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Abstract— Support Vector Machine (SVM) based Relevance 

Feedback (RF) is one of the most popular techniques for Content-

Based Image Retrieval (CBIR). However, it is not appropriate to 

directly use the SVM as a RF scheme since it treats the positive 

and negative feedbacks equally. Additionally, it does not take into 

account unlabelled samples although unlabelled samples are very 

helpful in constructing a good classifier. To explore solutions to 

these two problems, we propose a Biased Maximum Margin 

Analysis (BMMA) and a Semi-Supervised Biased Maximum 

Margin Analysis (SemiBMMA) combined with SVM RF in this 

paper. Extensive experiments on a large real world image 

database demonstrate that the proposed scheme can significantly 

improve the performance of the traditional SVM-based RF for 

CBIR. 

Keywords-relevance feedback; content based image retrieval; 

support vector machine 

                 I.  INTRODUCTION 

   Content-Based Image Retrieval (CBIR) has gained much 

attention for its potential applications in multimedia 

management [1]. However, the semantic gap between the low-

level visual features and the high-level concepts of images 

often leads to poor performance of CBIR systems.  

   To narrow down the so called semantic gap, Relevance 

Feedback (RF) was introduced as a powerful tool to enhance 

the performance of CBIR [2]. Huang et al introduced both the 

query movement and re-weighting techniques [3, 4]. In [5], a 

one-class Support Vector Machine (SVM) estimated the 

density of positive feedback samples. Regarding the positive 

and negative feedbacks as two different groups, classification-

based RFs [6, 7] have become popular techniques in the CBIR 

community.  
The two-class SVM, as a small sample learning algorithm, 

was introduced as a RF technique for CBIR because of its good 
generalization ability. Guo et al developed a constrained 
similarity measure for image retrieval [8], which learns a 
boundary that divides the images into two groups and samples 
inside the boundary are ranked by their Euclidean distance to 
the query image. Random sampling techniques were applied to 
alleviate unstable, biased and overfitting problems in SVM RF 
[7]. Li et al proposed a multitraining SVM method by adopting 
a co-training technique and a random sampling method [9]. 

Nevertheless, most of the SVM RF approaches ignore the 
basic difference between the two distinct groups of feedbacks, 
that is, all positive feedbacks share a similar concept while 

each negative feedback usually varies with different concepts 
[10]. However, traditional SVM RF techniques treat positive 
and negative feedbacks equally. Additionally, it is problematic 
to incorporate the information of unlabelled samples into 
traditional SVM based RF schemes for CBIR, although 
unlabelled samples are very helpful in constructing the optimal 
classifier, alleviating noise and enhancing the performance of 
the system.  

To alleviate the performance degradation when directly using 
the SVM as a RF scheme for CBIR, we explore solutions based 
on the argument that different semantic concepts lie in different 
subspaces and each image can lie in many different concept 
subspaces [10]. We formally formulate this problem into a 
general subspace learning problem and propose a Biased 
Maximum Margin Analysis (BMMA) and a Semi-Supervised 
Biased Maximum Margin Analysis (SemiBMMA) based on the 
Graph Embedding framework [11], which is a general platform 
to formulate new subspace learning algorithms, to integrate the 
distinct properties of two groups of feedback samples and 
incorporate the information of unlabelled samples for SVM RF. 
Experiments on a large Corel Image Dataset have shown 
significant improvement of the RF performance by the new 
approaches.  

II     BMMA AND SEMIBMMA FOR SVM RF IN CBIR 

    In each round of feedback iteration, there are n  samples 
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n
X x x x=  . For simplicity, we assume that the first 

n+

 samples are positive feedbacks (1 )
i

x i n+≤ ≤ , the next n−

 

samples are negative feedbacks ( 1 )
i

x n i n n+ + −+ ≤ ≤ + , and 

all the others are unlabelled samples ( 1 )
i

x n n i n+ −+ + ≤ ≤ . 

