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Abstract— We propose an adaptive noisy chaotic neural net-
work (A-NCNN) to solve the frequency assignment problem
(FAP) in the satellite communications systems. The objective
of this NP-complete problem is to minimize the cochannel
interference between two satellite systems by rearranging the
frequency assignments. In the A-NCNN, the noisy chaotic neuron-
dynamics manages the constraint satisfaction while the adaptive
mapping scheme achieve the optimization of the problem. The
performance of our A-NCNN is demonstrated through solving a
set of benchmark problems, where the A-NCNN can find better
solutions compared to the previous algorithms.

I. I NTRODUCTION

In satellite communication systems, cochannel interference
seriously affects system design and operation [1]. Intersystem
interference is an example of such cochannel interference.An
effective way to deal with the interference reduction is the
rearrangement of frequency assignments in practical situations
[1]. The communications are assumed to operated between
Fa and Fb as showed in Fig. 1. The cochannel interference
can be evaluated by calculating the each pair of carriers
using the same frequency, which is varied with different pairs.
Because each carrier occupies different length of frequency.
In order to avoid the nonlinearity, Mizuikeet al. proposed the
segmentation method of carriers, which uniformly divided the
commonly shared frequency band into a number of discrete
”segments”. In each system, every carrier can be divided into
consecutive unit segments. Thus the interference between the
two systems (sayM segments) in Fig. 1 is described by a
M × M interference matrixE = (eij). The ijth element
eij represents the cochannel interference when segment#i in
system 2 use a common frequency with segment#j in system
1. Fig. 2(a) shows the segmentation of the system in Fig. 1
and the optimum assignment under the interference matrix
in Fig. 2(b). In order to reduce the cochannel interference
between the two adjacent systems, the frequency assignment
in system 2 is rearranged but the assignments in system 1 is
fixed. In this way, the FAP is equivalent to assign each segment
in system 2 to a segment in system 1 of using a common
frequency. The frequency reassignment can be formulated as
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Fig. 1. Cochannel interference model for two adjacent satellite communica-
tions systems.

a NP-Complete combinatorial optimization problem known
as frequency assignment problem (FAP) [1]. Mizuikeet al.
introduced the segmentation of carriers and solved the problem
using branch and bound. Funabikiet al. [2] used gradual
neural network (GNN) which consists ofN × M binary
neurons for theN -carrier-M -segment system with gradual
expansion scheme of activated neurons. Salcedo-Sanzet al.
presented a hybrid method which combines Hopfield network
and simulated annealing (HopSA) to tackle the FAP. The
HopSA algorithm consists of a fast digital Hopfield neural
network which manages the problem constraints and a simu-
lated annealing which improves the solutions obtained.

II. PROBLEM FORMULATION

The primary objective of the FAP is to minimize the largest
element of the interference matrix selected in the assignment.
The second objective is to minimize the sum of interference
of all the selected elements. The three constraints are that1)
every segment in system 2 must be assigned to a segment in
system 1; 2) each segment in system 1 can assigned at most
one segment in system 2; and 3) all segments of each carrier
in system 2 should be assigned to consecutive segments in
system 1 in the same order.

In this paper, we used a two-dimensional neural network
which consists ofN × M neurons for the FAP ofN carriers
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  S11  S12  S13  S14  S15  S16 

S21  20  20  40  0  25  25 

S22  50    10  30  0  55  * 

S23  *  50  30  0  15  55 

S24  30  30  45  0  35  35 

S25  45  5  25  0  50  * 

S26  *  45  25  0  10  50 
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Fig. 2. Segmentation and interference matrix for the system inFig. 1. (a)
Segmentation of the two systems. (b) the interference matrix for the M -
segment system.

and M segments. The output of each neuronVij will be
converted into the binary valuesV d

ij . The valueV d
ij of neuron

#ij represents whether the carrier#i is assigned to the
segments#j − #(j + ci − 1), (i = 1, ..., N ; j = 1, ...,M),
whereci indicates the length of carrier#i. In section 2, we
formulate the frequency assignment problem. In section 3, the
adaptive noisy chaotic neural network model is proposed and
the application to the FAP is discussed. Numerical results are
stated and the performance is evaluated in section 4. In Section
5 we conclude the paper.

