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A Novel Approach Searching for Discriminative Gene Sets

Feng Chu and Lipo Wang

Abstract— We propose an algorithm of searching for good
discriminative gene sets (DGSs) in microarray cancer data,
which we call active mining discriminative gene sets (AM-DGS).
Tests in the leukemia data set and the prostate data set indicate
that our method is able to achieve better accuracy with much
smaller DGSs compared to 3 widely used methods, i.e., TS,
FS, and SVM-RFE.

I. INTRODUCTION

Accurate classification of homogenous cancers is a key
problem for disease prognosis, treatment selection, pathology
research, and drug discovery. In recent years, gene expression
profiles have been extensively applied to classifying cancers
at the molecular level [4], [5], [6]. A typical gene expression
data set can be described as a high dimensional n×m matrix
B. In B, each column stands for a cancer sample (i.e., an
observation) and each row stands for a gene. Here m usually
ranges from several tens to over one hundred and n usually
ranges from several thousands to tens of thousands. Since n
is much larger than m, it is of great importance to select a
group genes for classification because of the following two
points. First, among all the genes, only a part of them have
discriminating power. Furthermore, some genes even act as
“noise” and undermine the classification accuracy. Second,
some genes are highly correlated and their expression profiles
behave very similarly in classification. Excluding some of
such correlated genes will reduce redundancy in the discrim-
inative gene sets (DGS).

Since mid-1990s, a number of gene selection approaches
[8], [9] have been proposed. The majority of these methods
can be regarded as filter schemes [15], which rank genes
first according to their discriminative ability and then select
a certain number of, e.g., 20, 50, or 100, top-ranked genes for
classification. Although these top-ranked genes can lead to
highly accurate classification results, they may still contain
great redundancy. Some other methods use wrapper scheme
[15]. In [1], a support vector machine [12], [13] based recur-
sive feature elimination method (SVM-RFE) was proposed.
Although this method takes advantages of a classifier, i.e., the
SVM, it is a greedy backward search scheme that requires
a large amount of computing time. In [11], a method called
Markov blanket was used to reduce redundancy in DGSs.
In [7], Y. Wang et al. used clustering methods to identify
the redundancy in DGSs and then reduce the redundancy by
“collapsing dense clusters”.
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Here we propose a simple yet very effective and efficient
method of searching for DGSs that lead to high classification
accuracy. Our method is a top-down forward wrapper search
scheme, which is much computationally efficient than the
SVM-RFE scheme [1] and is able to greatly reduce the
redundancy of DGSs.

The rest of this paper is organized as follows. In Section
II, we introduce our SVM-based method for searching DGSs,
i.e., active mining discriminative gene sets (AM-DGS), and
its related techniques. In Section III, we apply our SVM-
based AM-DGS algorithm to a well-known benchmark gene
expression data set, i.e. the leukemia data set [4]. In Section
IV, we discuss our results and conclude the paper.

II. ACTIVE MINING DISCRIMINATIVE GENE SETS

Recently, active learning has attracted much attention
in machine learning [2]. An active learner, AL, has three
components {X,F,Q}. Here X is the input matrix. F is
the mapping function from input space to output space that
describes the objective (or function) of the AL. Q is a query
function that is used to determine the sequence of unlabelled
samples to be learned by the AL.

In almost all the active learning approaches proposed to
date, the function Q is used to search for the unlabelled
samples, i.e., observations, to be learned by the AL. In the
following parts of this section, we will propose a learning
scheme with a query function Q̃ that is used to search for
features (i.e., genes in this application). Hence we call our
algorithm active mining as opposed to active learning.

A. T-statistic

In the first step of our scheme, we rank all the features
(genes) according to their t-statistics (TSs). The TS of gene
i is defined as follows [10].

