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Abstract—We propose an adaptive noisy chaotic neural net- system1 /. Gt iz c1s
work (A-NCNN) to solve the frequency assignment problem Fa
(FAP) in the satellite communications systems. The objective
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of this NP-complete problem is to minimize the cochannel
interference between two satellite systems by rearranging the
frequency assignments. In the A-NCNN, the noisy chaotic neuren

dynamics manages the constraint satisfaction while the adaptive
mapping scheme achieve the optimization of the problem. The
performance of our A-NCNN is demonstrated through solving a

set of benchmark problems, where the A-NCNN can find better

solutions compared to the previous algorithms.
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Fig. 1. Cochannel interference model for two adjacent seelbmmunica-
I. INTRODUCTION tions systems.

In satellite communication systems, cochannel interfegen

seriously affects system design and operation [1]. Inttesy a NP-Complete combinatorial optimization problem known

interference is an example of such cochannel interferefce. as frequency assignment problem (FAP) [1]. Mizuikeal.

effective way to deal with the interference reduction is thé : :
. . e introduced the segmentation of carriers and solved thdgmob
rearrangement of frequency assignments in practicaltsings

L using branch and bound. Funabikt al. [2] used gradual
[1]. The communications are assumed to operated between . . .
- . neural network (GNN) which consists oV x M binary
F and F}, as showed in Fig. 1. The cochannel Intencerencneeurons for theN-carrier-M -segment system with gradual
can be evaluated by calculating the each pair of carriers 9 y 9

using the same frequency, which is varied with differentai expansion scheme of activated neurons. Salcedo-8tmat
g d Y, W . # gresented a hybrid method which combines Hopfield network
Because each carrier occupies different length of frequen

In order to avoid the nonlinearity, Mizuiket al. proposed the and simulated annealing (HopSA) to tackle the FAP. The

segmentation method of carriers, which uniformly divided t HopSA algorithm consists of a fast digital Hopfield neural

commonly shared frequency band into a number of discrqqetwork which manages the problem constraints and a simu-

f’ﬁed annealing which improves the solutions obtained.

"segments”. In each system, every carrier can be divideal in
consecutive unit segments. Thus the interference betwesen t
two systems (sayd segments) in Fig. 1 is described by a
M x M interference matrix£ = (e;;). The ijth element  The primary objective of the FAP is to minimize the largest
e;; represents the cochannel interference when seg#éem element of the interference matrix selected in the assighme
system 2 use a common frequency with segngentn system The second objective is to minimize the sum of interference
1. Fig. 2(a) shows the segmentation of the system in Fig.ol all the selected elements. The three constraints areljhat
and the optimum assignment under the interference matexery segment in system 2 must be assigned to a segment in
in Fig. 2(b). In order to reduce the cochannel interferensystem 1; 2) each segment in system 1 can assigned at most
between the two adjacent systems, the frequency assignnsm segment in system 2; and 3) all segments of each carrier
in system 2 is rearranged but the assignments in system Inissystem 2 should be assigned to consecutive segments in
fixed. In this way, the FAP is equivalent to assign each segmeiystem 1 in the same order.

in system 2 to a segment in system 1 of using a commonin this paper, we used a two-dimensional neural network
frequency. The frequency reassignment can be formulatedvesich consists ofN x M neurons for the FAP ofV carriers

Il. PROBLEM FORMULATION
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Fig. 2. Segmentation and interference matrix for the systeffign 1. (a)
Segmentation of the two systems. (b) the interference matrixttfe M-
segment system.

and M segments. The output of each neurbjy will be
converted into the binary valudg?. The valueV;4 of neuron
#ij represents whether the carrigfi is assigned to the
segments#j — #(j +¢; —1),i = 1,...,N;5 = 1,.... M),
wherec; indicates the length of carriefti. In section 2, we

restrict search to a sub-space of the chaotic attracting set
The TCNN is shown to have global searching ability [10],
however, it is not guaranteed to find a global minima no matter
how slowly the annealing parameter is reduced [11]. Wang
and Tian proposed the noisy chaotic neural network (NCNN)
by adding the decaying stochastic noise into the TCNN. The
NCNN performs stochastic searching both before and after
chaos disappears, and is more likely to find optimal or sub-
optimal solutions [12]:

1

ikll) = T @
Yik(t +1) = ky;i(t) + —2(t) [25%(t) — Lo] + n(t)
N M
+a Z Z WikaTk(t) + Lk o (2)
i=1,i#j 1=1,1%k
z(t+1)=(1-pB1)z(t), 3
n(t+1) = (1-B2)n(t), 4)

where the notations are:

Zjk, Yjk - output, input of neuronk ;

wjki: connection weight from neuropk to neuron:l, with
Wjkil = Witk andw;g;x = 0;

N M
ZijkﬂxijrIij = —9E/dz; : input to neuron jk
7 7k
(5)
E : energy function;
I, - input bias of neuroiyk ;
k : damping factor of nerve membrare < k < 1);
« : positive scaling parameter for inputs ;
(1 : damping factor for neuronal self-couplifg < 5, < 1);
(2 : damping factor for stochastic noige < 3, < 1);
z(t) : self-feedback connection weight or refractory strength
(2(t) > 0), z(0) is a constant;

formulate the frequency assignment problem. In sectiohe, t], : positive parameter;

adaptive noisy chaotic neural network model is proposed and steepness parameter of the output function-(0) ;

the application to the FAP is discussed. Numerical resufts a(¢): random noise injected into the neurons/inA, A] with
stated and the performance is evaluated in section 4. ImoBecia uniform distribution:

5 we conclude the paper.

1. ADAPTIVE NOISY CHAOTIC NEURAL NETWORK
A. Model Definition

A[n]: amplitude of noisen.

The single neuron dynamics of NCNN by varying the
parameterl, is showed in Fig. 3 (the x-axis is the time steps

Since the Hopfield neural network (HNN) [3] [4] wast, the y-axis is the output of neurom;;(t)). We can see
proposed to solve the travelling salesman problem (TSB)eththat larger biasesI() result in larger firing probabilities and

are many research efforts in combinatorial optimizatioimgis

vice versa. Thus we proposed a novel neural network called

Hopfield-like neural networks. However, it was criticizey b adaptive noisy chaotic neural network described as fotlows
Wilson et al. [5] because of its low convergence and the poor

solution quality. Simulated annealing (SA) has been coetbin

with it [6] [7] and recently chaotic simulated annealing ®S
proposed by Chemet al. [8] [9] is proved to be an effective

in combinatorial optimization. CSA uses a transient clraoti
neural network (TCNN) uses a deterministic dynamics to

N M

yie(t +1) = ky;r(t) + Z ijkuxjk(t) + Ly,
i=1 1=1
i£] 1k

—2z(t) [xjk(t) — I]bk] +n(t). (6)



] B. A-NCNN for FAP
We formulate the energy function of A-NCNN as follows:
W N M N j+ci—1
1
Peg YN S Vb
i=1 j=1p=1qg=j—cp+1
pFi
N M N M
W2 W3
> (ZViq—l)z"‘TZZVz‘j(l_Vij)- (8)
i=1 ¢q=1 i=1 j=1
(@) Ip =03 wherelW; andWW, are weighting coefficient$} is the second
i : : : : constraint that each segment in system 1 can be assigned to
»—-m\ at most one segment in system B, re[resents the first
. constraint that each first segment of carriers in system
” ] 2 must be assigned to one segment amanhgsegments in
system 1.
W | From equations (2), (6) and (8), the dynamic equation for
] the A-NCNN is:
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Fig. 3. The single neuron dynamics of adaptive noisy chaatical network ! (Z Z pq) 2 ( ]k)]
with different value ofIy. 1;2 q=j—cp+l
—z(t) [:cjk(t) — I]bk] +n(t). 9)

where Ijl?k is not a constant parameter but a variable which The neuron output is continuous betweénand 1, we
determines the selection of firing of each neuron. The valdgyvert the continuous outplf; of neuron+ij to discrete
of I, is related to the problem optimization term. In thig,euron output’?, as follows [8]:

problem, the objective is to minimize the largest element of Y

the interference matrix selected in the assignment andeat th 1 if Vi > Zivzl le‘il Via(t)/ (N x M)
same time minimize the sum of interference of all the setkcte V;-d- =
elements. Thus we define the choosefjbj as follows: 0 otherwise

dip —dsriin The NCNN is updated cyclically and asynchronously. The
=1~ # (7) new state information of a neuron is immediately available
Jmad gy man for the other neurons in the next iteration. The iteration is

