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A Gradual Noisy Chaotic Neural Network for Solving
the Broadcast Scheduling Problem in

Packet Radio Networks
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Abstract—In this paper, we propose a gradual noisy chaotic
neural network (G-NCNN) to solve the NP-complete broadcast
scheduling problem (BSP) in packet radio networks. The objective
of the BSP is to design an optimal time-division multiple-access
(TDMA) frame structure with minimal TDMA frame length and
maximal channel utilization. A two-phase optimization is adopted
to achieve the two objectives with two different energy functions,
so that the G-NCNN not only finds the minimum TDMA frame
length but also maximizes the total node transmissions. In the first
phase, we propose a G-NCNN which combines the noisy chaotic
neural network (NCNN) and the gradual expansion scheme to find
a minimal TDMA frame length. In the second phase, the NCNN
is used to find maximal node transmissions in the TDMA frame
obtained in the first phase. The performance is evaluated through
several benchmark examples and 600 randomly generated in-
stances. The results show that the G-NCNN outperforms previous
approaches, such as mean field annealing, a hybrid Hopfield net-
work-genetic algorithm, the sequential vertex coloring algorithm,
and the gradual neural network.

Index Terms—Broadcast scheduling problem, gradual noisy
chaotic neural network, NP-complete, packet radio network.

I. INTRODUCTION

PACKET radio networks provide a good option for
high-speed wireless data communications, especially

over a broad geographic region [1]. Packet radio networks
(PRNs) consist of geographically distributed nodes and pro-
vides flexible data communication services for nodes through a
shared high-speed radio channel by broadcasting. Each node is
equipped with a transmitter and a receiver with limited power.
Therefore the transmission range is limited and only the nodes
within a certain range can transmit messages to or receive
messages from each other. If two nodes are far apart, packets
need to be relayed by intermediate nodes and traverse several
hops before reaching the destination.

The time-division multiple-access (TDMA) protocol has
been adopted in PRNs for nodes to communicate with each
other in a single shared radio channel. Since all nodes share
one radio channel, conflicts may occur with uncontrolled trans-
missions, resulting in damaged packets at the destination [7].
These damaged packets increase network delays because they
must be retransmitted. Hence effective broadcast scheduling is
necessary to avoid any conflict and to use the limited channel
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bandwidth efficiently. In a TDMA network, time is divided into
frames and each TDMA frame is a collection of time slots. A
time slot has a unit time length required for a single packet to be
communicated between adjacent nodes. When nodes transmit
simultaneously, conflicts will occur if the nodes are in a close
range. Therefore, adjacent nodes must be scheduled to transmit
in different time slots, while nodes some distance away may be
arranged to transmit in the same time slot without causing con-
flict [4]. The goal of the broadcast scheduling problem (BSP)
is to find an optimal TDMA frame structure that fulfills the
following two objectives. The first is to schedule transmissions
of all nodes in a minimal TDMA frame length without any
conflict. The second is to maximize channel utilization or total
conflict-free transmissions.

The BSP has been proven to be an NP-complete combinato-
rial optimization problem [2], [4] and has been studied in the
literature [3]–[8]. Most of the earlier algorithms for the BSP as-
sume that the frame length is fixed and is known a priori [2],
[3]. Recent algorithms [4]–[8] aim at finding both the minimal
frame length and the maximum conflict-free transmission, i.e.,
now there are two objectives in the BSP. Usually, two stages
or phases are adopted to tackle the two objectives in a sepa-
rate fashion. The minimal frame length is achieved in the first
stage and conflict-free node transmissions are maximized in the
second stage [6]–[8].

Specifically, Ephremides and Truong [2] proposed a dis-
tributed greedy algorithm to find a TDMA structure with
maximal transmission. They proved that searching for the
optimal scheduling of broadcasts in a radio network is NP-com-
plete. Funabiki and Takefuji [3] proposed a parallel algorithm
based on an artificial neural network to solve the -slot
problem where the number of time slots is predefined. They
used hill-climbing to help the system escape from local minima.
Wang and Ansari [4] proposed a mean field annealing (MFA)
algorithm to find a TDMA cycle with minimum delay time. In
order to find the minimal frame length, they first used MFA to
find assignments for all nodes with a lower bound of the frame
length. For the unassigned nodes left, they then used another
heuristic algorithm, which adds one time slot at each iteration
to the node with the highest degree. The heuristic algorithm
was run repeatedly until all the nodes left were assigned.
After the number of time slots was found, additional feasible
assignments to the nodes were attempted. They also proved
NP-completeness of the BSP by transforming the BSP to the
maximum independent set problem.

