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Abstract

In wireless multihop networks, the objective of the broadcast scheduling problem is to find a conflict free transmission schedule for each

node at different time slots in a fixed length time cycle, called TDMA cycle. The optimization criterion is to find an optimal TDMA schedule

with minimal TDMA cycle length and maximal node transmissions. In this paper we propose a two-stage hybrid method to solve this

broadcast scheduling problem in wireless multihop networks. In the first stage, we use a sequential vertex-coloring algorithm to obtain a

minimal TDMA frame length. In the second stage, we apply the noisy chaotic neural network to find the maximum node transmission based

on the results obtained in the previous stage. Simulation results show that this hybrid method outperforms previous approaches, such as mean

field annealing, a hybrid of the Hopfield neural network and genetic algorithms, the sequential vertex coloring algorithm, and the gradual

neural network.
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1. Introduction

Wireless multihop networks (WMNs) have been

deployed since the 60 s in military, commercial, and

academic environments, including the Internet. WMNs

provide easy-to-use mobile services including military and

disaster-relief communications (Lloyd, 2002). It is a good

option for high-speed wireless data communications,

especially over a broad geographic region (Leiner, Nielson,

& Tobagi, 1987). In WMNs, since all nodes communicate

with each other using a shared radio channel, uncontrolled

transmissions may lead to time overlaps between two or

more packet receptions, which are called conflicts, resulting

in damaged packets at the destination. These damaged

packets increase the network delay because they must be

retransmitted (Yeo, Lee, & Kim, 2002). Effective broadcast

scheduling is necessary to avoid any conflict and to use

channel resource efficiently. The timeKdivision multipleK
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access (TDMA) protocol has been adopted to obtain

conflict-free transmissions. In a TDMA network, time is

divided into frames and each TDMA frame is a collection of

time slots. The TDMA cycle length is the total number of

time slots in a frame cycle. A time slot has a unit time length

required for a single packet to be communicated between

adjacent nodes. When nodes transmit simultaneously,

conflicts will occur if the nodes are in a close range.

Therefore, adjacent nodes must be scheduled to transmit in

different time slots, while nodes some distance away may be

arranged to transmit in the same time slot without causing

conflicts (Wang & Ansari, 1997). The goal of the broadcast

scheduling problem (BSP) is to find an optimal TDMA

frame structure that fulfills the following two objectives: the

first is to schedule transmissions of all nodes in a minimal

TDMA length without any conflict, the second is to

maximize the total conflict-free transmissions in order to

maximize channel utilization.

In the previous research, various heuristic methods have

been adopted to solve the BSP. We categories these methods

into two categories. One is the single-stage method which

solves the two objectives in one step (Chakraborty &

Hirano, 1998; Ephremides & Truong, 1990; Funabiki &

Takefuji, 1993; Wang & Ansari, 1997) and the other is the

two-stage method which solves the two objectives in two
Neural Networks 18 (2005) 765–771
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Fig. 1. Situations in which conflicts occur in a wireless multihop network,

where i, j, and k represent nodes in the wireless multihop network. (a)

Primary conflict. (b) Secondary conflict.
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separate stages (Funabiki & Kitamichi, 1999; Salcedo-Sanz,

no Calzón, & Figueiras-Vidal, 2003; Yeo et al., 2002).

Ephremides and Truong (1990) proposed a distributed

greedy algorithm to find a TDMA structure with

the maximal number of transmissions. They proved that

the optimal scheduling of broadcasts in a radio network is

NP-complete. Funabiki and Takefuji (1993) proposed a

parallel algorithm based on an artificial neural network to

solve the M-slot problem where the number of time slots is

pre-defined. They used hill-climbing to help the system

escape from local minima. Wang and Ansari (1997)

proposed a mean field annealing (MFA) algorithm to find

a TDMA cycle with the minimum delay time. In order to

find the minimal frame length, they first used MFA to find

assignments for all nodes with a lower bound of the frame

length. For the unassigned nodes left, they then used another

heuristic algorithm, which adds one time slot at each

iteration to the node with the highest degree. The heuristic

algorithm was run repeatedly until all the nodes left were

assigned. After the number of time slots was found,

possibilities of making additional feasible assignments to

the nodes were checked. They also proved NP-completeness

of the BSP by transforming the BSP to the maximum

independent set problem. Chakraborty and Hirano (1998)

used genetic algorithms with a modified crossover operator

to handle large networks with complex connectivity.

