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Microarray gene expression data usually have a large number of dimensions, e.g., over ten thousand genes,
and a small number of samples, e.g., a few tens of patients. In this paper, we use the support vector
machine (SVM) for cancer classification with microarray data. Dimensionality reduction methods, such
as principal components analysis (PCA), class-separability measure, Fisher ratio, and t-test, are used
for gene selection. A voting scheme is then employed to do multi-group classification by k(k − 1) binary
SVMs. We are able to obtain the same classification accuracy but with much fewer features compared
to other published results.
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1. Introduction

Microarrays,16 also known as gene chips or DNA
chips, provide a convenient way of obtaining gene
expression levels for a large number of genes simulta-
neously. Each spot on a microarray chip contains the
clone of a gene from a tissue sample. Some mRNA
samples are labelled with two different kinds of dyes,
for example, Cy5 (red) and Cy3 (blue). After mRNA
interact with the genes, i.e., hybridization, the color
of each spot on the chip will change. The resulted
image reflects the characteristics of the tissue at the
molecular level.

Microarrays can thus be used to help classify and
predict different types of cancers. Traditional meth-
ods for diagnosis of cancers are mainly based on the
morphological appearances of the cancers; however,
sometimes it is extremely difficult to find clear dis-
tinctions between some types of cancers according
to their appearances. Hence the microarray technol-
ogy stands to provide a more quantitative means for
cancer diagnosis. For example, gene expression data
have been used to obtain good results in the classi-
fications of lymphoma,1 leukemia,10 breast cancer,14

and liver cancer.4

It is challenging to use gene expression data
for cancer classification because of the following
two special aspects of gene expression data. First,
gene expression data are usually very high dimen-
sional. The dimensionality ranges from several thou-
sands to over ten thousands. Second, gene expression
data sets usually contain relatively small numbers
of samples, e.g., a few tens. If we treat this pat-
tern recognition problem with supervised machine
learning approaches, we need to deal with the short-
age of training samples and high dimensional input
features. Recent approaches to solve this problem
include artificial neural networks,13 an evolution-
ary algorithm,7 nearest shrunken centroids,18 and a
graphical method.3

In this paper, we apply a powerful classifier, i.e.,
the support vector machine (SVM), and four effec-
tive feature reduction methods, i.e., principal com-
ponents analysis (PCA), class-separability measure,
Fisher ratio, and t-test, to the problem of cancer clas-
sification based on gene expression data. This paper
is organized as follows. Three gene expression data
sets used in this paper are described in Sec. 2. Then
we discuss an important step for dimension reduc-
tion, i.e., gene selection, in Sec. 3. Numerical results
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are presented in Sec. 4, followed by discussions and
conclusions in Sec. 5.

2. Gene Expression Data Sets

2.1. The SRBCT data set

The SRBCT data set13 can be obtained from the
website (http://research.nhgri.nih.gov/microarray/
Supplement/). The entire data set includes the
expression data of 2308 genes. There are totally
63 training samples and 25 testing samples, five
of the testing samples being not SRBCTs. The 63
training samples contain 23 Ewing family of tumors
(EWS), 20 rhabdomyosarcoma (RMS), 12 neuroblas-
toma (NB), and 8 Burkitt lymphomas (BL). And the
20 SRBCTs testing samples contain 6 EWS, 5 RMS,
6 NB, and 3 BL.

2.2. The lymphoma data set

The lymphoma data set1 can be obtained from the
website (http://llmpp.nih.gov/lymphoma). In this
data set, there are 42 samples derived from diffuse
large B-cell lymphoma (DLBCL), 9 samples from fol-
licular lymphoma (FL), and 11 samples from chronic
lymphocytic lymphoma (CLL). The entire data set
includes the expression data of 4026 genes. In this
data set, a small part of data is missing. A k-nearest
neighbor algorithm was applied to fill those missing
values.20

2.3. The leukemia data set

The leukemia data set10 can be obtained at (http://
www-genome.wi.mit.edu/cgi-bin/cancer/publica-
tions/pub paper.cgi?mode = view &paper id = 43).
The samples in this data set belong to two types of
leukemia, i.e., the acute myeloid leukemia (AML)
and the acute lymphoblastic leukemia (ALL).
Among these samples, 38 of them are used for train-
ing and the other 34 independent samples are for
testing. The entire leukemia data set contains the
expression data of 7129 genes.