Chakraborty and Hirano [5] used genetic algorithms with a
modified crossover operator to handle large networks with com-
plex connectivity. Funabiki and Kitamichi [6] proposed a bi-
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nary neural network with a gradual expansion scheme, called
a gradual neural network (GNN), to find the minimum frame
length and the maximum transmissions through a two-phase
process. In phase I, they found a valid TDMA cycle to satisfy
the two constraints with the minimum number of time slots.
The number of time slots in a TDMA cycle was gradually in-
creased at every iterations from an initial value during the it-
erative computation of the neural network, until every node can
transmit at least once in the cycle without conflicts, where is a
predefined parameter. In phase II, additional conflict-free trans-
missions for the TDMA cycle of phase I were found in order to
maximize the total number of transmissions. They demonstrated
the performance of their method through the three benchmark
instances used in [4] and randomly generated geometric graph
instances.

Yeo et al. [7] proposed a two-phase algorithm based on se-
quential vertex coloring. They showed that their method can
find better solutions compared to the method in [4]. Salcedo-
Sanz et al. [8] proposed a hybrid algorithm which combines a
Hopfield neural network for constrain satisfaction and a genetic
algorithm for achieving maximal throughput. They partitioned
the BSP into two subproblems, i.e., the problem of maximizing
the throughput of the system (P1) and the problem to find a fea-
sible frame with one and only one transmission per radio sta-
tion (P2). Accordingly they used a hybrid two-stage algorithm
in solving these two subproblems, i.e., the Hopfield neural net-
work for P2 and a combination of genetic algorithms and the
Hopfield neural network for P1. They compared their results
with MFA in [4] in the three benchmark problems and showed
that the hybrid algorithm outperformed MFA.

In this paper, we first introduce a novel neural network model
with complex neurodynamics, i.e., the noisy chaotic neural net-
work (NCNN). We then apply the NCNN to solve the BSP in
two phases. In the first phase, a gradual noisy chaotic neural net-
work (G-NCNN), which combines the NCNN and the gradual
expansion scheme, is proposed to obtain the minimal TDMA
frame length. In the second phase, the NCNN is used to ob-
tain the maximal number of node transmissions. Numerical re-
sults show that our NCNN outperforms the existing algorithms
in both the average delay time and the minimal TDMA cycle
length. The organization of this paper is as follows. The next
section reviews the BSP in packet radio networks, and we then
present a formulation of the BSP. In Section III, we first describe
the NCNN model. In Section IV, we apply the G-NCNN to the
BSP. The performance is evaluated in Section V. Section VI
concludes this paper.

II. THE BROADCAST SCHEDULING PROBLEM

In this section, we first briefly describe the BSP, as in [3]–[8],
and we then present a formulation of the BSP based on the de-
scription. A PRN can be represented by a graph ,
where vertices in are network nodes, being
the total number of nodes in the PRN, and represents the set of
transmission links. Two nodes and are connected
by an undirected edge if and only if they can receive
each other’s transmission [7]. In such a case, the two nodes
and are one hop away. If , but there is an intermediate
node such that and , then nodes and are
two hops away. A primary conflict occurs when two nodes that

Fig. 1. Situations in which conflicts occur in a packet radio network. (a) Pri-
mary conflict. Node i cannot have transmission and reception simultaneously.
(b) Secondary conflict. Node k is not allowed to receive two or more transmis-
sions simultaneously.

are one hop away transmit in the same time slot, as shown in
Fig. 1(a). A secondary conflict occurs if two nodes are two hops
away and transmit in the same time slot, as shown in Fig. 1(b).
We summarize the constraints in the BSP in the following two
categories.

1) No-transmission constraint [5]: Each node should be
scheduled to transmit at least once in a TDMA cycle.

2) No-conflict constraint: It excludes the primary conflict (a
node cannot have transmission and reception simultane-
ously) and the secondary conflict (a node is not allowed
to receive more than one transmission simultaneously).

From the above constraints, we can see that two nodes can
transmit in the same time slot without conflicts if and only if
they are more than two hops away from each other.