Let ( )
i

l x  be the class label of sample ix , we denote ( ) 1
i

l x =

for positive feedbacks, ( ) 1
i

l x = − for negative feedbacks and 

( ) 0
i

l x = for unlabelled samples. To construct the BMMA 

algorithm, firstly, two different graphs are formed: 1) the 

intrinsic graph G , which characterizes the local similarity of 

the feedback samples; 2) the penalty graph 
pG , which 

characterizes the local discriminant structure of  the feedback 

samples. 

     For all the positive feedbacks, we first compute the pair-

wise distance between each pair of positive feedbacks. Then 

for each positive feedback
i

x , we find its 
1

k  nearest 
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neighborhood positive feedbacks, which can be represented as 

a sample set s

i
N , and put an edge between 

i
x  and its 

neighborhood positive feedbacks. Then the intrinsic graph is 

characterized as follows: 
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where D  is a diagonal matrix whose diagonal elements are 

calculated by 
ii ijj

D W= ; | |s  denotes the total number of 

1
k  nearest neighborhood positive sample pairs for each 

positive feedback. Basically, the intrinsic graph measures the 

total average distance of the | |s  nearest neighborhood 

sample pairs, and is used to characterize the local within-class 

compactness for all the positive feedbacks.  

The penalty graph 
pG is constructed to represent the local 

separability between the positive class and the negative class. 

More strictly speaking, we expect that the total average margin 

between the sample pairs with different labels should be as 

large as possible. 

For each feedback sample, we find its 
2k  neighbor 

feedbacks with different labels and put edges between 

corresponding pairs of feedback samples with weights
p

ijW . 

   Then, the penalty graph can be formed as follows: 
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where pD  is a diagonal matrix whose diagonal elements are 

calculated by p p

ii ijj
D W= ; | |p  denotes the total number of

2
k neighborhood sample pairs with different labels. Similarly, 

the penalty graph measures the total average distance of the 

| |p  nearest neighbor sample pairs in different class, and is 

used to characterize the local between-class separability.     

 

   In the following, we describe how to utilize the graph 
embedding framework to develop algorithms based on the 

designed intrinsic and penalty graphs. Different from the 

original formulation of the graph embedding framework in 

[11], the BMMA algorithm optimizes the objective function in 

a trace difference form instead, i.e.,   
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                         (a)                                                     (b) 

Figure.1 (a) red dots are positive samples and blue dots are 

negative samples in the original space (b) the positive samples and 

negative samples in the maximum margin subspace 

 

    In order to remove an arbitrary scaling factor in the 

projection, we additionally require that α  is constituted by the 

unit vectors, i.e., 1, 1,2 ,T

k k k lα α = = . This means that we 

need to solve the following constraint optimization.
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The motivation for using the constraint 

1, 1,2, ,T

k k
k lα α = = … is to avoid calculating the inverse of

TXBX , which leads to the potential “Small Sample Size” 

problem. It is easy to see that the problem (i.e., Eq.6) is a 

Standard Eigenvalue Decomposition problem.  

The BMMA can be illustrated in Fig.1. 

    In the previous subsection, we have formulated the BMMA 

algorithm and shown that the optimal projection matrix α  can 

be obtained by Standard Eigenvalue Decomposition on a 

matrix. Then the problem is how to determine an optimal 

dimensionality for RF, i.e., the projected subspace. To achieve 

such a goal, we give the detail of determining the optimal 

dimensionality. 

    In general,  

                
1

max ( ( ) )
l

T T

i

i

tr X B L X
α

α α λ
=

− =                         (7) 

where
 

'

i sλ  are the associated eigenvalues and we have
    

                1 2 1 0d d lλ λ λ λ λ−≥ ≥ ≥ ≥ ≥ ≥ ≥
                    

 (8) 

   To maximize the margin between the positive samples and 

negative samples, we should preserve all the eigenvectors 

associated with the positive eigenvalues. Therefore, the 

optimal dimensionality of the projected subspace just 

corresponds to the number of nonnegative eigenvalues of the 

matrix. Therefore, compared to the original formulation of the 

graph embedding framework in [11], the new formulation (6) 

can easily avoid the intrinsic “Small Sample Size” problem 

and also provide us with a simple way to determine the 

optimal dimensionality for this subspace learning problem. 