Ordinarily, raw gene expression data should be
normalized to reduce the systemic bias introduced
during experiments. For the SRBCT and the lym-
phoma data sets, the data after normalization can
be found on the web. However, for the leukemia data
set, normalized data are not available. Thereafter,
we need to do normalization by ourselves.

We followed the normalization procedure used in
(Ref. 8). Three steps were taken, i.e., (a) threshold-
ing: with a floor of 100 and a ceiling of 16000, that
is, if a value is greater/smaller than the ceiling/floor,
this value is replaced by the ceiling/floor; (b) filter-
ing, leaving out the genes with max/min ≤ 5 or
(max − min) ≤ 500, here max and min refer to
the maximum and minimum of the expression val-
ues of a gene, respectively; (c) carrying out logarith-
mic transformation with 10 as the base to all the
expression values. 3571 genes survived after these
three steps. Furthermore, the data were standardized
across experiments, i.e., minus the mean and divided
by the standard deviation of each experiment.

3. Gene Selection Methods

3.1. Introduction

Among the large number of genes, only a small part
may benefit the correct classification of cancers. The
rest of the genes have little impact on the classifi-
cation. Even worse, some genes may act as “noise”
and undermine the classification accuracy. Hence, to
obtain good classification accuracy, we need to pick
out the genes that benefit the classification most.
In addition, gene selection is also a procedure of
input dimension reduction, which leads to a much
less computation load to the classifier. Maybe more
importantly, reducing the number of genes used for
classification can help researchers put more atten-
tion on these important genes and find the relation-
ship between those genes and the development of the
cancers.

3.2. Principal component analysis

The most widely used technique for input dimen-
sion reduction in gene expression analysis is prin-
cipal component analysis (PCA) (see, e.g., Chapter
8 of (Ref. 17)). The basic idea of principal compo-
nent analysis is transforming the input space into
a new space described by the principal components
(PCs). All the PCs are orthogonal to each other
and are ordered according to the absolute values of
their eigenvalues. The kth PC is the vector with
the kth largest eigenvalue. By leaving out the vec-
tors with small eigenvalues, the dimensionality of the
input space is reduced. Because PCA chooses vectors
with the largest eigenvalues, it covers the directions
with the largest vector variations in the input space.



December 14, 2005 15:18 00039

Applications of Support Vector Machines to Cancer Classification with Microarray Data 477

(a)

(b)

Fig. 1. Principal components analysis for the lymphoma
data set. (a): the change of the eigenvalues; (b): the clas-
sification result using PCA for input reduction. The hor-
izontal axis is the number of the PCs with the greatest
eignvalues that are used.

In the directions determined by the vectors with
small eigenvalues, the vector variations are very
small. In a word, PCA intends to capture the most
informative directions. Figure 1a shows the change
of eigenvalues in the lymphoma data set. The classi-
fication result using PCA as input dimension reduc-
tion scheme is given in Fig. 1b. Through comparing
Fig. 1b with Fig. 8a, we found that t-test (to be intro-
duced in the latter part) could achieve much better
classification accuracy than PCA.