The topology of a TDMA network can be represented by an
symmetric binary matrix ,

called the connectivity matrix

if there is a link between node
and ,
otherwise.

(1)

An matrix called the compatibility matrix
[6] is defined as follows:

if node and are within
two-hop distance
otherwise.

(2)

The final optimal solution obtained is a transmission schedule
consisting of time slots. We use an binary matrix

to express a transmission schedule [4], where

if time slot in a frame is
assigned to node
otherwise.

(3)

Channel utilization for node is defined as [4]

the number of slots assigned to node
TDMA cycle length

The total channel utilization for the entire network is given
by [4]

(4)
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The goal of the BSP is to find a transmission schedule with
the shortest TDMA frame length (i.e., smallest ) which satis-
fies the above constraints, and at the same time, the total trans-
missions are maximized. Based on the above description of the
BSP, we formulate the BSP as follows:

minimize and maximize

Subject to for all (5)

(6)

The no-transmission constraint is formulated in (5), which
means each node in the network must transmit at least once in a
frame. The no-conflict constraint in (6) indicates that every pair
of nodes within one hop or two hops away cannot be scheduled
in the same time slot.

A trivial solution satisfying all the above two constraints is an
-slot TDMA cycle where every node transmits in a different

time slot. But obviously this solution is not optimal. The BSP
is an NP-complete combinatorial optimization problem, and to
find a global optimum is not easy. In the next section, we will
introduce a novel noisy chaotic neural network and then apply
this model to solve the BSP in the subsequent sections.

III. THE NOISY CHAOTIC NEURAL NETWORK

A. Model Definition

There have been extensive research interests in theory and
applications of Hopfield-based type neural networks [24]–[27].
Since the original Hopfield neural network (HNN) [9], [10]
can be easily trapped in local minima, stochastic simulated
annealing (SSA) [11] has been combined with the HNN [12].
Besides, chaotic neural networks [13]–[18] have also attracted
much attention because chaotic neural networks have a richer
spectrum of dynamic behaviors, such as stable fixed points, pe-
riodic oscillations, and chaos, in comparison with static neural
network models. Nozawa demonstrated the search ability of
chaotic neural networks [13], [14]. Chen and Aihara [15], [16]
proposed chaotic simulated annealing (CSA) by starting with a
sufficiently large negative self-coupling in the neurons and then
gradually decreasing the self-coupling to stabilize the network.
They called this model the transiently chaotic neural network
(TCNN). Because the TCNN restricts the random search to a
subspace of the chaotic attracting set, which is much smaller
than the entire state space, it can search more efficiently [17].

SSA is known to relax to a global minimum with proba-
bility one if the annealing takes place sufficiently slowly, i.e.,
at least inversely proportional to the logarithm of time [19]. In
a practical term, this means that SSA is capable of producing
good (optimal or near optimal) solutions for many applications
if the annealing parameter (temperature) is reduced exponen-
tially with a reasonably small exponent. However, unlike SSA,
CSA has completely deterministic dynamics and is not guar-
anteed to settle down to at a global minimum no matter how

slowly the annealing parameter (the self-coupling) is reduced
[18]. Practically speaking, this implies that CSA sometimes may
not be able to provide a good solution at the conclusion of an-
nealing even after a long time of searching.

By adding decaying stochastic noise into the TCNN, Wang
and Tian [20]–[22] proposed a new approach to simulated an-
nealing, i.e., stochastic chaotic simulated annealing (SCSA),
using a noisy chaotic neural network (NCNN). Compared with
CSA, SCSA performs stochastic searching both before and after
chaos disappears and is more likely to find optimal or subop-
timal solutions. This novel method has been applied success-
fully to solving several challenging optimization problems, in-
cluding the traveling salesman problem (TSP) and the channel
assignment problem (CAP) [20]–[22]. In [22], the NCNN per-
formed as well as the TCNN in small-size TSPs, such as ten-city
and 21-city TSPs. But when used on larger size TSPs, such as
52-city and 70-city TSPs, the NCNN achieved a better perfor-
mance compared to the TCNN. In the CAP, the NCNN obtained
smaller overall interference (by 2% to 7.3%) compared to the
TCNN in all benchmark instances.

