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Abstract. Searching for good discriminative gene sets (DGSs) in mi-
croarray data is important for many problems, such as precise cancer
diagnosis, correct treatment selection, and drug discovery. Small and
good DGSs can help researchers eliminate “irrelavent” genes and focus
on “critical” genes that may be used as biomarkers or that are related
to the development of cancers. In addition, small DGSs will not impose
demanding requirements to classifiers, e.g., high-speed CPUs, large mem-
orys, etc. Furthermore, if the DGSs are used as diagnostic measures in
the future, small DGSs will simplify the test and therefore reduce the
cost. Here, we propose an algorithm of searching for DGSs, which we
call active mining discriminative gene sets (AM-DGS). The searching
scheme of the AM-DGS is as follows: the gene with a large t-statistic
is assigned as a seed, i.e., the first feature of the DGS. We classify the
samples in a data set using a support vector machine (SVM). Next, we
add the gene with the greatest power to correct the misclassified sam-
ples into the DGS, that is the gene with the largest t-statistic evaluated
with only the mis-classified samples is added. We keep on adding genes
into the DGS according to the SVM’s mis-classified data until no error
appears or overfitting occurs. We tested the proposed method with the
well-known leukemia data set. In this data set, our method obtained
two 2-gene DGSs that achieved 94.1% testing accuracy and a 4-gene
DGS that achieved 97.1% testing accuracy. This result showed that our
method obtained better accuracy with much smaller DGSs compared to
3 widely used methods, i.e., T -statistics, F -statistics, and SVM-based
recursive feature elimination (SVM-RFE).

1 Introduction

Accurate classification of homogenous cancers is a key problem for disease di-
agnosis, treatment selection, pathology research, and drug discovery. In recent
years, gene expression profiles have been extensively applied to classifying can-
cers at the molecular level [5,13,14]. A typical gene expression data set can be
described as a high dimensional n × m matrix B. In B, each column stands
for a cancer sample (i.e., an observation) and each row stands for a gene. Here
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m usually ranges from several tens to over one hundred and n usually ranges
from several thousands to tens of thousands. Since n is much larger than m,
it is of great importance to select a group genes (rather than use all of them)
for classification because of the following two points. First, among all the genes,
only a part of them have discriminating power. Furthermore, some genes even
act as “noise” and undermine the classification accuracy. Second, some genes are
highly correlated and their expression profiles behave very similarly in classifi-
cation. Excluding some of such correlated genes will reduce redundancy in the
discriminative gene sets (DGS).

Since mid-1990s, a number of gene selection approaches [8,9,11,12,10,15] have
been proposed. Most of these methods can be regarded as filter schemes [20],
which first rank genes according to their discriminative ability and then select
a certain number (e.g., 20, 50, or 100) of top-ranked genes for classification.
Although these top-ranked genes can lead to highly accurate classification re-
sults, they may still contain great redundancy. Some other methods use wrapper
scheme [20]. In [1], a support vector machine based recursive feature elimination
method (SVM-RFE) is proposed, which eliminates unimportant genes (i.e., the
genes with little or no discriminating power) or redundant genes one by one from
the initial gene set that includes all the genes. Since the SVM-RFE usually has to
eliminate several hundreds or thousands genes to obtain a final DGS, it requires
a large amount of computing time. In [17], a method called Markov blanket was
used to reduce redundancy in DGSs. Since the Markov blanket mainly focus
on reducing redundancy, it does not guarantee that the resulting DGS has very
good discriminating power. In [7], Wang et al. proposed a method that uses un-
supervised clustering to identify the redundancy in DGSs and then reduced the
redundancy by “collapsing dense clusters”. They firstly rank all the genes and
then select some top-ranked genes. After that, they cluster these “pre-selected”
genes and pick out a representative gene for each cluster. The DGSs were formed
using these representative genes. Although this method is able to reduce the re-
dundancy of DGSs, the obtained DGSs are often not optimal because of the
following reasons. (a) The cooperation among clusters and their representatives
are not optimal; (b) A gene sometimes cannot represent the whole cluster, espe-
cially when the cluster contains more genes than other clusters. In [24], Liu et
al. used entropy to reduce the redundancy of DGSs. However, the computaion
of entropy needs to know or estimate the very complicated probability density
function of training samples, which prevents the entropy-based method becoming
popular for this application.