Recently, Funabiki and Kitamichi (1999) proposed a

binary neural network with a gradual expansion scheme,

called a gradual neural network (GNN), to find the minimum

frame length and the maximum transmissions through a two-

phase process. The performance of their method was

demonstrated through the three benchmark instances used

in (Wang & Ansari, 1997) and randomly generated geometric

graph instances. Yeo et al. (2002) proposed a two-phase

algorithm based on sequential vertex coloring (SVC). They

showed that their method can find better solutions compared

to the method in (Wang & Ansari, 1997). Salcedo-Sanz et al.

(2003) proposed a hybrid algorithm HNN-GA which

combines a Hopfield neural network for constraint satisfac-

tion and a genetic algorithm for achieving maximal

throughput. They compared their results with MFA in

(Wang & Ansari, 1997) in the three benchmark problems,

and showed that the hybrid algorithm outperformed the MFA.

In this paper, we propose a two-stage hybrid method

SVC-NCNN that combines a sequential vertex coloring

(SVC) algorithm and the noisy chaotic neural network

(NCNN) (Li & Wang, 2001; Wang & Tian, 2000; Wang, Li,

Tian, & Fu , 2004; Wang, Li, Wan, & Soong, 2003). We use

the SVC to obtain the minimal frame length in the first stage

and the noisy chaotic neural network to obtain the maximal

node transmissions in the second stage (preliminary results

of this work have been reported in (Shi & Wang, 2005)).

The rest of paper is organized as follows. In Section 2, we

review and formulate the broadcast scheduling problem. In

Section 3, we propose our hybrid algorithm. Three

benchmark problems and three large network instances are
solved and the performance is evaluated in Section 4.

Section 5 presents our conclusions.
2. Formulating the broadcast scheduling problem

A wireless multihop network can be represented by a

graph GZ(V, E), where vertices in VZ{1,.,N} are

network nodes, N being the total number of nodes in the

network, and E represents the set of transmission links. Two

nodes i and j (i, j2V) are connected by an undirected edge

eij2E if and only if they can receive each other’s

transmission. In such a case, the two nodes i and j are said

to be one hop away. The connectivity matrix CZ{cij}, {i,

jZ1,.,N} is defined as follows.

cij Z
1; if node i and j are one hop away;

0; otherwise:

(

If eij;E, but there is an intermediate node k such that

eik2E and ekj2E, then nodes i and j are two hops away. The

N!N compatibility matrix DZ{dij} (Funabiki & Kitami-

chi, 1999) is defined as follows.

dij Z
1; if node i and j are within two hops;

0; otherwise:

(

A primary conflict occurs when two nodes which are one

hop away transmit in the same time slot, as shown in

Fig. 1(a). A secondary conflict occurs if two nodes are two

hops away and transmit in the same time slot, as shown in

Fig. 1 (b).

We summarize the constraints in the BSP in the

following two categories:

(1) No-transmission constraint (Chakraborty & Hirano,

1998): Each node should be scheduled to transmit at

least once in a TDMA cycle.

(2) No-conflict constraint: It excludes the primary conflict

(a node cannot have transmission and reception

simultaneously) and the secondary conflict (a node is

not allowed to receive more than one transmission

simultaneously).

Hence two nodes can transmit in the same time slot

without conflicts if and only if they are more than two hops

away from each other.
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The final optimal solution obtained is a transmission

schedule consisting of M time slots. We use an M!N binary

matrix TZ(tij) to express a transmission schedule, where

tij Z
1; if node i transmits in slot j in a frame;

0; otherwise:

(
(1)

Channel utilization rj for node j is defined as (Wang &

Ansari, 1997)

rj Z
the number of time slots assigned to node j

TDMA cycle length
Z

PM
iZ1

tij

M
:

(2)

The total channel utilization for the entire network, r, is

given by (Wang & Ansari, 1997):

r Z
1

N

XN

jZ1

rj Z
1

NM

XN

jZ1

XM

jZ1

tij: (3)

The goal of the BSP is to find a transmission schedule

with the shortest TDMA frame length (i.e. smallest M)

which satisfies the above constraints, and the total

transmissions are maximized. Based on the above descrip-

tion of the BSP, we formulate it as follows:

BSP

(1) Minimize the frame cyclelength M;

(2) Maximize channel utilization r

Subject to :
XM

iZ1

tijR1; j Z 1; 2;.;N; (4)

XM

iZ1

XN

jZ1

XN

kZ1;ksj

djktijtik Z 0: (5)

The no-transmission constraint is formulated in Eq. (4),

which means each node in the network must transmit at least

once in a frame. The no-conflict constraint in Eq. (5)

indicates that every pair of nodes within one hop or two

hops cannot be scheduled in the same time slot.
3. Two stage optimization using a neural-network-based

hybrid method

3.1. Stage I: Minimize TDMA frame length using SVC

In this stage, we minimize the TDMA frame length,

which can be reduced to a variation of the classical vertex

coloring problem (VCP) (Yeo et al., 2002). If we regard the

colors in the VCP as the time slots in the BSP and vertices in

the VCP as nodes in the BSP, the frame length minimization

problem becomes the same as the VCP if we require that

different slots (colors) must be assigned to one-hop-away

and two-hop-away nodes (Yeo et al., 2002). In this paper,
the phrases of color and time slot are interchangeable, so are

node and vertex. The sequential coloring algorithm with

vertex ordering is the simplest and practical heuristic

algorithm to solve the VCP (Christofides, 1975). In this

paper, we use the vertex-coloring algorithm with a new

vertex ordering criteria after an initialization, and we call

our algorithm sequential vertex coloring (SVC). The

proposed SVC is implemented as follows. A lower bound

Lm of the frame length is computed and an initialization

procedure pre-assigns a group of nodes to Lm time slots. The

vertices are ordered using a traverse algorithm to be

described below and the SVC assigns the first available

time slot (color) to the first node (vertex). The number of

time slots (colors) is increased by 1 when no colors are

available for the node. The SVC stops when all nodes are

assigned with a time slot.

It is more efficient to search for the frame length starting

from a lower bound Lm compared to the value 1. Lm can be

computed using graph theory (Jungnickel, 1999). Firstly the

original graph GZ(V, E) is transformed into G 0Z(V, E 0),

where E in G stands for one-hop-away edges, and E 0 in G 0

stands for one-hop-away and two-hop-away edges. The

lower bound Lm is:

Lm Z uðG0Þ: (6)

where u(G 0) is the maximal cardinality of a clique in G 0

(Salcedo-Sanz et al., 2003).

The initialization of the SVC is implemented as follows.

We label the group of nodes to be initialized as GZ{ni, (iZ1,

2,.Lm}. The group G consists of the node with the maximal

degree and the nodes which are one hop away from this node.

Suppose node n1 is the node with the maximal degree. The

other nodes {ni(iZ2, 3,.,Lm)} represent nodes one hop

away from node n1. The initial assignments are done as

follows: we assign time-slot i to node ni,(iZ1, 2,.,Lm). The

initialization is based on the fact that all one-hop-away nodes

must be assigned with different time slots. The initialization

process can reduce the search time, because after the this

process, only N-Lm nodes are left to be scheduled.

As stated in (Yeo et al., 2002), different vertex ordering

criteria have different effects in searching. In this paper, in

order to take advantage of the initial schedule process, we

use the distance criteria, i.e. the topological distance from

the pre-assigned nodes to the other unassigned nodes in the

graph. It is obtained with a traverse algorithm as follows.

Algorithm traverse (stack S)

(1) Set SZnull. Make a copy of G and name it as Q.

(2) Obtain a node x from the queue Q and delete node x

from Q. If Q is null, then stop and return the node

sequence stored in stack S. Else find the one-hop-away

nodes of node x denoted as NadjZ{nk,(kZ1, 2,.,p)},

where p is the number of one-hop-away nodes.

(3) For every node in Nadj, if node nk is not in the queue Q,

store the node nk in Q. If nk is not in G or queue S, store

node nk in queue S.

(4) Goto step 2.
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Our SVC in the stage I can be described as follows.

Algorithm sequential vertex coloring

(1) Find the lower bound using Eq. (6). Set the current

number of time slots as the lower bound, i.e. MZLm.

(2) Assign time-slot i to node ni,(iZ1,2,.,Lm). Let the

counter pZMC1.