The NCNN model is described as follows [20]:

(7)

(8)

(9)

(10)

where the notations are:

output of neuron ;

input of neuron ;

connection weight from neuron to neuron , with
and

(11)

input bias of neuron ;

damping factor of nerve membrane ;

positive scaling parameter for inputs;

damping factor for neuronal self-coupling ;

damping factor for stochastic noise ;

self-feedback connection weight or refractory strength
;

positive parameter;

steepness parameter of the output function ;

energy function;
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random noise injected into the neurons, in with
a uniform distribution;

amplitude of noise .

This NCNN model is a general form of chaotic neural net-
works with transient chaos and decaying noise. In the absence of
noise, i.e., , for all , the NCNN as proposed in (7)–(10)
reduces to the TCNN in [16]. In order to reveal the search ability
of the NCNN, we will examine the nonlinear dynamics of the
single neuron model in the next section and discuss the selection
of model parameters in the model.

B. Noisy Chaotic Dynamics of the Single Neuron Model

The single neuron model for the NCNN is obtained from
(7)–(10) by letting the number of neurons be one. The single
neuron model for the TCNN can be obtained with the noise term

set to zero in (13)

(12)

(13)

(14)

(15)

where is the input bias of this neuron. We can transform (12)
and (13) to a one-dimensional map from to 1 by
substituting (12) into (13)

(16)

There is a set of parameters in this model, i.e., , , , , ,
, , . It is obvious that different values of these param-

eters will produce different neurodynamics. In order to inves-
tigate the dynamics of the NCNN model, we will vary the pa-
rameters above and plot the neuron dynamics and choose the set
of parameter values which can produce richer and more flexible
dynamics. Since , , , and were already discussed in detail
in [16], we will not discuss these parameters but simply adopt
these parameters

(17)

Since is the damping factor of noise which has a similar ef-
fect as the chaos damping factor , we choose .
We will then vary only the parameters left, i.e., the nerve mem-
brane damping factor , the initial negative self-interaction ,
and the initial noise amplitude to investigate the dynamics
while keeping the other parameters fixed.

Fig. 2 shows the dynamics of the single neuron for different
parameter . The axis of each subfigure is time step , and the

axis is the output of the neuron . We see from Fig. 2 that
the larger the value of , the more bifurcations they are. Since
chaos is important for searching and is between zero and one,
we choose , as shown in Fig. 2(d).

Fig. 3 shows that a small value of , e.g., 0.01, cannot
produce chaos. Larger values of lead to more bifurcations,
as shown in Fig. 3(c) and (d). But larger also leads to more

Fig. 2. Neurodynamics in the single neuron model with different parameter k
and with � = 0:015, � = 0:001, � = 0:0001, " = 1=250, I = 0:65,
z(0) = 0:08, and n(0) = 0:001. (a) k = 0:1; (b) k = 0:5; (c) k = 0:7; and
(d) k = 0:9.
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Fig. 3. Neurodynamics in the single neuron model with different parameter
z(0) and with k = 0:9, � = 0:015, � = 0:001, � = 0:0001, " = 1=250,
I = 0:65, and n(0) = 0:001. (a) z(0) = 0:01; (b) z(0) = 0:05; (c) z(0) =
0:08; and (d) z(0) = 0:02.

iteration steps until the chaos disappears, and a solution is found
which inevitably results in longer computational time. Hence we
choose a tradeoff between efficiency and solution quality, i.e.,
we use the value of in this paper.

Fig. 4 reveals that too much additive noise destroys the bifur-
cations [Fig. 4(d)]. On the other hand, if the magnitude of the
additive noise is too small, it does not take effect on the sto-
chastic search. Thus in this paper, we choose the initial noise
amplitude as .

Based on the above discussions on the selection of model pa-
rameters for the NCNN, we finally choose the set of parameters

(18)

The difference between the TCNN and the NCNN is the sto-
chastic nature of the NCNN which the TCNN lacks. Chaos
disappears after around 950 iterations through the reverse pe-
riod-doubling bifurcations in the TCNN, whereas in the NCNN
shown in Fig. 4(c), after the chaos disappears, the additive noise
still remains and decays with time. With both stochastic na-
ture for global searching and chaotic characteristic for efficient
searching, the NCNN gradually approaches a dynamic structure
similar to that of the Hopfield neural network and converges to
a stable fixed point.

