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Abstract. In this Chapter, we present a new approach to image denoising based on 
a novel optimization algorithm called stochastic chaotic simulated annealing. The 
original Bayesian framework of image denoising is reformulated into a constrained 
optimization problem using continuous relaxation labeling. To solve this optimiza- 
tion problem, we then use a noisy chaotic neural network (NCNN), which adds noise 
and chaos into the Hopfield neural network (HNN) to facilitate efficient searching 
and to avoid local minima. Experimental results show that this approach can offer 
good quality solutions to image denoising. 
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1 Introduction 

Image denoising is to estimate the original image from a noisy image with 
some assumptions or knowledge of the image degradation process. There exist 
many approaches for image denoising [I] [2] [3] [4]. Here we adopt a Bayesian 
framework because it is highly parallel and it can decompound a complex com- 
putation into a network of simple local computations [3], which is important 
in hardware implementation of neural networks. This approach computes the 
maximum a posteriori (MAP) estimation of the original image given a noisy 
image. The MAP estimation requires the prior distribution of the original im- 
age and the conditional distribution of the data. The prior distribution of the 
original images imposes contextual constraints and can be modeled by Markov 
random field (MRF) or, equivalently, by Gibbs distribution. The MAP-MRF 
principle centers on applying MAP estimation on MRF modeling of images. 

Li incorporated augmented Lagrange multipliers into the Hopfield neural 
network (HNN) for solving optimization problems [5 ] .  He transformed a com- 
binatorial optimization problem into real constrained optimization using the 
notion of continuous relaxation labeling. The HNN was then used to solve the 
real constrained optimization. 



The neural network approaches have been shown to be a powerful tool 
for solving the optimization problems [6] [7]. The HNN is a typical model 
of neural network with symmetric connection weights. It  is capable of solv- 
ing quadratic optimization problems. However, it suffers from convergence to 
local minima [8]. To overcome the weakness, different simulated annealing 
techniques have been combined with the HNN to solve optimization prob- 
lems [8] [9] [lo] [ll] [12]. Kajiura et a1 [ll] proposed the gaussian machine 
which combines stochastic simulated annealing (SSA) with neural network 
for solving assignment problems. Convergence to globally optimal solutions 
is guaranteed if the cooling schedule is sufficiently slow, i.e., no faster than 
logarithmic progress [3]. SSA searches the entire solution space, which is time 
consuming. Chen and Aihara [9] proposed a transiently chaotic neural net- 
work (TCNN) which adds a large negative self-coupling with slow damping 
in the Euler approximation of the continuous HNN so that neurodynamics 
eventually converge from strange attractors to an equilibrium point. Chaotic 
simulated annealing (CSA) can search efficiently because of its reduced search 
spaces. The TCNN showed good performance in solving traveling salesman 
problem. However CSA is deterministic and is not guaranteed to settle into a 
global minimum. In view of this, Wang and Tian [12] proposed a novel algo- 
rithm called stochastic chaotic simulated annealing (SCSA) which combines 
both stochastic manner of SSA and chaotic manner of CSA. In this paper the 
NCNN, which performs SCSA algorithm, is applied to solve the constrained 
optimization in the MAP-MRF formulated image denoising. Experimental 
results show that the NCNN outperforms the HNN and the TCNN. 

The rest of the chapter is organized as follows: Section 2 introduces the 
MAP-MRF framework in image restoration and the transformation of the 
combinatorial optimization to a real unconstrained optimization. Section 3 
presents the NCNN and the derivation of the neural network dynamics. The 
experimental results are shown in Section 4. Section 5 concludes the paper. 

2 MAP-MRF Image Restoration 

Let the original image, the restored image and the degraded image be denoted 
by x = {xi I i E S), f = {f i  I i E S) and y = {yi I i E S) respectively, where 
S = {I,.  . . , N) indexes the set of sites corresponding to the image pixels and 
N is the number of the image pixels. 

When the original image is degraded by identical independently dis- 
tributed (i.i.d.) Gaussian noise, the degraded image is modeled by 

where ei N N(0,a2) is the zero mean Gaussian distribution with standard 
deviation a .  The objective of image denoising is to find an f that approximates 
2. 



Each pixel takes on a discrete value in the label set L = 1,. . . , M. The 
spatial relationship of the sites is determined by a neighborhood system N = 
{Ni I i E S)  where Ni is the set of sites neighboring i. A single site or a set 
of neighboring sites form a clique denoted by c. C is the set of all cliques. 

There are many different ways the pixels can influence each other through 
contextual interactions. Such contextual interactions can be modeled as 
MRFs. According to Markov-Gibbs equivalence [13], an MRF is equivalent 
to a Gibbs distribution 

p(,) = 2 - 1  x e-+ C c c c  v~(x) (2) 

where V,(x) is the clique potential function, T is a temperature constant, and 
Z is a normalizing constant. 