TSi = | xc1 − xc2

spi

√
1/n1 + 1/n2

| (1)

where

xc1 =
∑

j∈C1

xij/n1 (2)

xc2 =
∑

k∈C2

xik/n2 (3)

s2pi =

∑
j∈C1

(xij − xc1)2 +
∑

k∈C2
(xik − xc2)2

n1 + n2 − 2
(4)

There are 2 classes, i.e., C1 and C2, which include n1 and n2

samples, respectively. xij and xik are the expression values
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of gene i in C1 and C2, respectively. xc1 and xc2 are the
mean expression values of C1 and C2. spi is the pooled
standard deviation of gene i.

B. Seeds

After ranking all the genes with TSs, the gene with the
largest TS is selected as the first feature in the discriminative
gene set (DGS). We call this first feature a seed.

C. Support Vector Machines

We use support vector machines (SVMs) [12] [13] as our
classifier, i.e., we input our DGS into an SVM to carry out
training and classification. A standard SVM classifier aims to
solve the following problem. Given l training vectors {xi ∈
Rn, i = 1, ..., l} that belong to two classes, with desired
output yi ∈ {−1, 1}, find a decision boundary:

wT φ(xi) + b = 0, (5)

where w is the weight vector and b is the bias. φ(xi) is the
function that maps xi to a potentially much higher dimen-
sional feature space. This decision boundary is determined
by minimizing the cost function:

ψ =
1
2
||w||2 + C

l∑

i=1

ξi, (6)

subject to:

yi(wT φ(xi) + b) ≥ 1 − ξi, (7)

ξi ≥ 0. (8)

where {ξi, i = 1, 2, ..., l} are slack variables and C is a
constant that determines the tradeoff between the training
error and the generalization capability of the SVM. This
optimization problem has a quadratic programming (QP)
dual problem:

maximize: Q(α) =
l∑

i=1

αi−1
2

l∑

i=1

l∑

j=1

αiαjyiyjφ(xi)T φ(xj),

(9)
subject to:

l∑

i=1

αiyi = 0, (10)

C ≥ αi ≥ 0, (11)

where {αi, i = 1, 2, ..., l} are Lagrange multipliers. For this
problem, we use the sequential minimum optimization [3] as
the QP -solver.

D. Correction Score

We define a ranking scheme, which we call correction
score (CS), to measure a feature’s ability to separate the
samples that are misclassified by the DGS obtained in the
previous round of training. (Here we define a process of
picking out a feature and adding it into a DGS as a round
of training.) The CS of gene i is defined as:

CSi = Sbi/Swi (12)

where

Sbi =
∑

j∈C1

(eij − xc1)2 +
∑

k∈C2

(eik − xc2)2 (13)

Swi =
∑

j∈C1

(eij − xc2)2 +
∑

k∈C2

(eik − xc1)2 (14)

where eij and eik are the expression values of misclassified
samples in C1 and C2, respectively. xc1 and xc2 are defined
in Eq.2 and Eq.3. Sbi is the sum of squares of the inter-class
distances [16] (the distances between samples of different
classes) among the misclassified samples. Swi is the sum of
squares of the intra-class distances (the distances of samples
within the same class) among the misclassified samples.

E. SVM-based AM-DGS

Inputs:
Training samples: Xtr = [xtr1, xtr2, ..., xtrl]T , validation

samples: Xv , testing samples Xtest

Class labels for training, validation, and testing samples:
Ytr = [ytr1, ytr2, ..., ytrl]T , Yv , Ytest

The number of top-ranked genes to search for DGSs: M.
Initialize:
Initialize DGS to an empty matrix: DGS=[ ].
Initialize the training error to 1: Etr = 1.
Initialize the validation error to 0: Ev = 0.
Initialize the repeat counter to 0: Rpt = 0.
Choose a seed:
Calculate the TS for each feature in Xtr.
for(m = 1;until m < M ; m+ +)
{

Select a feature with the m-th largest TS as the seed
(S).