(3) Order the uncolored vertices in the graph by the

distance criteria.

(4) Find the number of non-conflicting colors c for the

vertex i.

(a) If cO1, assign the first available color to vertex i.

(b) If cZ1, assign the color to vertex i.

(c) If c!1, goto Step 6.

(5) If pZN, stop; else pZpC1 and goto step 4.

(6) MZMC1 and goto step 4.
3.2. Stage II: Maximize the channel utilization

In this sub-section, we use the noisy chaotic neural

network (NCNN) (Li & Wang, 2001; Wang et al., 2004;

Wang et al., 2003; Wang & Tian, 2000) to maximize the

total node transmissions based on the results obtained in the

previous stage. The model of the NCNN, a stochastic

variation of the transiently chaotic neural network (Chen &

Aihara, 1995), can be described as follows.

xjkðtÞ Z
1

1 CeKyjkðtÞ=3
: (7)

yjkðt C1Þ Z kyjkðtÞCa
XN

iZ1

isj

XM

lZ1

lsk

wjkilxjkðtÞC Iij

0
BBBB@

1
CCCCA;

KzðtÞðxjkðtÞKI0ÞCnðtÞ: ð8Þ

zðt C1Þ Z ð1Kb1ÞzðtÞ: (9)

A½nðt C1Þ� Z ð1Kb2ÞA½nðtÞ�: (10)

where

xjk output of neuron jk;

yjk input of neuron jk;

wjkil connection weight from neuron jk to neuron il,

with wjkilZwiljk and wjkjkZ0;

XN

iZ1
isj

XM

lZ1
lsk

wjkilxjk C Iij ZKvE=vxjk; input to neuron jk:

(11)

Ijk input bias of neuron jk;

E energy function;
k damping factor of nerve membrane (0%k%1);

a positive scaling parameter for inputs;

b1 damping factor for neuronal self-coupling

(0%b1%1);

b2 damping factor for stochastic noise

(0%b2%1);

z(t) self-feedback connection weight or refractory

strength (z(t)R0);

I0 positive parameter;

3 steepness parameter of the output function

(3O0);

n(t) random noise injected into the neurons, in

[-A, A] with a uniform distribution;

A[n] amplitude of noise n.

The energy function is (Funabiki & Kitamichi, 1999):

E Z
W1

2

XN

iZ1

XM

jZ1

XN

kZ1
ksi

dikxijxkj C
W2

2

XN

iZ1

XM

jZ1

ð1KxijÞ
2:

(12)

where W1 and W2 are weighting coefficients. W1 represents

the relative strength of the constraint term that any pair of

nodes which is one hop away or two hops away must not

transmit simultaneously during each TDMA cycle. W2

represents the strength of the optimization term which

maximizes the total number of firing neurons or the total

node transmissions.

From Eq. (8), Eqs. (11) and (12), we obtain the dynamics

of the NCNN for neuron ij as follows:

yijðt C1Þ Z kyijðtÞCa KW1

XN

kZ1

ksi

dikxkj

0
BBBB@

1
CCCCACW2ð1KxijÞ

2
66664

3
77775

KzðtÞ½xijðtÞKI0�CnðtÞ: ð13Þ

For an N-node BSP problem with M time slots, a noisy

chaotic neural network with N!M neurons are adopted. We

convert the continuous output xij of neuron ij to discrete

neuron output tij as follows.

tij Z 1 xij O
XN

kZ1

XM

lZ1

xklðtÞ=ðN !MÞ;

0 otherwise;

8<
:

The N!M neurons are updated cyclically and asynchro-

nously in the following sense. All neurons are cyclically

updated in a fixed order. After all neurons are updated once,

we consider that one iteration is finished. And the new state

information is available for the other neurons in the next

generation.

An issue related to efficiency of the NCNN in solving

combinatorial optimization problems is to select appropriate

parameters including system parameters in the neural
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network and weighting coefficients in the energy function.