Here we propose a simple yet very effective and efficient method of searching
for DGSs that lead to high classification accuracy. Our method is a top-down
forward wrapper search scheme, which is much more computationally efficient
than the SVM-RFE scheme [1] and is able to greatly reduce the redundancy of
DGSs by considering the cooperation among genes.

The rest of this paper is organized as follows. In Section 2, we introduce
our SVM-based method of searching for DGSs, i.e., active mining discriminative
gene sets (AM-DGS), and its related techniques. In Section 3, we apply our
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SVM-based AM-DGS algorithm to the well-known benchmark gene expression
data sets, i.e, the leukemia data set [5]. In Section 4, we discuss our results and
conclude the paper.

2 Active Mining Discriminative Gene Sets

Recently, active learning has attracted great attention in the machine learning
field because of its self-learning ability [2,3,22,23]. An active learner, AL, has
three components {X, F, Q}. Here X is the input matrix. F is the mapping
function from input space to output space that describes the objective (or func-
tion) of the AL. Q is a query function that is used to determine the sequence of
unlabelled samples to be learned by the AL according to the current state of the
AL, i.e., the AL has the ability to choose the “new things” that will “benefit”
its learning. Compared to passive learners, which only contain X and F but
no Q, ALs are able to select data for themselves based on the learners’ present
performance and therefore has the potential to obtain better learning results.

For almost all the active learning approaches proposed to date, the function
Q is used to search for the unlabelled samples, i.e., observations, to be learned
by the AL. In the following parts of this section, we will propose a learning
scheme with a query function Q̃ that is used to search for features (i.e., genes
in this application) according to the current state of the learner (i.e., the SVM
classifier in this application) and its objective. Hence we call our algorithm ac-
tive mining as opposed to active learning. In addition, our proposed method
is a forward searching scheme that is more straight-forward and efficient than
backward searching schemes are.

2.1 T-Statistic

In the first step of our scheme, we rank all the features (genes) according to their
t-statistics (TSs). The TS of gene i is defined as follows [16].

TSi = | xc1 − xc2

spi

√
1/n1 + 1/n2

| (1)

where
xc1 =

∑

j∈C1

xij/n1 (2)

xc2 =
∑

k∈C2

xik/n2 (3)

s2
pi =

∑
j∈C1

(xij − xc1)2 +
∑

k∈C2
(xik − xc2)2

n1 + n2 − 2
(4)

There are 2 classes, i.e., C1 and C2, which include n1 and n2 samples, respec-
tively. xij and xik are the expression values of gene i in C1 and C2, respectively.
xc1 and xc2 are the mean expression values of C1 and C2. spi is the pooled
standard deviation of gene i.
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2.2 Seeds

After ranking all the genes with TSs, the gene with the largest TS is selected as
the first feature in the discriminative gene set (DGS). We call this first feature
the seed. The best seed that leads to the highest accuracy may not necessarily
be the No.1 gene in the TS ranking result (the gene with the greatest TS). It can
be the No.2 gene, the No.3 gene and so on. In our application, we use a number
of top genes as seeds to search for the best DGS with the highest classification
accuracy.

2.3 Support Vector Machines

We use support vector machines (SVMs) [18] [19] as our classifier, i.e., we input
our DGS into an SVM to carry out training and classification.