whered;, is the jk element in the cost matri® = (d;;,7 = terminated once a feasible assignment is obtained.
1,...,N;j=1,..,M), andd; e, iS the maximum value in
the line j of matrix D and d; ;. is the minimum value the ) )
line j of matrix D. The costd;; for neuron#:ij is given by The A-NCNN contains two type of parameters, i.e., model

the largest element in interference matrix amenglements Parameters and weighting coefficients. We choose the model
€hjr€hil i1y Chici1jtei_1, if @SSign the carriersi to Parameters based on the rules that the set parameters avill pr

segments#j — #(j + ¢; — 1), wherek is the first segment duces richer and more flexible neuron dynamics, the value of

number of carrierti in the interference matrix and is the these parameters are similar to those used in other optionza

length of carriersi [2]. problems [12] - [13] . The selectior_1 of weighting coeff_icieiﬁ
From the linear mapping in eqn (7), it can be seen that thased on the ru]es that gll terms in the energy function glwoul

neuron#ij with smaller cost;; will have bigger probability be comparable in magnitude, so that none of them dominates.

to fire while the ones with larger cost will be inhibited to fire The values of model parameters shows as follows:

'Lhrm;)gh the m?ppingbin elqn. (7), we can ngt only ?chievhe k=0.9,a=0.015,5 = 0.001, 3 = 0.0002

the objectives of FAP but also separate the objective froen t

formulé\tion of energy function, Wk?ich will makejthe tuning o e = 1/250, I = 0.65, 20 = 0.08, A[n(0)] = 0.009..  (10)

weighting coefficients in energy function more easier witho Note that the parameters listed here is only a empiricalevalu

the need to balance the optimization term and constrataning on these parameters is needed when applied to differe

term in one energy function. Moreover, it will improve theproblems, especially the weighting coefficients.

convergence speed of the noisy chaotic neural network asTable | summarizes the main characteristics of the bench-

shown in the result discussion section. mark problems in this paper. Benchmark problems BM

IV. SIMULATION RESULTS



TABLE |
SPECIFICATION OFFAP INSTANCES.

Instance| Number of | Number of Range of Range of
carriers N | segments M| carrier length | interference
BM #1 4 6 1-2 5-55
BM #2 4 6 1-2 1-9
BM #3 10 32 1-8 1-10
BM #4 10 32 1-8 1-100
BM #5 10 32 1-8 1-1000
Case #6 18 60 1-10 1-100
Case #7 30 100 1-10 1-100
TABLE I

COMPARISONS OF THE SIMULATION RESULTYLARGEST INTERFERENCE
AND TOTAL INTERFERENCE) OBTAINED BY A-NCNN wiTH GNN AND

HOPSA.

Instance GNNI[2] HopSA[14] A-NCNN

largest | total | largest| total | largest| total
BM #1 30 100 30 100 30 100
BM #2 4 13 4 13 4 13
BM #3 7 85 9 97 7 88
BM #4 64 880 64 888 64 880
BM #5 640 8693 817 6910 | 640 7246
Case #6| 49 1218 45 1080 37 1052
Case #7| 100 4633 98 3396 61 2824

to BM #b5 are taken from [2] and cases Cag® and Case
#7 are from [14]. We simulate our A-NCNN on P4 2.4GHZ
workstation and we run each instan@@times with different

initial conditions of neural network.

converge rate of our method in this table. One iteration step
in A-NCNN stands for one loop that all neurons are updated
once. From Table Il we can see that our A-NCNN achieves
at lease82% convergence rate ifi instances. Furthermore, it
can converge to a solution in nearly constant iterationsstep
and the runtime grows slower compared with the increase of
the problem size.

V. CONCLUSION

In this paper, we propose a novel method called the
adaptive noisy chaotic neural network and apply it to solve
the frequency assignment problem in satellite commurdnati
systems. The A-NCNN consists @&f x M neurons for the
N-carrierM -segment system. We use the linear mapping
function which maps the objectives of the FAP into the
variable parameter;, thus simplified the formulation of FAP
and tuning of weighting coefficients. The simulation result
of 7 instances show that the A-NCNN can find better solution
of cochannel interference compared to the previous methods
with very low computational cost.
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