III. A DAPTIVE NOISY CHAOTIC NEURAL NETWORK

A. Model Definition

Since the Hopfield neural network (HNN) [3] [4] was
proposed to solve the travelling salesman problem (TSP), there
are many research efforts in combinatorial optimization using
Hopfield-like neural networks. However, it was criticized by
Wilson et al. [5] because of its low convergence and the poor
solution quality. Simulated annealing (SA) has been combined
with it [6] [7] and recently chaotic simulated annealing (CSA)
proposed by Chenet al. [8] [9] is proved to be an effective
in combinatorial optimization. CSA uses a transient chaotic
neural network (TCNN) uses a deterministic dynamics to

restrict search to a sub-space of the chaotic attracting set.
The TCNN is shown to have global searching ability [10],
however, it is not guaranteed to find a global minima no matter
how slowly the annealing parameter is reduced [11]. Wang
and Tian proposed the noisy chaotic neural network (NCNN)
by adding the decaying stochastic noise into the TCNN. The
NCNN performs stochastic searching both before and after
chaos disappears, and is more likely to find optimal or sub-
optimal solutions [12]:

xjk(t) =
1

1 + e−yjk(t)/ε
, (1)

yjk(t + 1) = kyjk(t) + −z(t) [xjk(t) − I0] + n(t)

+α
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, (2)

z(t + 1) = (1 − β1)z(t) , (3)

n(t + 1) = (1 − β2)n(t) , (4)

where the notations are:
xjk, yjk : output, input of neuronjk ;
wjkil: connection weight from neuronjk to neuronil, with
wjkil = wiljk andwjkjk = 0;

N
∑

i=1
i6=j

M
∑

l=1
l 6=k

wjkilxjk+Iij = −∂E/∂xjk : input to neuron jk

(5)
E : energy function;
Ijk : input bias of neuronjk ;
k : damping factor of nerve membrane(0 ≤ k ≤ 1);
α : positive scaling parameter for inputs ;
β1 : damping factor for neuronal self-coupling(0 ≤ β1 ≤ 1);
β2 : damping factor for stochastic noise(0 ≤ β2 ≤ 1);
z(t) : self-feedback connection weight or refractory strength
(z(t) ≥ 0), z(0) is a constant;
I0 : positive parameter;
ε : steepness parameter of the output function (ε > 0) ;
n(t): random noise injected into the neurons, in[−A,A] with
a uniform distribution;
A[n]: amplitude of noisen.

The single neuron dynamics of NCNN by varying the
parameterI0 is showed in Fig. 3 (the x-axis is the time steps
t, the y-axis is the output of neuronxij(t)). We can see
that larger biases (I0) result in larger firing probabilities and
vice versa. Thus we proposed a novel neural network called
adaptive noisy chaotic neural network described as follows:

yjk(t + 1) = kyjk(t) + α
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[
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]

+ n(t) . (6)
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Fig. 3. The single neuron dynamics of adaptive noisy chaotic neural network
with different value ofI0.

where Ib
jk is not a constant parameter but a variable which

determines the selection of firing of each neuron. The value
of Ijk is related to the problem optimization term. In this
problem, the objective is to minimize the largest element of
the interference matrix selected in the assignment and at the
same time minimize the sum of interference of all the selected
elements. Thus we define the choose ofIb

jk as follows:

Ib
jk = 1 −

djk − dj,min

dj,max − dj,min
. (7)

wheredjk is thejk element in the cost matrixD = (dij , i =
1, ..., N ; j = 1, ...,M), anddj,max is the maximum value in
the line j of matrix D anddj,min is the minimum value the
line j of matrix D. The costdij for neuron#ij is given by
the largest element in interference matrix amongci elements
ekj , ek+1,j+1, ..., ek+ci−1,j+ci−1, if assign the carrier#i to
segments#j − #(j + ci − 1), wherek is the first segment
number of carrier#i in the interference matrix andci is the
length of carrier#i [2].

From the linear mapping in eqn (7), it can be seen that the
neuron#ij with smaller costcij will have bigger probability
to fire while the ones with larger cost will be inhibited to fire.
Through the mapping in eqn. (7), we can not only achieve
the objectives of FAP but also separate the objective from the
formulation of energy function, which will make the tuning of
weighting coefficients in energy function more easier without
the need to balance the optimization term and constraint
term in one energy function. Moreover, it will improve the
convergence speed of the noisy chaotic neural network as
shown in the result discussion section.

B. A-NCNN for FAP

We formulate the energy function of A-NCNN as follows:

E =
W1

2
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M
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j=1
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∑
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p6=i
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∑

q=j−cp+1

VijVpq +

W2

2

N
∑

i=1

(
M
∑
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Viq − 1)2 +
W3

2

N
∑

i=1

M
∑

j=1

Vij(1 − Vij) . (8)

whereW1 andW2 are weighting coefficients,W1 is the second
constraint that each segment in system 1 can be assigned to
at most one segment in system 2,W2 re[resents the first
constraint that each first segment ofN carriers in system
2 must be assigned to one segment amongM segments in
system 1.

