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Abstract-A method which we call support vector machine
with graded resolution (SVM-GR) is proposed in this paper.
During the training of the SVM-GR, we first form data granules
to train the SVM-GR and remove those data granules that are
not support vectors. We then use the remaining training samples
to train the SVM-GR. Compared with the traditional SVM, our
SVM-GR algorithm requires fewer training samples and support
vectors, hence the computational time and memory requirements
for the SVM-GR are much smaller than those of a conventional
SVM that use the entire dataset. Experiments on benchmark data
sets show that the generalization performance of the SVM-GR
is comparable to the traditional SVM.
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I. INTRODUCTION
SVMs have shown great capabilities in solving various

classification problems [1]-[6]. In many applications, SVMs
have outperformed many other machine learning methods [1]
and have established themselves as a powerful tool for classifi-
cation problems. When performing a pattem recognition task,
the SVM first maps the input data into a high-dimensional
feature space and then finds an optimal separating hyperplane
to maximizes the margin between two classes in this high-
dimensional space. Maximizing the margin is a quadratic
programming (QP) problem and can be solved by using
some optimization algorithms [7]. However, for large-scale
training sets, two major problems still exist for standard SVMs
with traditional optimization algorithms, such as Newton and
Quasi-Newton [8]. First, most computation consumed in the
support vector learning is to solve a full dense matrix Q,
where Q E RW is a positive semi-definite matrix and 1 is the
number of training samples. Therefore, the time complexity
is exponential with respect to 1. [9], [10]. Second, solving the
QP problem needs storing the matrix Q. Hence, the memory
requirements will grow with square of the size of training
sample, which may become too large for large data sets. [8]
One major method to solve these problems is the decom-

position method [11], which solves a sequence of smaller-
sized QP problems so that the the memory and computation
difficulties can be avoided. However, for huge problems with
many support vectors, the training speed of the decomposition
method is still very slow [8]. Recently, Lee and Mangasar-
ian [9] proposed the reduced SVM (RSVM) to reduce the
computation complexity. The key idea of the RSVM is to
randomly select a subset of training data as candidates of

support vectors and use the whole training set as constraints,
in order to obtain a smaller QP problem. But in this method,
the 'support vectors' are chosen randomly, which leads to the
unstable results. Zheng et al. [10] extended the RSVM by
applying unsupervised clustering methods to select candidates
of support vectors. They stated that the modified RSVM
algorithm achieves more stable results and higher classification
accuracy in comparison to the RSVM. However, it should
be noticed that many unsupervised clustering methods also
have high time complexity. Therefore, the modified RSVM
algorithm may also be slower than the RSVM and not suitable
for large problems.

In this paper, we propose a novel learning method called
SVM with graded resolution (SVM-GR), which uses ideas
in granular computing method to solve the QP problem.
Granular computing is an emerging conceptual paradigm of
computing with information granules [12] [13]. Information
granules are collections of entities, usually originating at
the numeric level, and then arranged together due to their
similarity, functional adjacency, indistinguishability, coherency
or alike [14]. There are a number of formal models of of
information granules including interval analysis, fuzzy sets,
rough sets, shadowed sets and probabilistic sets. Information
granules are processed as follows [12]. Depending upon the
problem, we usually group granules of similar "size" (or
called granularity) together in a single layer. If more detailed
processing is required, smaller information granules are sought
and then these granules are arranged in another layer. Recently,
granular computing has been successfully applied to many
areas, such as data mining [15], image compression [16],
signal analysis [17] and neural network design [18], [19]. In
2004, Tang et al. [20] proposed the GSVM algorithm that used
the granular computing methods to build SVMs. In [20], the
whole feature space was split into a set of subspaces and for
each subspace a hyperplane was built. Training the GSVM
required to maximize the margin width for each subspace
simultaneously.
The proposed SVM-GR method is inspired by the essential

result in support vector learning, i.e., the optimal separating
hyperplane is determined by only the support vectors. Since
all the non-support-vector samples have no contribution to set
up the optimal hyperplanes, we can filter these samples in
advance and use the remaining data to perform support vector
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learning. The development of the SVM-GR involves two main
phases as follows:

1) Rough Filtering: Divide each input dimension into r
equal segments. The input space thus forms r' data
granules, where n is the dimensionality of the input
space. Use the average within each granule to train
a SVM. The non-support vector granules are filtered
(ignored in further training).

2) Elaborate Learning: Release the training samples from
the remaining support vector granules. These training
samples are used for final support vector learning.