IV. NOISY CHAOTIC NEURAL NETWORK FOR THE BSP

A two-phase optimization is adopted in this paper like
previous work [6]–[8]. In the first phase, in order to obtain a
minimal TDMA length , a gradual expansion scheme (GES)
[6] is combined with our NCNN, i.e., a gradual noisy chaotic
neural network (G-NCNN) is adopted in this phase. In the
second phase, we use the NCNN to obtain a maximal number
of conflict-free transmissions based on the results obtained in
the first phase.

A. Minimizing the TDMA Frame Length Using a G-NCNN

Consider the first objective of the BSP. In order to obtain the
minimal number of time slots , we start to search for solu-
tions with a small and increase until a feasible solution
is found. The G-NCNN consists of neurons. is ini-
tially set as its lower bound value . The GES stops when the
G-NCNN finds a feasible assignment and the current number
of time slots together with its transmission assignments are the
optimal results for phase I of the BSP.

The lower bound can be computed using the following
equation [4]:

deg (19)

where deg means the degree of node in the PRN and the de-
gree of a node is defined as the number of edges connected to
this node

deg (20)
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Fig. 4. Neurodynamics in the single neuron model with different parameter
n(0) and with k = 0:9, � = 0:015, � = 0:001, � = 0:0001, " = 1=250,
I = 0:65, and z(0) = 0:08. (a) n(0) = 0:0001; (b) n(0) = 0:0005;
(c)n(0) = 0:001; and (d) n(0) = 0:005.

Note that obtained from (19) is not a tight bound. A
tighter bound [8] can be easily obtained using graph theory
[28]. First the original graph is transformed into

, where in stands for one-hop-away edges
and in stands for one-hop-away and two-hop-away
edges. The tight bound is

(21)

where is the maximal cardinality of a clique in [8]. In
this paper, we use the tight bound as in (21).

In this paper, different from the GNN in [6], where the neu-
rons are expanded gradually at every iterations during the it-
erative computation of the neural network, we implement the
GES based on a convergence index of the network energy,
which we defined as

(22)

where is the value of energy function at time step . If
index is less than a very small value, e.g.,
in our simulation, the neural network is considered as having
fully converged. If the network has converged but no feasible
solutions are found using the current number of time slots, the
number of time slots is increased by one, i.e., ,
and the G-NCNN restarts to search for optimal solutions with
the updated number of neurons.

A partial scheduling [6] is implemented which aims at
reducing the computational time. Since any nodes in one-hop
away should be assigned with a different time slot, we find a
group of nodes , , consisting
of the node with the maximum degree and its one-hop-away
nodes. Each node in is assigned to a different time slot
before the G-NCNN begins to compute. After the partial
scheduling, the outputs of the corresponding neurons

are fixed and further
computations on these neurons are skipped.

The energy function for phase I is given as follows [6]:

(23)
where and are weighting coefficients. The term rep-
resents the constraint that each of the nodes in the PRN must
transmit exactly once during each TDMA cycle. The term
indicates the constraint that any pair of nodes that is one-hop
or two-hop away must not transmit simultaneously during each
TDMA cycle.

From (8), (11), and (23), we obtain the dynamics of the
G-NCNN as follows:

(24)
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B. Maximizing the Node Transmissions Using the NCNN

After phase I, the minimal TDMA frame length is found
and each node is assigned with one and exactly one time slot.
In phase II, we aim at maximizing the channel utilization by
adding as many conflict-free transmissions as possible to the
TDMA frame. Because in phase I one node is assigned with
exactly one slot in order to find a minimal frame length, there
are many nodes that can use other time slots without violating
the no-conflict constraint. Thus, additional transmissions may
be found on some nodes but frame length and the assigned
transmissions in phase I are fixed [6]. We use the energy function
as follows [6]:

(25)
where and are weighting coefficients. represents
the constraint term that any pair of nodes that is one-hop or
two-hops away must not transmit simultaneously during each
TDMA cycle. is the optimization term which maximizes
the total number of firing neurons.

From (8), (11), and (25), we obtain the dynamics of the
NCNN for phase II of the BSP as follows:

(26)

The neuron output is continuous between zero and one, we
convert the continuous output of neuron to discrete neuron
output as follows [15]:

if
otherwise

where the output of neuron is the binary matrix men-
tioned in Section II.

The NCNN is updated cyclically and asynchronously. The
new state information of a neuron is immediately available for
the other neurons in the next iteration. The iteration is termi-
nated once a feasible transmission schedule is obtained, i.e., the
transmissions of all nodes are conflict-free.