From equations (2), (6) and (8), the dynamic equation for
the A-NCNN is:

yjk(t + 1) = kyjk(t) + α[−W2(
M
∑

q=1

Viq − 1)

−W1(

N
∑

p=1

p6=i

j+ci−1
∑

q=j−cp+1

Vpq) −
W3

2
(1 − 2Vjk)]

−z(t)
[

xjk(t) − Ib
jk

]

+ n(t) . (9)

The neuron output is continuous between0 and 1, we
convert the continuous outputVij of neuron#ij to discrete
neuron outputV d

ij , as follows [8]:

V d
ij =







1 if Vij >
∑N

k=1

∑M
l=1 Vkl(t)/(N × M)

0 otherwise

The NCNN is updated cyclically and asynchronously. The
new state information of a neuron is immediately available
for the other neurons in the next iteration. The iteration is
terminated once a feasible assignment is obtained.

IV. SIMULATION RESULTS

The A-NCNN contains two type of parameters, i.e., model
parameters and weighting coefficients. We choose the model
parameters based on the rules that the set parameters will pro-
duces richer and more flexible neuron dynamics, the value of
these parameters are similar to those used in other optimization
problems [12] - [13] . The selection of weighting coefficients is
based on the rules that all terms in the energy function should
be comparable in magnitude, so that none of them dominates.
The values of model parameters shows as follows:

k = 0.9, α = 0.015, β1 = 0.001, β2 = 0.0002

ε = 1/250, I0 = 0.65, z0 = 0.08, A[n(0)] = 0.009 . (10)

Note that the parameters listed here is only a empirical value,
tuning on these parameters is needed when applied to different
problems, especially the weighting coefficients.

Table I summarizes the main characteristics of the bench-
mark problems in this paper. Benchmark problems BM#1



TABLE I

SPECIFICATION OFFAP INSTANCES.

Instance Number of Number of Range of Range of

carriers N segments M carrier length interference

BM #1 4 6 1 - 2 5 - 55

BM #2 4 6 1 - 2 1 - 9

BM #3 10 32 1 - 8 1 - 10

BM #4 10 32 1 - 8 1 - 100

BM #5 10 32 1 - 8 1 - 1000

Case #6 18 60 1 - 10 1 - 100

Case #7 30 100 1 - 10 1 - 100

TABLE II

COMPARISONS OF THE SIMULATION RESULTS(LARGEST INTERFERENCE

AND TOTAL INTERFERENCE) OBTAINED BY A-NCNN WITH GNN AND

HOPSA.

Instance GNN[2] HopSA[14] A-NCNN

largest total largest total largest total

BM #1 30 100 30 100 30 100

BM #2 4 13 4 13 4 13

BM #3 7 85 9 97 7 88

BM #4 64 880 64 888 64 880

BM #5 640 8693 817 6910 640 7246

Case #6 49 1218 45 1080 37 1052

Case #7 100 4633 98 3396 61 2824

to BM #5 are taken from [2] and cases Case#6 and Case
#7 are from [14]. We simulate our A-NCNN on P4 2.4GHZ
workstation and we run each instance50 times with different
initial conditions of neural network.

Table II shows the results obtained by A-NCNN and a
comparison with other previous methods. For the benchmark
problems fromBM#1 to BM#5, the A-NCNN algorithm
equals or improves the results of other existing algorithms. Our
method van obtain better results when the problems become
more complicated as showed in Case#6 and Case#7 in
Table II. Table III shows the iteration steps and computation
time of our A-NCNN for all the problems. We also list the

TABLE III

ITERATION STEPS, COMPUTATION TIME (SECOND), AND CONVERGE RATE

FOR A-NCNN ON P4 2.4GHZ WORKSTATION.

Instance Iteration Steps Time (Sec.) Convergence Rate

#1 378.3 0.02 100%

#2 478.1 0.02 100%

#3 44.6 0.01 100%

#4 2157.5 2.1 96%

#5 1819.8 1.8 98%

#6 2128.8 11.8 82%

#7 2890.7 78.3 86%

converge rate of our method in this table. One iteration step
in A-NCNN stands for one loop that all neurons are updated
once. From Table III we can see that our A-NCNN achieves
at lease82% convergence rate in7 instances. Furthermore, it
can converge to a solution in nearly constant iteration steps
and the runtime grows slower compared with the increase of
the problem size.

V. CONCLUSION

In this paper, we propose a novel method called the
adaptive noisy chaotic neural network and apply it to solve
the frequency assignment problem in satellite communication
systems. The A-NCNN consists ofN × M neurons for the
N -carrier-M -segment system. We use the linear mapping
function which maps the objectives of the FAP into the
variable parameterIi, thus simplified the formulation of FAP
and tuning of weighting coefficients. The simulation results
of 7 instances show that the A-NCNN can find better solution
of cochannel interference compared to the previous methods
with very low computational cost.
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