3.3. Class-separability analysis for
gene selection

Another frequently used method for gene selection is
to measure the class-separability (CS).8 CS of gene
i is defined as:

CSi = SBi/SWi, (1)

where

SBi =
K∑

i=1

(x̄ik − x̄i)2, (2)

SWi =
K∑

k=1

∑
j∈Ck

(xij − x̄ik)2, (3)

x̄ik =
∑

j∈Ck

x̄ij/nk (4)

x̄i =
n∑

j=1

xij/n. (5)

Here SBi is the sum of squares of between-class dis-
tances (the distances between samples of different
classes). SWi is the sum of squares of with-in class
distances (the distances of samples within the same
class). In the whole data set, there are K classes.
Ck refers to class k that includes nk samples. xij

is the expression value of gene i in sample j. x̄ik is
the mean expression value in class k for gene i. n is
the total number of samples. x̄i is the general mean
expression value for gene i. A CS is calculated for
each gene. A larger CS indicates a larger ratio of the
distances between different classes to the distances
within one specific class. Therefore, CSs can be used
to measure the capability of genes to separate differ-
ent classes. 20 important genes with the largest CSs

in the SRBCT data set are given in Table 1.

3.4. Fisher-ratio for gene selection

Fisher ratio (see e.g., (Ref. 15)) is also a ratio of
between-class distances to with-in class distances. If
there are two classes in a data set, the Fisher ratio
(F ) for gene i is:

Fi =
(x̄i1 − x̄i2)2

si1
2 + si2

2
. (6)

If there are more than two classes in the data set,

Fi =
K∑

p=1

K∑
q=1

(x̄ip − x̄iq)2

K(K − 1)(sip
2 + siq

2)
, p �= q. (7)

where

s2
ik =

1
nk

∑
j∈Ck

(xij − x̄ik)2 (8)

The main differences between the CS and the
F are as follows. (a) When extending F from two-
class version in Eq. (6) to multi-class version, Eq. (7)
averages all the F between any two different classes;
however, CS can be directly calculated for multi-
class data sets. (b) When calculating the between-
class distance, the CS adds up all the distances from
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Table 1. The 20 top genes selected by class separability in the SRBCT data set.

Rank Gene ID Gene description

1 770394 Fc fragment of IgG, receptor, transporter, alpha
2 796258 sarcoglycan, alpha (50 kD dystrophin-associated glycoprotein)
3 784224 fibroblast growth factor receptor 4
4 814260 follicular lymphoma variant translocation 1
5 295985 ESTs
6 377461 caveolin 1, caveolae protein, 22 kD
7 859359 quinone oxidoreductase homolog
8 769716 neurofibromin 2 (bilateral acoustic neuroma)
9 365826 growth arrest

10 1435862 antigen identified by monoclonal antibodies 12E7, F21 and O13
11 866702 protein tyrosine phosphatase, non-receptor type 13 (APO-1/CD95 (Fas)-associated phosphatase)
12 296448 insulin-like growth factor 2 (somatomedin A)
13 740604 interferon stimulated gene (20 kD)
14 241412 E74-like factor 1 (ets domain transcription factor)
15 810057 cold shock domain protein A
16 244618 ESTs
17 52076 olfactomedinrelated ER localized protein
18 21652 catenin (cadherin-associated protein), alpha 1 (102kD)
19 43733 glycogenin 2
20 236282 Wiskott-Aldrich syndrome (ecezema-thrombocytopenia)

the mean of each class (x̄ik) to the overall mean (x̄i);
however, F directly calculates the distances between
the means of any two different classes and then adds
them up.

3.5. A t-test-based gene selection
approach

T -test is a statistical method proposed by Welch.23 It
is used to measure how large the difference is between
the distributions of two groups of samples. For a spe-
cific gene, if it shows larger distinctions between 2
groups, it is more important for the classification of
the two groups. To find the genes that contribute
most to the classification, t-test has been used in
gene selection in recent years.21

To select important genes using t-test involves
several steps. In the first step, a score based on t-test
(named t-score or TS) is calculated for each gene. In
the second step, all the genes are rearranged accord-
ing to their TSs. The gene with the largest TS is
put in the first place of the ranking list, followed
by the gene with the second largest TS, and so on.
Finally, only some top genes in the list are used for
classification.