Although there are quite a few parameters to be selected in

the NCNN, these parameters are similar to those used in

other optimization problems (Li and Wang, 2001; Wang

et al., 2004; Wang et al., 2003; Wang & Tian, 2000):

k Z 0:9; a Z 0:015; b1 Z 0:001; b2 Z 0:0001;

3 Z 0:004; I0 Z 0:65; z0 Z 0:08; A½nð0Þ� Z 0:002:

ð14Þ

The weighting coefficients are determined based on the

rule that each term (W1 and W2) in energy function Eq. (12)

should be comparable in magnitude, so that none of them

dominates. Hence we choose W1Z1.0 and W2Z0.6 in the

benchmark examples from BM (1 to BM (3. Besides, a

comparison of different values of W2 is carried out for

Case 4 to Case 6 in Section 4.

The computational complexity of our hybrid method is

examined as follows. In the first stage, the complexity for

ordering vertex using the traverse algorithm is O(NCL),

where N is the number of node and L is the number of edges in

the graph. The procedure to find non-conflicting colors in

step (4) in the SVC algorithm has O(N) complexity, which

needs to run NM times. Thus the complexity in stage I is

O(N2M), where N is the number of node and M is the number

of time slot. In stage II, it is difficult to determine the exact

number of iterations required by the NCNN for different

problem instances with various problem sizes. We investi-

gate the complexity in one iteration step instead: the

worst time complexity in one iteration step for the NCNN

is O(NM).
4. Experimental results
4.1. Evaluation indices

We use three evaluation indices to compare with

different algorithms. One is the TDMA frame length M.

The second index is the channel utilization factor r

defined in Eq. (3). The third is the average time delay h

for each node to broadcast packets (Funabiki &

Kitamichi, 1999):

h Z
1

N

XN

iZ1

MPM
jZ1

tij

0
BBB@

1
CCCA Z

M

N

XN

iZ1

1PM
jZ1

tij

0
BBB@

1
CCCA: (15)

Another definition of average time delay can be found

in (Wang & Ansari, 1997). To derive the definition of

average time delay, the following assumptions were

made (Wang & Ansari, 1997) (Yeo et al., 2002):

(1) Packets have a fixed length, and the length of a time slot is

equal to the time required to transmit a packet.
(2) The inter-arrival time for each station i is statistically

independent from other stations, and packets arrive

according to a Poisson process with a rate of li

(packets/slot). The total traffic in station i consist of its

own traffic and the incoming traffic from other stations.

Packets are stored in buffers in each station and the buffer

size is infinite.

(3) The probability distribution of the service time of station i

is deterministic. Let the service rate of station i be mi

(packets/slot).

(4) Packets can be transmitted only at the beginning of each

time slot.

Under the above assumptions, the network can be

modeled as NM/D/1 queues (a queue can be described by

three parameters denoted as A/S/m, where A is the arrival

process, S is the probability distribution of service times,

and m is the number of servers. Here M/D/1 means a queue

with Poisson distributed arrivals, constant service time

distribution and 1 server.) (Bertsekas & Gallager, 1987).

The average time delay for each node is defined as Di,

according to Pollaczek–Khinchin formula:

Di Z
1

mi

C
1

li

ðli=miÞ
2

2ð1Kli=miÞ
: (16)

where miZ
PM
mZ1

xmi=M (packet/slot).

The total time delay is given by (Wang & Ansari, 1997;

Yeo et al., 2002):

D Z

PN
iZ1

liDi

PN
iZ1

li

: (17)

In this paper, we will use both definitions of the average

time delay in order to compare with other methods.
4.2. Simulation results

We first evaluate our hybrid method through three

benchmark problems (BM #1 to BM #3 in Table 1), which

were solved by the other methods compared in this paper.

The three examples are 15-node-29-edge, 30-node-70-edge,

and 40-node-66-edge, respectively. Besides the three

benchmark problems, we apply our hybrid algorithm on

several large instances (Case #4 to Case #6 in Table 1) with

the number of node varying from 100 to 400. We run each

instance 50 times with different, randomly selected initial

states of the NCNN, but with the same set of system

parameters as in Eq. (14).

The results of the three benchmark problems are

summarized in Table 2 and compared with the best results

obtained from other previous methods. The best resulting

transmission scheduling for the BM #3 is shown in Fig. 2.