In the MAP-MRF labeling, the posterior distribution can be computed by 
using [14] 

p(y) is a constant when y is given. P(x) is the prior probability and p(y1x) 
is the conditional distribution. The prior distribution of the original image 
which imposes the contextual constraints can be expressed in terms of the 
MRF clique potentials 

where 

In this chapter only pair-site cliques are considered. 
In (1) the noise is independent Gaussian noise. The conditional distribution 

can be expressed in terms of y, x and a. 

where 

Knowing the prior distribution and the conditional distribution, the energy 
in the posterior distribution is given by [4] 

in which C{i,i,lEC V2(xi,xi,) is the pair-site clique potential of the MRF 
model. Maximizing a posteriori is equivalent to find an 2 such that E(2) 
is the global minimum. 



In order to minimize E(x) in (8), proper MRF model has to be chosen so 
that appropriate contextual constraints can be posed. Among various MRFs, 
the multi-level logistic (MLL) model is a simple mechanism for encoding a 
large class of spatial patterns [14]. In MLL, the pair-site clique potentials take 
the form 

where PC is the parameter for cliques of type c = {i, il). However we found 
that the pair-site potentials are strong constraints. Instead of using (9) we use 

Fig. 1. Graphical representation of g(xi, xi,) 

g(xi, zit) in the modified potential function is an exponential function in 
(-1,1]. Compared to the potential function in the MLL model, the modified 
potential function allows the pixels to be slightly different from the neigh- 
boring pixels. This is logical as most real images have smooth non-uniform 
regions. 

Since image pixels can only take discrete values, the minimization in (8) is 
combinatorial. The combinatorial optimization can be converted into a con- 
strained optimization in a real space using the continuous relaxation labeling. 
Let pi(I) E [O,1]  represent the strength with which label I is assigned to i, 
the energy with the p variables is given by 



where I = xi and I' = xi!, r i (I)  = &(IIy) = ( I  - yi)2/2a2 is the single- 
site clique potential function and r i , i~ ( I ,  1') = V2(I, I' ly) = V2(I, 1') is the 
pair-site clique potential function in the posterior distribution P(x1y). 

With such a representation, the combinatorial minimization is reformu- 
lated as the following constrained minimization 

min E (p) 
P 

(13) 

subject to Ci(p) = 0 i E S (14) 

pi(I) > 0 Vi E S ,  V I  E L (15) 

where Ci(p) = CIp i ( I )  - 1 = 0. 
The augmented Lagrange Hopfield (ALH) method can be used to solve the 

above constrained minimization problem [4]. It uses the augmented Lagrange 
technique to satisfy the equality constraints of (14) and the Hopfield encoding 
to impose the inequality constraints of (15). The augmented Lagrange function 
takes the form 

where yk are the Lagrange multipliers and P > 0 is the weight for the penalty 
term. The final solution p* is subject t o  additional constraints: pf (I) E (0, 1). 

The ALH method uses the HNN to optimize the energy function. However 
the HNN is prone to trappings at  local minima. In view of this, we propose a 
new network NCNN to perform the optimization. 

3 Noisy Chaotic Neural Network 

Let ui(I) denote the internal state of the neuron (i, I )  and pi(I) denote the 
output of the neuron (i, I ) .  pi(I) E [O,1] represents the strength that the pixel 
at  location i takes the value I .  The NCNN is formulated as follows [12]: 



where 
TiI,ilIl : connection weight from neuron (i', It) to neuron (i, I ) ;  
Zi ( I )  : input bias of neuron (i, I ) ;  
k : damping factor of nerve membrane (0 5 k 5 1) 
a : positive scaling parameter for inputs; 
E : steepness parameter of the output function (E 2 0); 
z : self-feedback connection weight or refractory strength (z 2 0); 
I, : positive parameter; 
n : random noise injected into the neurons; 
p, : positive parameter (0 < ,B, < 1); 
,& : positive parameter (0 < p, < 1); 
A[n] : the noise amplitude. 

When n(t) in (18) equals to zero, the NCNN becomes TCNN. When dt) 
equals to zero, the TCNN becomes similar to the HNN with stable fixed point 
dynamics. The basic difference between the HNN and the TCNN is that a 
nonlinear term z( t ) (p i t ) (~)  - I,) is added to the HNN. Since the "tempera- 
ture" dt) tends toward zero with time evolution, the updating equations of 
the TCNN eventually reduce to those of the HNN. In (18) the variable 
can be interpreted as the strength of negative self-feedback connection of each 
neuron, the damping of ~ ( ~ 1  produces successive bifurcations so that the neuro- 
dynamics eventually converge from strange attractors to a stable equilibrium 
point [8]. 

CSA is deterministic and is not guaranteed to settle into a global minimum. 
In view of this, Wang and Tian [12] added a noise term n(t) in (18). The noise 
term continues to search for the optimal solution after the chaos of the TCNN 
disappears. 