The standard t-test is only applicable to measure
the difference between two groups. Therefore, when

the number of classes is more than two, we need to
modify the standard t-test. In this case, we use t-test
to calculate the degree of difference between one spe-
cific class and the centroid of all the classes. Hence,
the definition of TS for gene i can be described
like this:

TSi = max

{x̄ik − x̄i

mksi

, k = 1, 2, . . . , K

}
(9)

s2
i =

1
n − K

∑
k

∑
j∈Ck

(xij − x̄ik)2 (10)

mk =
√

1/nk + 1/n (11)

Here max{yk, k = 1, 2, . . . , K} is the maximum of
all {yk, k = 1, 2, . . . , K}. si is the pooled within-class
standard deviation for gene i.

The classification results using the 20 top genes
selected by class-separability, Fisher-ratio, and the
t-test in the SRBCT data set are shown in Fig. 2.
From these results, it is obvious that t-test is better
than CS and Fisher-ratio for gene selection.

4. Experimental Results

The structure of an SVM2,5,22 is shown in Fig. 3. Two
of the most commonly used kernel functions are the
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Fig. 2. Comparison of classification results in the
SRBCT data set using the 20 genes selected by the class-
separability, the t-test, and the Fisher ratio approaches.

x x x

Fig. 3. The structure of an SVM.

polynomial kernel:

K(x,xi) = (xTxi + 1)p (12)

where p is a constant specified by users, and the
radial basis function:

K(x,xi) = exp(−γ‖x− xi‖2) (13)

where γ is also a constant specified by users.
If there are more than two classes in the data set,

binary SVMs are not sufficient to solve the whole
problem. To solve multi-class classification problems,
we should divide a whole problem into a number of
binary classification problems. Usually, there are two
approaches.12 One is the “one against all” scheme
and the other is the “one against one” scheme.

For the “one against all” scheme, if there are N

classes in the entire data set, then N independent
binary classifiers are built. Each binary classifier is
in charge of picking out one specific class from all

the other classes. For one specific pattern, all the N

classifiers are used to make a prediction. The pattern
is categorized to the class that receives the strongest
prediction. The prediction strength is measured by
the result of the decision function.

For the “one against one” scheme, there must be
one (and only one) classifier taking charge of the clas-
sification between any two classes. Therefore, for a
data set with K classes, K(K−1)/2 binary classifiers
are used. To get the ultimate result, a voting scheme
is used. For every input vector, all the classifiers give
their votes so there will be K(K − 1)/2 votes, when
all the classification (voting) finished, the vector is
designated to the class getting the highest number
of votes. If a vector gets highest votes for more than
one class, it is randomly designated to one of them. In
fact, there is still no conclusion about which scheme
is better for combining binary classifiers.11 In our
practice, we choose the “one against one” scheme.

We applied the SVM described above to process
the SRBCT, the lymphoma, and the leukemia data
sets. The results are as follows.

4.1. Results for the SRBCT data set

In this data set, we first ranked the importance of
all the genes with TSs. We picked out 60 of them
with the largest TSs to do classification. The top
30 genes are listed in Table 2. We input these genes
one by one to the SVM classifier according to their
ranks. That is, we first input the gene ranked No.1
in Table 2. Then, we trained the SVM classifier with
the training data and tested the SVM classifier with
the testing data. After that, we repeated the whole
process with top 2 genes, and then top 3 genes, and
so on. Figure 4 shows the training and the testing
accuracies with respect to the number of genes used.

In this data set, we used SVMs with RBF ker-
nels. C and γ were set as 80 and 0.005, respectively.
This classifier obtained 100% training accuracy and
100% testing accuracy using the top 7 genes. Actu-
ally, the values of C and γ have great impact on the
classification accuracy. Figure 5 shows the classifi-
cation results with different values of γ(gamma). We
also applied linear SVMs and SVMs with polynomial
kernel function to the SRBCT data set. The results
are shown in Fig. 6 and Fig. 7. The linear SVMs
and the SVMs with the polynomial kernel function
obtained 100% accuracy with 7 and 6 genes, respec-
tively. The similarity of these results indicates that



December 14, 2005 15:18 00039

480 F. Chu & L. Wang

Table 2. The 30 top genes selected by t-test in the SRBCT data set.

