko. 1994) methods (reproduced in Table 15).
We compare the classification error rates on test data sets corresponding to the selected
attribute subsets obtained using the SCM, SUD. and Relief-F methods (Table 17).
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Table 17 Comparison between classification error rates on testing data sets with the best
attribute subsets obtained by our SCM, SUD and Relief-F methods

Classification error rates

Data set SCM SUD Relief-F
Iris 0.0333 0.0333 0.0333
Monk3 0.067 0.0.067 0.09
Breast 0.0073 0.0146 0.0073

Attributes 3 and 4 lead to the lowest error rates (Table 17) in both SUD and Relief-F
methods. Hence, the selected attribute subset for Iris data set is {3. 4} according to SUD
and Relief-F, which is the same as the result based on our SCM method.

We obtained the same attribute ranking results and hence the same attribute subsets
using our SCM with both bottom-up and top-down search for Monk3 data set (Table 15).
Attributes 2. 4, and 5 should be selected for Monk3 data set, which decreases the
classification error rate from 0.0688 to 0.067. the number of inputs from 6 to 3, and the
number of Gaussian hidden units from 19 to 11 (Table 16). Attributes 2. 4. and 5 should
be selected according to both SUD and Relief-F methods. which is the same as the
attribute subset obtained based on our SCM method.

For Breast cancer data set, the attribute ranking queue corresponding to our
SCM with bottom-up search is {2,7,3,4,9,5, 1,8, 6} andis {7.2.3.4,9.5. 8.6, 1}
with top-down search. In both bottom-up and top-down search, attributes 2. 3, and 7 are
considered to be important for classification and are then selected. which decreases the
classification error rate from 0.0146 to 0.0073, the number of inputs from 9 to 3, and the
number of hidden units of the RBF neural network from 11 to 5 (Table 16). The attribute
subset including the first 5 attributes (attributes 6. 2. 3. 7, and 5) in the Relief-F attribute
ranking queue leads to the lowest classification error rates. According to the classification
results based on the ranking result of the SUD method, attributes 1, 7, 3, 2, and 5 should
be selected because the subset leads to the lowest error rates. The classification error rates
on test data set when the selected attribute subsets are used as inputs for RBF classifiers
are 0.0073, 0.0146, 0.0073 for our SCM, SUD. and Relief-F. respectively (Table 17).
Hence, the attribute subset based on our SCM method is the smallest with the highest
classification accuracy.

5.5 Comparisons between our rules and rules obtained by other methods

In this section, we compare rules extracted by our method and rules obtained by other
methods. For Iris data set, based on the attribute subset {3. 4} selected. two rules are
obtained. with two antecedents per rule. The accuracy is 100% for testing data set
(Table 18). We compare our rule-extraction results for Iris with other methods in
Table 19.

For Monk3 data set, based on the attribute subset {2. 4, 5} selected above. we obtain
3 rules. with 3 antecedents per rule (Table 20). The rule accuracy is 98% for testing data
set. Setiono (2000) extracted two rules, with 5.83 antecedents per rule and 100% rule
accuracy for Monk3 data set based on the pruned MLP. We obtain three rules with three
antecedents per rule.
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Table 18  Rule accuracy and numbers of rules for Iris data set

Results Iris
Rule accuracy

training accuracy 0.0222
validation accuracy 0.0333
testing accuracy 0.0
The number of premises/rule 2

The number of rules 2

Table 19 A comparison of results for Iris data set obtained with different methods

Type of decision
Methodology Rule accuracy (%)  boundary
Modified RX algorithm based on MLP 97.33 hyper-plane
(Hruschka and Ebecken, 1999)
Inputs are transformed into discrete ones 97.33 hyper-rectangular
artificially based on IMLP (Bologna and
Pellegrini, 1998)
Based on RBF (McGarry and MaclIntyre, 1999) 80 hyper-rectangular
Based on RBF (McGarry et al., 1999) 100 hyper-rectangular
Our algorithm 100 hyper-rectangular

Table20  Rule accuracy and numbers of rules for Monk3 data set.

Results Monk3
Rule accuracy

Training accuracy 0.0656
Validation accuracy 0.0345
Testing accuracy 0.02
The number of premises/rule 3

The number of rules 3

For the Breast cancer data set. based on the attribute subset {2. 3, 7} selected above, we
obtain four rules, with three antecedents per rule (Table 21). The rule accuracy is 97.8%
for testing data set. Setiono (2000) extracted 2.9 rules and obtained 94.04% accuracy for
the Breast cancer data set based on the pruned MLP.

Table 21  Rule accuracy and numbers of rules for Breast cancer data set

Results Breast

Rule accuracy

Training accuracy 0.0391
Validation accuracy 0.0291
Testing accuracy 0.0219
The number of premises/rule 3

The number of rules 4
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6 Conclusions

In this paper. rule extraction is carried out in order to express the concepts of data sets.
A novel SCM is used to rank the importance of attributes first. According to the ranking
results. different attribute subsets are used as inputs to RBF classifiers. The attribute
subsets with the lowest classification error rates and the least numbers of attributes are
selected. Rules are extracted based on feature subsets selected. Compared to other
methods, more concise and accurate rules are extracted for the Iris and Breast cancer data
sets, while for the Monk3 data set, the rule accuracy is lower, but the antecedents per rule
for Monk3 data set is smaller than other methods. In addition, rules extracted by our
algorithm have hyper-rectangular decision boundaries, which is desirable due to its
explicit perceptibility. Our approach eliminates the need for an error-prone
transformation from continuous attributes into discrete ones as required in MLP-based
methods.
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