We noted that previous methods, such as the MFA [4], the
HNN-GA [8], and the GNN [6], had no discussions on the issue
of time complexity. And the sequential vertex coloring algo-
rithm (SVC) [7] is a polynomial time algorithm that has
computational complexity for the entire search. Reference [29]
showed that the worst time complexity in one iteration step is

. In phase I, the G-NCNN has the worst time com-
plexity of for one iteration step. In phase II, the com-
plexity is down to . Hence, our algorithm has the worst
time complexity of in one iteration step. However, it
is difficult to determine the exact number of iterations required
for different problem instances with various problem size.

V. SIMULATION RESULTS

A. Parameter Selection

An issue related to the efficiency of the NCNN model in
solving combinatorial optimization problems is how to select

appropriate weighting coefficients in the energy function al-
though there are quite a few parameters to be selected in the
NCNN (including model parameters and weighting coeffi-
cients). Fortunately these parameters are similar to those used
in other optimization problems [20]–[22]. The set of model
parameters in (23)–(26) was discussed in Section III-B and
listed in (18). The selection of weighting coefficients in the
energy function is based on the rule that all terms in the energy
function should be comparable in magnitude, so that none of
them dominates. Thus we choose the coefficients of the two
energy functions as follows:

(27)

Note that the parameters are chosen experimentally, and
tuning of these parameters may be necessary when solving
different optimization problems or different instances of the
same optimization problem, but from our experience, the tuning
is only on a small scale. In this paper, we use the parameters
for the benchmark examples as listed in Table VIII.

B. Evaluation Indexes

We use three evaluation indexes to compare with different al-
gorithms. One is the TDMA frame length . The second index
is the channel utilization factor defined in (4). The third is the
average time delay for each node to broadcast packets [6]

(28)

Another definition of the average time delay can be found
in [4]. To derive the definition of the average time delay, the
following assumptions were made [4].

1) Packets have a fixed length, and the length of a time slot is
equal to the time required to transmit a packet.

2) The interarrival time for each node is statistically inde-
pendent from those of the other nodes, and packets arrive
according to a Poisson process with a rate of (packets/
slot). The total traffic in node consists of its own traffic
and the incoming traffic from the other nodes. Packets are
stored in buffers in each node and the buffer size is infinite.

3) The probability distribution of the service time of node is
deterministic. Let the service rate of node be (packets/
slot).

4) Packets can be transmitted only at the beginning of each
time slot.

Under the above assumptions, the PRN can be modeled as
1 queues. According to Pollaczek–Khinchin formula

[23], the average time delay for each node is given as
follows:

(29)

where (packets/slot) is the service rate for
node . The total time delay is given by [4]

(30)
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TABLE I
SPECIFICATIONS OF THE THREE BENCHMARK EXAMPLES GIVEN BY

[4] (BM #1, BM #2, AND BM #3) AND THE GEOMETRIC INSTANCES

RANDOMLY GENERATED AS IN [6] (CASES 1–20). THE LOWER BOUNDS

FOR THE NUMBER OF TIME SLOTS M FOR CASES 1–20 ARE

DISPLAYED AS AVERAGE/MAXIMUM/MINIMUM VALUES

TABLE II
COMPARISONS OF AVERAGE DELAY TIME � GIVEN BY (26) AND NUMBER OF

TIME SLOTS M OBTAINED BY THE G-NCNN AND OTHER ALGORITHMS FOR

THE THREE BENCHMARK PROBLEMS GIVEN BY [4]

In this paper, we will use both definitions of the average time
delay in (28) and (30) in order to compare with other methods.

C. Benchmark Problems

In order to evaluate the performance of our NCNN-based al-
gorithm, we first compare it with other methods on the three
benchmark problems in [14], which have been solved by all the
methods mentioned, i.e., MFA [4], the GNN [6], the HNN-GA
technique [8], and the SVC [7]. We then compare the perfor-
mance between the G-NCNN and the GNN [6] on a total of
600 randomly generated geometric graph instances. We use the
method in [6] to generate the random instances.

1) Set the number of nodes for the instance to be gen-
erated and the edge generation parameter to be used
below. Following [6], we choose in cases 1–5,

in cases 6–10, in cases 11–15, and
in cases 16–20.