3) If the data set is very large, rather than using all data
in the support vector granules for training the SVM
directly in step 2, we can form smaller granules within
these larger granules obtained in Step 1 and filter non-
support-vector granules again. The number of levels in
this hierarchical granulation may be as large as needed.

Although support vector learning is carried out in all phases,
the sizes of training datasets are much smaller than that of
the whole training dataset and hence the time complexity
can be reduced greatly. Experimental results show that, for a
large-scale problem with up to tens of thousands of data, the
size of training data in the SVM-GR algorithm is decreased
to one tenth of the original size and hence the SVM-GR
algorithm provides a much faster speed than the conventional
SVMs. Experimental results also indicate that the SVM-GR
algorithm produces a comparable generalization performance
in comparison to the traditional SVMs.

Although both the proposed SVM-GR and the GSVM are
based on the granular computing concept, the training for these
two algorithms are quite different. Different from our paper,
there are no filtering process and final training process in [20].
Since all data have to be used simultaneously to train SVMs,
the speed of the GSVM [20] cannot be very fast.
Our paper is organized as follows. A brief review of the

conventional theory will be described in Section 2. In Section
3, we propose the SVM-GR algorithm. Performance evaluation
of the proposed SVM-GR is presented in Section 4. Finally,
discussions and conclusions are given in Section 5.

II. SVMs FOR CLASSIFICATION

Given .a training set (Xi, Yi), i = 1, 2, ..., 1, where xi E
Rn and yi E {-1, 1}, the traditional SVM algorithm is
summarized as the following optimization problem:

w,b,{ 2

subject to: yi (wTq(Xi) + b) > 1- (1)

where +(x) is a nonlinear function that maps x into a higher
dimensional space. w, b and (i are the weight vector, bias and
slack variable, respectively. C is a constant and determined
a priori. Searching the optimal hyperplane in (1) is a QP
problem, which can be solved by constructing a Lagrangian

and transformed into dual

max Q(a) = Z a(i-
i=l

>1 Lst
iEE aiajyiyjK(xi, xj)
i=l j=l

subject to: Zaiyi =0 ; O < ai < C, for i= 1, 2, ...,1
i=l1

(2)
where K(xi, xj) = q(xi)Tq(xj) is the kernel function,
a-= (a1,a2, ... al) is the vector of nonnegative Lagrange
multipliers.

Suppose the optimum values of the Lagrange multipliers
are denoted as ao,i (i = 1, 2, ..., 1), we may determine the
corresponding optimum value of the linear weight vector wo
and the optimal hyperplane as in (3) and (4), respectively:

I

wo =E ao,iyiq(xi)
i=l

I

ZEo,iyiK(X xi) = 0
i=l

(3)

(4)

and the decision function is

f(x) = sign a,,iyiK(xi, x) + b) (5)

III. THE SVM-GR ALGORITHM

A. Data Granules

We use the interval analysis to form the data granules [12].
An interval vector [bkl in Rn is defined as a Cartesian product
of n intervals as follows:

[bkl = [bk,11 X [bk,2] x ... x [bk,n], k = 1, 2, ...,N (6)

where bk,i are intervals, [bk,i] = [bkmi-n- bmax]. 1< i < n and
n is the dimensionality of the input space. The interval vectors
in Rf2 are showed in Figure 1.
Assume X is a measurable compact subset of the

n-dimensional Euclidean space Rn and all training data
xi E X. X can be represented as the union of interval vectors,
i.e., X = [b1] U [b2] U ... U [b1l], and [bk] n [bj] = q for any
k 74 j, 1 < k,j < 11, where 11 is the total number of data
granules. Then we define the data granules (ak, tk) as follows:

ak = mean{xi Ixi c [bk]}

tk = sign (I: Yi)

XiC[bk]

(7)

(8)

In our SVM-GR algorithm, we assume the widths of all
intervals are same, i.e., bk -j bkii = d, where d is the
parameter to determine granularity of data. Assume all xi E
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X2

k,2

I= [bpPI [bp+1 ]

Ii

[bk ]

d

[bk+l]

d

Fig. 1. Interval vectors in R2. The widths of all intervals are same and equal
to d.