A black square in this figure represents the transmission of



Table 1

Specifications of benchmark instances

Instance Nodes N Edges E Maximum

degree

Minimum

degree

Lower

bound

BM #1 15 29 7 2 8

BM #2 30 70 8 2 10

BM #3 40 66 7 1 8

Case #4 100 486 18 2 19

Case #5 200 1099 21 2 22

Case #6 400 805 8 2 9

Table 2

Comparisons of results obtained by our SVC-NCNN (W1Z1.0 and

W2Z0.6) with different algorithms in the three benchmark problems

Case SVC-NCNN HNN-GA SVC GNN MFA

h M h M h M h M h M

BM #1 6.8 8 7.0 8 7.2 8 7.1 8 7.2 8

BM #2 9.2 10 9.3 10 10.0 10 9.5 10 10.5 12

BM #3 5.8 8 6.3 8 6.76 8 6.2 8 6.9 9 1 1.5 2
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node i in time slot j. From this figure we can see that our

proposed method can find feasible schedules for all nodes

with the minimal frame length (MZ8) in the first stage.

Furthermore, the NCNN can find additional transmissions

for each nodes, e.g., node 1 can transmit at additional time

slots 4, 5, and 6 in one TDMA frame besides the time slot 1,

i.e. node 1 can transmit 4 times in one frame cycle. From

Table 2, we can see that our SVC-NCNN method can find

shorter frame length than MFA does. In addition, our

proposed hybrid method can find the smallest average time

delay h among all methods in all three cases. In order to see

clearly the difference between our method and other
N 
M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
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4
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8
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Fig. 2. The broadcast schedule for the 40-node-66-edge instance. N and M

stand for the number of nodes and the number of time slots, respectively.

The black square stands for the transmission of node i in slot j.
methods, we plot the average time delay for the three

cases as shown in Fig. 3. Because no transmission schedules

are reported in (Funabiki & Kitamichi, 1999), the GNN

method cannot be compared and plotted in these figures. In
(c)
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Fig. 3. Comparison of average time delays for the three benchmark

problems BM #1 to BM #3 (according to Pollaczek–Khinchin formula

Eq. (17)) with different approaches.



Table 3

Simulation results for Test Case #4 to #6 using our SVC-NCNN on a

desktop personal computer with a 2.4 GHZ CPU and various choices of W2

(W1 is fixed at 1)

W2 M h Runtime

(s)

Iteration

steps

Converge

rate (%)

Case #4 0.4 20 15.76 19.5 2697.5 100

0.6 20 15.56 22.3 4335.2 100

0.8 20 15.26 40.5 5894.5 100

R0.9 19 – 107.0 15000 0

Case #5 0.4 22 19.22 87.2 2648.3 100

0.6 22 18.28 102.3 4672.5 100

0.8 22 17.45 325.4 6538.4 100

R0.9 22 – 586.0 15000 0

Case #6 0.4 9 7.77 178.2 3915.3 100

0.6 9 7.70 208.1 4634.9 100

0.8 9 7.62 365.4 8321.4 100

R0.9 9 – 623.0 15000 0
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Fig. 3(a), it can be seen that all other methods obtain the

same time delay. But our SVC-NCNN can find better

transmission schedule which has the time delays less than

other compared methods. The difference in time delay is

greater as shown in Fig. 3(b) and (c) when the problem size

becomes large. From Table 2 and Fig. 3, it can be concluded

that SVC-NCNN can find the shortest conflict-free frame

schedule while providing the maximum channel utilization

among the existing algorithms compared in this paper.

In order to show the effect of weighting coefficients in the

energy function, we investigate the effect of different

coefficient W2 in several large instances Case (4 to Case

(6. Table 3 shows the results of test Case (6 using various

values of W2 while W1 is fixed. We run the simulations 50

times and list the average values of time slot M, time delay h

and runtime (in seconds). Better performance (smaller

average time delays) can be obtained with larger W2, but

more iterations are required. When W2 is greater than 0.9,

the algorithm cannot find feasible solutions in the

pre-defined 15000 iterations used in our simulations.
5. Conclusions

In this paper, we proposed a hybrid algorithm which

combined sequential vertex coloring and the noisy chaotic

neural network to solve the broadcast scheduling problem in

wireless multihop networks. We used two stages for the two

objectives of the BSP, i.e. we used sequential vertex

coloring to find the minimal TDMA frame length with

transmission scheduling in the first stage and the NCNN to

maximize channel utilization and minimize time delays in

the second stage. We evaluated our hybrid algorithm in
three benchmark examples plus three larger instances. The

results showed that our hybrid method finds better solutions

than the other algorithms did in the examples.
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