TABLE III
PAIRED T-TEST OF AVERAGE TIME DELAY � (SECOND)

BETWEEN THE HNN-GA AND THE G-NCNN

Fig. 5. Noisy chaotic dynamics of the neural network energy for benchmark
BM #2.

2) Generate two-dimensional coordinates randomly

Random Random for
(31)

where and are the and coordinates of node , re-
spectively, and Random generates a random number
uniformly distributed between and .

3) Assign an edge for a pair of nodes whose distance is less
than

if then

else for and (32)

Each of the 20 geometric graphs is randomly generated 30
times as shown in Table I. As we use the same methods as pro-
posed in [6], our randomly generated graphs are statistically
identical to those in [6].
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Fig. 6. Comparison of the average time delay as a function of the total arrival
rate for the 15-node-29-edge benchmark [according to the Pollaczek–Khinchin
formula given by (28)] among different approaches.

Fig. 7. Same as Fig. 6, for the 30-node-70-edge benchmark.

D. Result Evaluations and Discussions

Three benchmark problems from [4] have been chosen
to compare with other algorithms in [4] and [6]–[8]. The
three examples are instances with 15-node-29-edge (BM #1),
30-node-70-edge (BM #2), and 40-node-66-edge (BM #3),
respectively.

The dynamics of the G-NCNN energy in phase I of BM #2 are
plotted in Fig. 5. From Fig. 5, we can see clearly that the energy
does not decrease smoothly but fluctuates due to the noisy and
chaotic nature of the G-NCNN model. The energy gradually
settles down to a stable value. The gradual expansion scheme
adds the number of time slots by one when there are no feasible
solutions with the current number of time slots and the G-NCNN
restarts the search again. Such a re-searching procedure repeats
until a feasible assignment is found and the G-NCNN converges.

We labeled our two-phase methods which consist of the
G-NCNN in phase I and the NCNN in phase II as G-NCNN
for short while comparing with other methods. The average
time delay for the three benchmark problems is computed

Fig. 8. Same as Fig. 6, for the 40-node-66-edge benchmark.

Fig. 9. Comparisons of channel utilization for the three benchmark problems.
The numbers 1, 2, and 3 in the horizontal axis stand for benchmark problems
BM #1, BM #1, and BM #3 in Table I, respectively.

TABLE IV
RESULTS OF THE TCNN AND THE G-NCNN IN THE 100-NODE 522-EDGE

BENCHMARK INSTANCE USING VARIOUS NOISE LEVELS IN 20 DIFFERENT

RUNS, WHERE SD STANDS FOR STANDARD DEVIATION

based on the final TDMA schedules. Because no schedules
have been published on these three benchmark problems in
[6], we only compared our G-NCNN with MFA, HNN-GA,
and SVC. Figs. 6–8 show that the time delays obtained by the
G-NCNN are much smaller compared to those obtained by the
MFA algorithm in all three instances. In the 15-node instance,
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TABLE V
SAME AS TABLE IV FOR THE 250-NODE 1398-EDGE BENCHMARK INSTANCE

TABLE VI
SAME AS TABLE IV FOR THE 750-NODE 4371-EDGE BENCHMARK INSTANCE

the MFA, SVC, and HNN-GA obtained the same time delay,
but the time delay obtained by our G-NCNN is less than their
results, as we can see from Fig. 6. Because BM #1 is a rather
small instance with only 15 nodes, the improvement is not much
for this case. With increasing problem sizes, improvements
made by the NCNN become more evident in BM #2 (Fig. 7)
and BM #3 (Fig. 8). Fig. 9 shows that the G-NCNN can find
solutions with higher channel utilization compared to MFA,
HNN-GA, and SVC. The computational results for the three
benchmark problems are also summarized in Table II. It shows
that our G-NCNN can find shorter average time delay as given
by (28) in all three benchmark problems compared to the other
methods.

In order to show the difference between the HNN-GA and the
NCNN, a paired -test is performed between the two methods,
as shown in Table III. We compared the two methods in 12
cases with node size from 15 to 250, where BM #1 to BM
#3 are benchmark examples and cases 4–12 are randomly gen-
erated instance with edge generation parameter .
The results show that the P-value is 0.0001 for one-tail test
and 0.0003 for two-tail test. We found that the G-NCNN (mean

, standard deviation ) reported having signifi-
cantly better performance than did the HNN-GA (mean ,
standard deviation ) did, with T-value and
P-value 0.05. From Figs. 6–8 and Tables II and III, it can be
concluded that the G-NCNN can always find the shortest con-
flict-free frame schedule while providing the maximum channel
utilization compared to existing algorithms.