[dmin, dmax]n and dmax -dmin = r d, then the interval vector
[bk] is formed as follows:

[b] =[dmin, dmin + d]n;
[b2] = [dmin, dmin + 2d] x [dmin, dmin + d]n-1;

[bk] = [dmin + Si d, dmin + (Si + 1) .d] x ... (9)
x [dmin + Sn di dmin + (Sn + 1) d];

[b1l] = [dmax - d, dmax]n,
where
Sn = (k - 1) mod (rn-1) + 1;
Sn-1 = [(k - 1) - (Sn - 1)rn-1] mod rn-2 + 1;

sm = ( - 1) - Ei=m+l (Si - 1) *ri-]mdrm1+1

sl = [(k-1)-E2(s -1)ri-11 + 1,

where 1 <m <en.
(10)

B. The SVM-GR Algorithm
The SVM-GR algorithm involves two or more phases. In

the first step, we carry out the data preprocessing to filter the
samples roughly which have no contribution to the optimal
hyperplane. The data granules are formed by using the interval
analysis method. Then the non-empty data granules are used
to carry out support vector learning. The parameter d controls
the number of data granules. That is, if the d is large enough,
meaning that the larger data granules are sought, the size of
non-empty information granules will be much smaller than
that of the whole training dataset and hence the computation is
reduced. We only keep those support vector granules and filter
the remainders. In the second step, we perform the support

vector learning elaborately. We release the training samples
from the support vector granules. These samples are used for
finally support vector learning. Noticed that many training
samples are filtered in the first step, hence the number of
training samples for SVM in this phase is much smaller and
the computation can be reduced.

If the dataset in the second step is still very large, we can
form smaller granules within these large granules obtained
in step 1 and filter non-support-vector granules again. The
number of levels in this hierarchical granulation may be
as large as needed. In this way, we can assure that the
training dataset in each phase is not very large and hence the
computation and storage difficulties can be solved.
The proposed SVM-GR algorithm can be summarized as

follows:
Algorithm 1: Given a training set 'po = {(xi,yi)lxi E

Rnf yi E {-1, 1}, i = 1, 2, ...,1}, we conduct the following:
1) Normalize xi (i = 1, 2, ..., 1) to the range [dmin, dmax]n;
2) Choose the interval vector [bk] as (9) and (10), then form

the data granules (ak, tk) as (7) and (8). Non-empty
data granules form the new training dataset defined as
'P1 = {(ak,tk)jak E [dmin,dmax]n, tk E {-1,1},k =
1,2, ... 1111.

3) Carry out support vector learning using the dataset pj1.
The support vector granules form a set E. Then release
the training samples from (E and form another training
set defined as 'P2 = {(Xi Yi)Ixi E bk,ak E E3}.

4) If the size of 'P2 is smaller than Mo then turn to Step
2, otherwise turn to Step 5. Here Mo is the maximum
size of the training set that is determined a priori.

5) Carry out support vector learning using the dataset 'P2
and predict the test set.

IV. EXPERIMENTAL RESULTS

In this section, we conducted experiments on some com-
monly used problems. For the classification problems, we
conduct experiments on three data sets from UCI database
[21] ( satimage, letter and shuttle ). The problem statistics are
given in Table I.

TABLE I
PROBLEM STATISTICS

Problems Training Testing Class Attribute
Data Data

Satimage 4435 2000 6 36
Letter 15000 5000 26 16
Shuttle 43500 14500 7 9

The performance of our SVM-GR algorithm was compared
with conventional algorithms for SVMs. All the simulations
were carried out in MATLAB 6.5 environment running in a
Pentium 4, 2.4 GHZ CPU with 256 MB of RAM. We used
functions in the LibSVM MATLAB interface [22] to design
a traditional SVM that implements a simple decomposition
method. In the SVM-GR, the training includes two phases and
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the support vector learning was carried out using the decom-
position method in [22]. All training and testing data were lin-
early scaled to be in [0,1], respectively. We estimated the gen-
eralized accuracy using different C = [212,211,2°1,..., 2-2]
and y = [24,23,22,..., 2-10]. For each pair of (C, y), the
validation performance was measured by training the entire
training data and testing the validating data. Then we used
the pair of (C, y) that achieves the best validation accuracy
to design a SVM and predict the test set. We used the same
training, validating and testing data sets as in [8] so that we
can compared our results with theirs.
The comparison of the test accuracy for the SVM-GR, the

classical SVM and RSVM [8] are shown in Table II. For
the RSVM algorithm, we selected the best results in [8] to
compare with our results. Seen from Table II, the test accuracy
for the SVM-GR algorithm is always higher than the RSVM
and comparable to the classical SVMs.