A standard SVM classifier aims to solve the following problem. Given l train-
ing vectors {xi ∈ Rn, i = 1, ..., l} that belong to two classes, with desired output
yi ∈ {−1, 1}, find a decision boundary:

wT φ(xi) + b = 0, (5)

where w is the weight vector and b is the bias. φ(xi) is the function that maps xi

to a potentially much higher dimensional feature space. This decision boundary
is determined by minimizing the cost function:

ψ =
1
2
||w||2 + C

l∑

i=1

ξi, (6)

subject to:
yi(wT φ(xi) + b) ≥ 1 − ξi, (7)

ξi ≥ 0. (8)

where {ξi, i = 1, 2, ..., l} are slack variables and C is a constant that deter-
mines the tradeoff between the training error and the generalization capability
of the SVM. This optimization problem has a quadratic programming (QP) dual
problem:

maximize: Q(α) =
l∑

i=1

αi − 1
2

l∑

i=1

l∑

j=1

αiαjyiyjφ(xi)T φ(xj), (9)

subject to:
l∑

i=1

αiyi = 0, (10)

C ≥ αi ≥ 0, (11)
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where {αi, i = 1, 2, ..., l} are Lagrange multipliers. For this problem, we use the
sequential minimum optimization [4] as the QP -solver.

2.4 Correction Score

We define a ranking scheme, which we call correction score (CS), to measure
a feature’s ability to separate the samples that are misclassified by the DGS
obtained in the previous round of training. (Here we define the process of picking
out a feature and adding it into a DGS as a round of training.) The CS of gene
i is defined as:

CSi = Sbi/Swi (12)

where
Sbi =

∑

j∈C1

(eij − xc1)2 +
∑

k∈C2

(eik − xc2)2 (13)

Swi =
∑

j∈C1

(eij − xc2)2 +
∑

k∈C2

(eik − xc1)2 (14)

where eij and eik are the expression values of misclassified samples in C1 and C2,
respectively. xc1 and xc2 are defined in Eq.2 and Eq.3. Sbi is the sum of squares of
the inter-class distances [21] (the distances between samples of different classes)
among the misclassified samples. Swi is the sum of squares of the intra-class
distances (the distances of samples within the same class) among the misclassified
samples.

2.5 Adding Features According to Misclassification

We input the feature with the largest CS into the SVM in the next round of
learning. Our method of searching for the discriminating gene sets is analogous
to an AL in the sense that our method has the ability to choose the feature (i.e.,
the gene) to be included in the next round of learning based on the present state
of the learner (i.e., the SVM).

2.6 SVM-Based AM-DGS

The whole process to obtain a DGS is summarized as follows.

Algorithm: SVM-based AM-DGS
Inputs:
Training samples: Xtr = [xtr1,xtr2, ...,xtrl]T , validation samples: Xv, testing

samples Xtest

Class labels for training, validation, and testing samples: Ytr = [ytr1, ytr2, ...,
ytrl]T , Yv, Ytest

The number of top-ranked genes to search for DGSs: M.
Initialize:
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Initialize DGS to an empty matrix: DGS=[ ].
Initialize the training error to 1: Etr = 1.
Initialize the validation error to 0: Ev = 0.
Initialize the repeat counter to 0: Rpt = 0.
Choose a seed:
Calculate the TS for each feature in Xtr.
for(m = 1;until m < M ; m + +)
{

Select a feature with the m-th largest TS as the seed (S).
S →DGS.
Repeat until: Etr = 0 or Ev < Evpre or Rpt > 2:
{

Etrpre = Etr ;
Evpre = Ev;
Train an SVM with DGS then obtain Etr.
Pick out the misclassified samples Xe = [xe1,xe2, ...,xet]T .
Validate the SVM using Xv and obtain Ev.
If Evpre = Ev, Rpt = Rpt + 1.
Calculate CS for each feature in Xe.
Pick out the feature with the largest CS and put it into the DGS.