From (13)-(15) and (18), we obtain the dynamics of the NCNN: 

where 

Note that the Lagrange multipliers are updated with neural outputs according 
to ,$+l) = (t) rk + PCi (P'" 1. 

4 Experimental Results 

Both artificial image and real image have been used to demonstrate the per- 
formance of the NCNN on image denoising. 

The artificial image is a circle image of size 256 x 256 with M = 4 gray 
levels. Its label set is L = {0,1,2,3). Three noisy circle images were generated 
by adding zero-mean i.i.d. Gaussian noise with standard deviation a = 0.5, 
a = 0.75 and a = 1 respectively. 



The noisy images were set to be the input of the neural networks. After 
the neural networks were initialized, each neuron was updated using (21) and 
(17). After all neurons in the neural networks were updated once, yk, z and 
n are updated. The updating scheme is cyclic and asynchronous. When all 
the neurons are updated once, we call it one iteration. Once the state of a 
neuron is updated, the new state information is immediately available to other 
neurons in the network (asynchronous). 

The parameters that we used for the NCNN are: k = 1 , ~  = 0.01, a = 0.005, 
I. = 0.65, z(O) = 0.05, n(O) = 0.01. ,B is increased from 1 to 50 according to 
,B c l . O l , B .  The decreasing rate of z and n ,  ,LIZ and ,B, are 0.005. For the 
TCNN and the HNN we use the same parameters as the NCNN except that 
n = 0 for the TCNN, n = 0 and z = 0 for the HNN. The MRF pair-site clique 
potential parameter ,B,=l. 

Table 1 shows the required iteration numbers and the peak signal-to-noise 
ratio (PSNR) of the denoised images. The higher the PSNR, the better the 
image quality. The denoised images are shown in Fig. 2-4. 

Table 1. Numerical denoising results of the circle image (PSNRT: PSNR of the 
denoised image, PSNRd: PSNR of the noisy image) 

Noise ~evell 11terationsI PSNR, I PSNRd I 
I HNN 1 23 135.8127118.70181 

a = 0.5 

a = 0.75 

a = 1 

The next experiment was conducted on the real image. The real image 
is the Lena image of size 128 x 128 with M = 256 gray levels. Its label set 
is L = {0,1,2,. . . ,255). Three noisy Lena images were generated by adding 
zero-mean i.i.d. Gaussian noise with standard deviation of a = 8, a = 16 and 
a = 24 respectively. 

The denoising process of the noisy Lena images is the same as the circle 
image denoising process. The parameters that we used for the NCNN of the 
Lena image denoising process are: k = 1, E = 0.01, a = 0.0001, I. = 0.65, 
z(O) = 0.05, n(O) = 0.01. ,B is increased from 1 to 50 according to ,B t 1.01,B. 
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Fig. 2. Denoising of the circle image with noise level u = 0.5: (a) Original image. (b) 
Noisy image. (c)-(e) Denoised images using the HNN, the TCNN and the NCNN, 
respectively 



Fig. 3. Denoising of the circle image with noise level o = 0.75: (a) Original image. 
(b) Noisy image. (c)-(e) Denoised images using the HNN, the TCNN and the NCNN, 
respectively 



Fig. 4. Denoising of the circle image with nose level a = 1: (a) Original image. (b) 
Noisy image. (c)-(e) Denoised images using the HNN, the TCNN and the NCNN, 
respectively 



The decreasing rate of z and n,  ,6, and ,6, are 0.005. For the TCNN and the 
HNN we use the same parameters as the NCNN except that n = 0 for the 
TCNN, n = 0 and z = 0 for the HNN. The MRF pair-site clique potential 
parameter PC=% 

Table 2 shows the required iteration numbers and the peak signal-to-noise 
ratio (PSNR) of the denoised images. The higher the PSNR, the better the 
image quality. It  can be seen from the table that the NCNN offers the best 
performance. The PSNR of the restored image using the NCNN is higher than 
those of the restored images using the HNN and the TCNN. In addition, the 
NCNN use less iterations to converge than the HNN and the TCNN. The 
denoised images are shown in Fig. 5-7. 

Table 2. Numerical denoising results of the Lena image (PSNR,: PSNR of the 
denoised image, PSNRd: PSNR of the noisy image) 

Noise ~evell I~terations 

I HNN 1 950 

HNN 1489 

a = 1 6  TCNN 1173 

NCNN 1114 

HNN 2054 

a = 24 TCNN 1571 

NCNN 1862 

5 Conclusion 

A new neural network, called noisy chaotic neural network (NCNN), is used to 
address the MAP-MRF formulated image denoising problem. SCSA effectively 
overcomes the local minima problem. We have shown that the NCNN gives 
better quality solutions compared to the HNN and the TCNN. 
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