TABLE II
TEST ACCURACY (%) FOR THE SVM-GR, THE CLASSICAL SVM AND

RSVM

Problems || SVM-GR Classical SVM RSVM [8]
Satimage 90.05 91.85 90.0
Letter 97.88 97.90 95.9
Shuttle 99.84 99.92 99.81

Table III shows the size of training data, the size of support
vectors, and computing time used in the SVM-GR and the
traditional SVMs. For the SVM-GR algorithm, Table III shows
the number of training samples and support vectors in the
first and second training step. Note that the time reported in
Table III is the total training and testing time for solving
the optimal model. Since the training time may vary for
different parameter sets, results here may not directly imply
which method is faster. However, generally we can see for the
problems with at least one thousand of data and the percentage
of support vectors is not high, SVM-GR runs faster than the
traditional SVM using a decomposition method. We note that
the speeds for the SVM-GR algorithm on shuttle data set are
about 5 times faster than the traditional SVM. The main reason
behind this is that the percentage of support vectors in this case
( about 0.01 ) is very low. We can remove a lot of training
samples without decreasing the test accuracy much after the
first training step in the SVM-GR algorithm. Therefore, the
training data size in the second phase of the SVM-GR is much
smaller than the total training set size. Note that we can control
the training set size of the first phase in the SVM-GR by using
small granularity parameter r. In this way, we can reduce lots
of computational cost for the shuttle data set. This also imply
that the proposed SVM-GR algorithm will be useful for large
problems with a low percentage of support vectors.

V. CONCLUSIONS
In this paper, we proposed a novel learning algorithm

called SVM-GR that solves the QP problem using granular

TABLE HI
GENERALIZATION PERFORMANCE FOR THE SVM-GR AND THE

CLASSICAL SVM ALGORITHMS ON CLASSIFICATION PROBLEMS. FOR THE
SVM-GR, THE SIZE OF TRAINING DATA AND SUPPORT VECTORS IN THE
FIRST AND SECOND TRAINING PHASE ARE DENOTED AS 'DATA1/DATA2'
AND 'SVS1/SVS2', RESPECTIVELY. FOR THE TRADITIONAL SVM, THE

SIZE OF TRAINING DATA AND SUPPORT VECTORS ARE DENOTED AS
'DATA' AND 'SVS', RESPECTIVELY.

Problems Methods Data SVs Time
l________ ft _________ J Datal/Data2 SVsl/SVs2
Satimage SVM-GR 3463/1868 1396/864 18.90

SVM 4435 1613 25.19
Letter SVM-GR 1474/14509 1324/7574 341.33

_
SVM

15000 7742 438.40
Shuttle SVM-GR 316/10258 116/135 9.84

. SVM 43500 278 48.06

computing method and makes prediction with SVMs. The
main characteristic of SVM-GR is to break up the original
support vector network into two or more smaller ones. Hence
the original QP problem can be reduced to two or more
smaller problems and the matrix Q are reduced from 1 x 1
to (11 X 11 + 12 X 12 + l-- ++p Xlp), where 11, 12 and lp
are the sizes of training samples in the first, second and
pth training phase. Compared with the the decomposition
method for SVMs, which is notable for its fast speed and
good generalization ability, the proposed SVM-GR algorithm
shows a faster speed, especially for the large-scale problems.
According to our results, for the problems with up to thousands
of data, SVM-GR is several to tens times faster than the
popular learning method for SVMs.

Experiments on these classification problems demonstrate
that the test accuracy of SVM-GR is always comparable to or
a little lower than the traditional SVMs. We can expect this
because in the SVM-GR algorithm, we filter some samples
in the first training phase, thus we cannot ensure if some im-
portant support vectors are screened in advance and excluded
in the final support vector learning. This seems to also imply
that if the problems are not too large, the proposed SVM-
GR method may achieve a lower test rate for classification
problems in comparison to the classical SVMs. Compared
with the RSVM, the proposed SVM-GR produced a higher test
accuracy, which indicated that the SVM-GR used more useful
and important support vectors for training in comparison to
the RSVM algorithm.
The SVM-GR algorithm contains another new granularity

parameter r. In our experiments, when r = 1, there will be no
samples contained in the first training phase. However, if r is
large enough, the training samples in the first phase become
the whole dataset. Hence the SVM-GR can be reduced to a
traditional SVM for these two cases. Experiments show that
the SVM-GR with a small r may achieve a desirable test
accuracy with a small training time.
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