   Then to incorporate the information of unlabelled samples, 

we design a regularization term based on intrinsic graph for 

the unlabelled samples in the image database. 

     For each unlabelled sample ( 1 )ix n n i n+ −+ + ≤ ≤ , we 

expect that the nearby unlabelled samples are likely to have 

the similar low-dimensional representations. Specifically, for 



each unlabelled sample, we find its 
1

k nearest neighborhood 

unlabelled samples,which can be represented as a sample set 
u

iN , and put an edge between the unlabelled 
i

x  and its 

neighborhood unlabelled samples. Then the intrinsic graph for 

the unlabelled samples is characterized as follows: 
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which reflects the affinity of the sample pairs; uD  is a 

diagonal matrix whose diagonal elements are calculated by 
u u

ii ijj
D W= ; | |uD  denotes the total number of

1
k nearest 

neighborhood unlabelled sample pairs for each unlabelled 

sample.
u u u

L D W= −  can be known as a Laplacian matrix. 

Hence, we call this term as a Laplacian regularizer. Actually, 

this scheme can preserve weak (probably correct) similarities 

between all unlabeled sample pairs and thus effectively 

integrate the similarity information of unlabeled samples into 

the BMMA. By integrating the Laplacian regularizer into the 

supervised BMMA, we can easily obtain the SemiBMMA for 

the SVM RF, i.e., 
          

 

           

* arg max [ ( ) ]T Ttr X B L U X
α

α α β α= − − ∗                (11) 

where β  is used to trade off the contributions of the labeled 

samples and unlabelled samples. Similarly, the solution of (11) 

is obtained by conducting the Standard Eigenvalue 

Decomposition and α  is calculated as a set of eigenvectors. 

The procedure of SemiBMMA SVM RF for CBIR is 

illustrated in TABLE I. 

TABLE I.  THE PROCEDURE OF SEMIBMMA SVM RF FOR CBIR 

 

III. IMAGE RETRIEVAL SYSTEM 

    In experiments, we use a subset of the Corel Photo Gallery, 

which comprises totally 10,763 real-world images with 80 

concepts, as the test data to evaluate the performance of the 

proposed scheme. The images are represented by low level 

features, such as color [12], texture [13] and shape [14], each 

of which can capture the content of an image to some extent. 

In this paper, we select the color histogram, the Weber Local 

Descriptors [15] and the edge directional histogram to 

represent images. All of the features will result in vectors with 

510 values to represent images.   

IV. EXPERIMENTAL RESULTS 

The CBIR system was implemented on a small scale image 

database and a large scale image database, respectively. We 

used the average precision, which is the ratio of the number of 

relevant images retrieved to the top N retrieved images, to 

evaluate the retrieval performance. We empirically select the 

parameters 
1 2
, 4k k = . To implement the semi-supervised 

method, we randomly select 300 unlabeled samples in each 

round of feedback iteration. For the trade off parameter 

between labeled samples and unlabeled samples, we simply 

set 1β = .We choose the Gaussian kernel for all the SVM-

based algorithms:
  

                 

2| |( , ) , 0.001x yK x y e ρ ρ− −= =                              
(12)

 

A. Experiments on a small size image database 

The first evaluation experiment is executed on a small size 

database, which includes 3899 images with 30 different 

categories. We use all 3899 the images in 30 categories as 

queries. In practice, the first 5 query relevant images and first 

5 irrelevant images in the top 20 retrieved images in the 

previous iterations were automatically selected as positive and 

negative feedbacks respectively.  Fig.2 shows the average 

precision-scope curves of the algorithms for the 1
st
 and 2

nd
 

iterations. We can notice that both the BMMA SVM and the 

Orthogonal Complement Component Analysis (OCCA) [19] 

SVM can perform much better the traditional SVM on the 

entire scope, especially the 1
st
 round of feedback. The BMMA 

SVM algorithm and the OCCA SVM algorithm can 

significantly improve the performance of SVM by treating the 

positive and negative feedbacks unequally. Moreover, the 

performance of BMMA SVM and OCCA SVM will be 

degraded by overfitting after a few iterations. 