In order to show the effects of noise in the computation of
the G-NCNN model, we compared the NCNN model with and
without noise in three random generated instance with node size
100, 250, and 750. Tables IV–VI are the results of time delay

for the three instances. The comparisons are performed be-
tween the NCNN with different noise amplitude
and the TCNN with . We ran the simulations of each
instance 20 different times using the model parameters and co-
efficient weights in (17), (18), and (27). “INF” in Tables V and

TABLE VII
COMPARISONS OF AVERAGE DELAY TIME � GIVEN BY (26) AND TIME SLOTM
OBTAINED BY THE G-NCNN AND THE GNN ON THE RANDOMLY GENERATED

INSTANCES. THE RESULTS OF THE G-NCNN ARE DISPLAYED AS AVERAGE �

STANDARD DEVIATION MAXIMUM MINIMUM. THE RESULTS OF THE GNN ARE

DISPLAYED AS AVERAGE/MAXIMUM/MINIMUM

VI means that the NCNN algorithms can find feasible solution
in the first phase but failed to converge to a feasible one within
predefined steps in the second phase, due to the large amplitude
of additive noise. “N/A” in Table VI means that the algorithm
failed to find a solution even in the first phase of the BSP. From
the three tables we can draw the conclusion that both the con-
vergence and the time delay obtained by the NCNN are better
than the TCNN in all three instances. The TCNN can find solu-
tions in 100- and 250-node instances, but when applied to large
instances like the 750-node instance, the TCNN failed in all 20
runs. Among different noise levels, it shows that noise level with
amplitude has the best performance among all
noise levels tested.

Table VII shows the average, maximum, and minimum values
of two indexes and of solutions for 600 instances solved
by the G-NCNN and the GNN for the 20 randomly generated
cases (30 instances for each case). From the results, we can see
that the G-NCNN always finds shorter average time delay than
the GNN does in all cases. We use the ANOVA software1 to ob-
tain the standard deviations and the error bars for the G-NCNN
(Fig. 10). However, the standard deviations for the GNN are not
available; thus we plotted the best results for the GNN in each
case for comparisons. From Fig. 10, we can see that the time
delay obtained by our G-NCNN is smaller than the best results
from the GNN in most cases.

VI. CONCLUSION

In this paper, we present a noisy chaotic neural network
model for solving the broadcast scheduling problem in packet

1http://www.physics.csbsju.edu/stats/anova.html



WANG AND SHI: GRADUAL NOISY CHAOTIC NEURAL NETWORK FOR SOLVING THE BROADCAST SCHEDULING PROBLEM 999

TABLE VIII
PARAMETERS OF THE G-NCNN MODEL FOR THE BENCHMARK EXAMPLES

WITH W =W =W = 1:0, k = 0:9, � = 1=250, I = 0:65, � = 0:015

Fig. 10. Error bars for the average delay time � given by (26) obtained using
the G-NCNN for 20 randomly generated cases of the BSP. Since the standard
deviations for the GNN are not available, only the best (minimum) results for
the GNN are plotted here (x-marks).

radio networks. A two-phase optimization is adopted to solve
the two objectives of the BSP with two different energy func-
tions. A G-NCNN is proposed to find an optimal transmission
schedule with the minimal TDMA frame length in the first
phase. In the second phase, additional node transmissions are
found using the NCNN based on the results from the first phase.
We evaluate our G-NCNN algorithm in three benchmark exam-
ples and 600 randomly generated geometric graph instances.

We compare our results with existing methods including mean
filed annealing, HNN-GA, the sequential vertex coloring al-
gorithm, and the gradually neural network. The results of the
benchmark problems show that the G-NCNN always finds the
best solutions with minimal average time delays and maximal
channel utilization among the existing methods. We shows that
our G-NCNN has significant improvements over the HNN-GA
through a paired -test. We also compared the NCNN with the
TCNN in three instances and showed that the NCNN has better
performance than the TCNN. These results, together with the
results for other optimization problems [20]–[22], support
the conclusion that the G-NCNN is an efficient approach for
solving large-scale combinatorial optimization problems.
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