Rank Gene ID Gene description

1 810057 cold shock domain protein A
2 784224 fibroblast growth factor receptor 4
3 296448 insulin-like growth factor 2 (somatomedin A)
4 770394 Fc fragment of IgG, receptor, transporter, alpha
5 207274 Human DNA for insulin-like growth factor II (IGF-2); exon 7 and additional ORF
6 244618 ESTs
7 234468 ESTs
8 325182 cadherin 2, N-cadherin (neuronal)
9 212542 Homo sapiens mRNA; cDNA DKFZp586J2118 (from clone DKFZp586J2118)

10 377461 caveolin 1, caveolae protein, 22kD
11 41591 meningioma (disrupted in balanced translocation) 1
12 898073 transmembrane protein
13 796258 sarcoglycan, alpha (50 kD dystrophin-associated glycoprotein)
14 204545 ESTs
15 563673 antiquitin 1
16 44563 growth associated protein 43
17 866702 protein tyrosine phosphatase, non-receptor type 13 (APO-1/CD95 (Fas)-associated phosphatase)
18 21652 catenin (cadherin-associated protein), alpha 1 (102 kD)
19 814260 follicular lymphoma variant translocation 1
20 298062 troponin T2, cardiac
21 629896 microtubule-associated protein 1B
22 43733 glycogenin 2
23 504791 glutathione S-transferase A4
24 365826 growth arrest-specific 1
25 1409509 troponin T1, skeletal, slow
26 1456900 Nil
27 1435003 tumor necrosis factor, alpha-induced protein 6
28 308231 Homo sapiens incomplete cDNA for a mutated allele of a myosin class I, myh-1c
29 241412 E74-like factor 1 (ets domain transcription factor)
30 1435862 antigen identified by monoclonal antibodies 12E7, F21 and O13

(a) (b)

Fig. 4. The classification results for the SRBCT data set: (a) the training accuracy; (b) the testing accuracy.

the SRBCT data set is separable for all the three
kinds of classifiers.

For the SRBCT data set, Khan et al.13 100%
accurately classified the 4 types of cancers with a

linear artificial neural network by using 96 genes.
Their results and our results of the linear SVMs
both proved that the classes in the SRBCT data set
are linearly separable. In 2002, Tibshirani et al.18
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Fig. 5. The testing results of SVMs with the RBF
kernels in different values of γ.

Fig. 6. The testing results of the linear SVMs for the
SRBCT data set.

Fig. 7. The testing result of the SVMs with the
polynomial kernel function (p = 2) for the SRBCT
data set.

also correctly classified the SRBCT data set with
43 genes by using a method named nearest shrunken
centroids. Deutsh7 further reduced the number of
genes needed for reliable classification to 12 with an
evolutionary algorithm. Compared with these previ-
ous results, the SVMs introduced here can achieve
100% accuracy with 7 genes (for the linear and the
RBF kernel function version) and 6 genes (for the
polynomial kernel function version). Table 3 gives
the detail of this comparison.

Table 3. Comparison of number of genes required
by different methods to achieve 100% classification
accuracy.

Method Number
of genes

MLP ANN (Khan) 96
Nearest Shrunken Centroids 43
Evolutionary Algorithm 12
SVM (linear or RBF kernel function) 7
SVM (polynomial kernel function, p = 2) 6

4.2. Results for the lymphoma data set

In the lymphoma data set, the top 196 genes selected
by TSs are listed in Table 4. Figures 8a and 8b are
training and testing results of the top 70 genes. The
classifiers used here are also RBF SVMs. C and γ are
20 and 0.1, respectively. They obtained 100% accu-
racy in both training and testing data set with only
5 genes.

In the lymphoma data set, nearest shrunken
centroids19 used 48 genes to give a 100% accurate
classification. In comparison with this, the SVMs we
used greatly reduced the number of genes required.