B. Experiments on a large scale image database 

     In this subsection, we divide the whole image database into 

five subsets of equal size. Thus, there are 20 percent images 

per category in each subset. At each run of cross validation, 

one subset is selected as the query set, and the other four 

subsets are used as the database for retrieval. Then 400 query 

samples are randomly selected from the query subset and the 

relevance feedback is automatically implemented by the 

system. For each query image, the system retrieves and ranks 

the images in the database and 9 RF iterations are 

automatically executed. The first 3 relevant images are labeled

1) Construct the supervised intrinsic graph G , according to the 

formulation (1) and calculate the matrix value
TXLX . 

2) Construct the supervised penalty graph
p

G , according to the 

formulation (3) and calculate the matrix value
TXBX . 

3) Construct the Laplacian regularizer according to the 

formulation (9) and calculate the matrix value TXUX . 

4) Calculate the projection matrix *α  according to Standard 

Eigenvalue Decomposition on the matrix ( ) TX B L U Xβ− − ∗ .  

5) Calculate the new representations: project all positive, 

negative and remaining samples in the database onto the 

reduced subspace respectively, i.e., *TY Xα+ += ,
*TY Xα− −= . 

6) Train a standard SVM classifier on [ , ]Y Y+ −  



 
(a)                                                                               (b) 

Figure.2 The precision-scope curves after the 1st feedback and 2nd feedback for SVM, OCCA SVM and BMMA SVM 

 

 
(a)                                                                               (b) 

Figure.3 The average precisions in top 10- top 60 results of the six approaches from the fivefold cross validation. 

 

as positive feedbacks and all other irrelevant images in top 20 

results are automatically marked as negative feedbacks. The 

first 3 relevant images are labelled as positive feedbacks and 

all other irrelevant images in top 20 results are automatically 

marked as negative feedbacks.  We show the average 

precisions in top 20 and top 50 retrieved images in Fig.3 (a) 

and (b), respectively. To demonstrate the effectiveness of the 

proposed scheme, we compare them with traditional SVM, the 

OCCA SVM, the Biased Discriminant Analysis (BDA) SVM, 

and one-class SVM (OneSVM). 

As shown in Fig.3, SemiBMMA SVM outperforms all the 

other algorithms on the entire scope. Both BMMA and OOCA 

can improve the performance of the SVM RF as shown in 

Fig.3. However, both BMMA and OCCA SVM will encounter 

the overfitting problem, i.e., OCCA combined with SVM will 

degrade the performance of SVM after a few rounds of 

feedbacks although they can improve the performance of SVM 

in the first a few rounds of feedback. The SemiBMMA 

combined with SVM can significantly improve the 

performance of the traditional SVM since it can effectively 

utilize the basic property of different groups of the feedback 

samples and integrate the information of the unlabelled 

samples into the construction of the classifier. 

V. CONCLUSIONS 

Support Vector Machine (SVM) based Relevance Feedback 

(RF) is one of the most important techniques to improve the 

performance of a Content-Based Image Retrieval (CBIR) 

system. To integrate the distinct properties of feedback 

samples and the information of the unlabelled samples into the 

SVM RF for CBIR, we have designed a Biased Maximum 

Margin Analysis (BMMA) and a Semi-Supervised Biased 

Maximum Margin Analysis (SemiBMMA) for the traditional 

SVM RF. The novel approaches can distinguish the positive 

feedbacks and negative feedbacks by maximizing the local 

margin and integrity the information of unlabeled sample by 

introducing a Laplacian regularizer. Extensive experiments on 

a large real world Corel image database have shown that the 

proposed scheme combined with the traditional SVM RF can 

significantly improve the performance of CBIR systems.  
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