}
}
Output
DGS

3 Experimental Results

We tested our method in the well-known leukemia data set [5]. The leukemia data
set [5] (http://www-genome.wi.mit.edu/cancer/) contains two types of leukemia
samples, i.e., acute myeloid leukemia (AML) and acute lymphoblastic leukemia
(ALL). Golub et al. divided the data into 38 samples for training and the
other 34 independent samples for testing. Among the 38 training samples, there
are 27 ALL samples and 11 AML samples. Among the 34 testing samples,
there are 20 ALL samples and 14 AML samples. The entire leukemia data
set contains the expression values of 7129 genes. We normalized this data set
by subtracting the mean and dividing the standard deviation across each
sample.

We processed the leukemia data set with our SVM-based AM-DGS algorithm
and showed the results in Table 1. Here we list the 8 DGSs whose seeds are the
top 8 genes according to their TSs. For each DGS, the first gene (i.e., the first
line in the DGS) is its seed. The second, third (and so on) genes are the genes
included in the DGS in the corresponding round, respectively.

From these results, we found that our SVM-based AM-DGS is very effective
and efficient in finding good DGSs. Let us use DGS 1 to illustrate this. Since
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Table 1. Training and testing accuracies for various DGSs obtained by our SVM-based
AM-DGS algorithm to the leukemia data set

Set No. Gene Sets Training Accuracy (%) Testing Accuracy (%)
1 U50136 rna1 at 92.11 79.41

X17042 at 100 82.35
2 X95735 at 97.37 94.12

M23197 at 100 94.12
3 M55150 at 97.37 82.35

M84526 at 92.11 82.35
M23197 at 97.37 91.18

4 M16038 at 92.11 79.41
U22376 cds2 s at 94.74 82.35

5 Y12670 at 94.74 64.71
U22376 cds2 s at 100 82.35

6 M23197 at 92.11 85.29
U22376 cds2 s at 97.37 88.24

M63138 at 97.37 94.12
7 D49950 at 97.37 94.12

U22376 cds2 s at 86.84 67.65
X04085 rna1 at 94.74 76.47
U50136 rna1 at 100 82.35

8 X17042 at 89.47 79.41
U22376 cds2 s at 89.47 85.29

M86406 at 94.74 64.71
X95735 at 100 97.06

DGS 1 contained only 2 genes, we plotted the gene expression values of the
two genes in Fig.1. In the first round of training, only the seed, i.e., gene
U50136 rna1 at, was input to the SVM. Because gene U50136 rna1 at has a
high TS, the SVM misclassified only three samples that were indicated with ar-
rows. In the second round training, the algorithm selected the gene that had the
best capability to separate the three misclassified samples, i.e., gene X17042 at.
We found in Fig.1(a) that gene X17042 at “dragged” the misclassified sam-
ples away from the classes which these 3 samples were mistakenly assigned to
in the previous round of training. Therefore, with the help of the second gene
X17042 at, DGS 1 increased its training accuracy from 92.11% to 100%: the 38
training samples were perfectly separated by DGS 1.

The best testing accuracy was obtained by DGS 8, which included 4 genes.
The SVM obtained 100% training accuracy and 97.1% testing accuracy (i.e.,
1 errors in the 34 testing samples) using DGS 8. In this data set, we used
the 8 genes with the largest TSs as the seeds (M=8 in our algorithm summa-
rized in the previous section). If more seeds were used, more DGSs could be
found.
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Fig. 1. Gene expression values for the two genes in DGS 1 in the leukemia data set.
(a) a plot includes only the training samples; (b) a plot includes all the training and
testing samples.

4 Discussion

The results of leukemia data set visually indicate the effectiveness of our SVM-
based AM-DGS algorithm. Except the seeds, all the genes in a DGS are se-
lected according to their capability to correct misclassified samples. Therefore,
the SVM-based AM-DGS can optimize the cooperation among genes and hence
leads to good accuracy and smaller DGSs. Compared with the filter approaches,
e.g., TS and FS, the SVM-based AM-DGS can greatly reduce the redundancy
in a DGS.
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In conclusion, the SVM-AMDGS proposed here is effective and computation-
ally efficient in searching for good DGSs, the simulation using the leukemia data
set shows that our algorithm leads to highly accurate classifications with the
smallest gene sets found in the literature.
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