4.3. Results in the leukemia data set

The leukemia data set is a widely known data set.
Golub et al., built a 50-gene classifier10 for it. This
classifier made 1 error in the 34 testing samples;
and in addition, it cannot give strong prediction
to the other 3 samples. Nearest shrunken centroids
made 2 errors among the 34 testing samples. From
Fig. 9a and Fig. 9b, we found the RBF SVMs we
used also made 2 errors in the testing data set with
20 genes.

5. Conclusions

To find a good solution to the problem of cancer clas-
sification using gene expression data, one can work
towards two related directions. One is gene selection.
Selecting important genes can make the task eas-
ier because important genes determine a new input
space in which the samples are more likely to be cor-
rectly classified. The other direction is to build pow-
erful classifiers.
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Table 4. The top 196 important genes selected by t-test for the lymphoma data set.

Rank Gene ID Gene description

1 GENE1610X Mig=Humig=chemokine targeting T cells
2 GENE708X Ki67 (long type)
3 GENE1622X CD63 antigen (melanoma 1 antigen)
4 GENE1641X Fibronectin 1
5 GENE3320X Similar to HuEMAP=homolog of echinoderm microtubule associated protein EMAP
6 GENE707X Topoisomerase II alpha (170 kD)
7 GENE653X Lactate dehydrogenase A
8 GENE1636X Fibronectin 1
9 GENE2391X Unknown

10 GENE2403X Unknown
11 GENE1644X cathepsin L
12 GENE3275X Unknown UG Hs.192270 ESTs
13 GENE642X nm23-H1=NDP kinase A=Nucleoside dephophate kinase A
14 GENE706X CDC2=Cell division control protein 2 homolog=P34 protein kinase
15 GENE1643X cathepsin L
16 GENE2395X Unknown UG Hs.59368 ESTs
17 GENE537X B-actin,1099-1372
18 GENE709X STAT induced STAT inhibitor-1=JAB=SOCS-1
19 GENE2307X CD23A=low affinity II receptor for Fc fragment of IgE
20 GENE2389X Unknown

. . . . . . . . .

. . . . . . . . .

187 GENE646X nm23-H2=NDP kinase B=Nucleoside dephophate kinase B
188 GENE2180X Unknown
189 GENE506X putative oral tumor suppressor protein (doc-1)
190 GENE632X ATP5A=mitochondrial ATPase coupling factor 6 subunit
191 GENE844X ets-2=ets family transcription factor
192 GENE629X HPRT=IMP:pyrophosphate phosphoribosyltransferase E.C. 2.4.2.8.
193 GENE2381X Arachidonate 5-lipoxygenase=5-lipoxygenase=5-LO
194 GENE1533X CD11C=leukocyte adhesion protein p150,95 alpha subunit=integrin alpha-X
195 GENE2187X SF1=splicing factor
196 GENE641X cell cycle protein p38-2G4 homolog (hG4-1)

(a) (b)

Fig. 8. The classification results for the lymphoma data set: (a) the testing accuracy; (b) the training accuracy.

In this paper, we touched upon both directions
from an experimental viewpoint. For gene selec-
tion, we tested 4 well known schemes, i.e., PCA,
class separability analysis, Fisher ratio, and t-test.

Our results showed that t-test-based gene selection
outperformed the other three approaches. There-
fore, we applied this method to select important
genes.
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(a)

(b)

Fig. 9. The classification results for the leukemia data
set: (a) the training accuracy; (b) the testing accuracy.

This paper also described the procedure of con-
structing support vector machines. After that, 3 gene
expression data sets were classified with the SVMs
we built. The results proved the effectiveness of the
SVMs. In all the three data sets, the SVMs obtained
very high classification accuracies with much fewer
genes compared with previously published methods.
In addition, we found that effective gene selection
schemes could largely simplify the requirements to
classifiers. For example, linear SVMs achieved high
accuracy in the SRBCT data set. However, this does
not mean the SVM can not deal with nonlinear prob-
lems. In fact, SVMs with RBF or polynomial ker-
nels are good classifiers for nonlinear problems (see
for e.g., Ref. 22).
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