S →DGS.
Repeat until: Etr = 0 or Ev < Evpre or Rpt > 2:
{
Etrpre = Etr;
Evpre = Ev;
Train an SVM with DGS then obtain Etr.
Pick out the misclassified samples Xe =

[xe1, xe2, ..., xet]T .
Validate the SVM using Xv and obtain Ev .
If Evpre = Ev , Rpt = Rpt+ 1.
Calculate CS for each feature in Xe.
Pick out the feature with the largest CS and put it

into the DGS.
}

16511661



}
Output
DGS

III. EXPERIMENTAL RESULTS

We tested our method of searching for discriminating gene
sets in two well-known gene expression data sets, i.e., the
leukemia data set [4]and the prostate data set [14].

A. Leukemia Data Set

The leukemia data set [4] (http://www-
genome.wi.mit.edu/cancer/) contains two types of leukemia
samples, i.e., acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL). Golub et al. divided
the data into 38 samples for training and the other 34
independent samples for testing. We normalized this data set
by subtracting the mean and dividing the standard deviation
across each sample.

We processed the leukemia data set with our SVM-based
AM-DGS algorithm and showed the results in Table I. Here
we list the 8 DGSs whose seeds are the top 8 genes according
to their TSs. For each DGS, the first gene (i.e., the first line in
the DGS) is its seed. The second, third (and so on) genes are
the genes included in the DGS in the corresponding rounds,
respectively.

From these results, we found that our SVM-based AM-
DGS is very effective and efficient in finding good DGSs. Let
us use DGS 1 to illustrate this. Since DGS 1 contained only 2
genes, we plotted the gene expression values of the two genes
in DGS 1 in Fig.1. In the first round training, only the seed,
i.e., gene U50136 rna1 at, was input to the SVM. Because
gene U50136 rna1 at has a high TS, the SVM misclassified
only three samples that were indicated with arrows. In the
second round training, the algorithm selected the gene that
had the best capability to separate the three misclassified
samples, i.e., gene X17042 at. We found in Fig.1(a) that
gene X17042 at “dragged” the misclassified samples away
from the classes to which these 3 samples were mistakenly
assigned in the previous round of training. Therefore, with
the help of the second gene X17042 at, DGS 1 increased
its training accuracy from 92.11% to 100%: the 38 training
samples were perfectly separated by DGS 1.

The best testing accuracy was obtained by DGS 8, which
included 4 genes. The SVM obtained 100% training accuracy
and 97.1% testing accuracy (i.e., 1 errors in the 34 testing
samples) using DGS 8. In this data set, we used the 8 genes
with the largest TSs as the seeds (M=8 in our algorithm
summarized in the previous section). If more seeds were
used, more DGSs could be found.

B. Prostate Data Set

The prostate data set [14] (http://www-
genome.wi.mit.edu/MPR/prostate.) contains 50 nontumor
samples and 52 prostate tumor samples. In this data set,
there are expression values of 12600 genes. Considering
the huge amount of genes included in the data set, we
firstly ranked all the genes according to their TSs and then
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Fig. 1. Gene expression values for the two genes in DGS 1 in the leukemia
data set. (a) a plot includes only the training samples; (b) a plot includes
all the training and testing samples.

picked out the 1000 genes with the largest TSs for further
processing. We followed the exactly same procedures as
what we did in the colon data set to process this data set, i.e.,
we carried out 10-fold CV to the data using the SVM based
AM-DGS. Tables II, III, IV show the testing, validation,
and training results, respectively. The SVM-based AM-DGS
achieved 87.3% 10-fold CV accuracy (i.e., 13 errors in the
102 samples) using the DGSs with 3.8 genes on average. In
addition, we also compared out methods with the t-statistic,
f -statistic, and SVM-RFE based methods in Table VI.
From this comparsion, we found that the TS-based method
achieved 87.3% with at least 15 genes. It also achieved a
slightly better accuracy, i.e., 88.2% (12 errors in the 102
samples), with 200 genes. The FS-baesed method achieved
87.3% accuracy with at least 20 genes and 88.2% accuracy
with 200 and 500 genes, respectively. The best accuracy for
this data, i.e., 89.2% (11 errors in the 102 samples), was
achieved by the SVM-RFE-based method with 100 genes. It
also achieved 87.3% accuracy with 30 genes. Although the
SVM-based AM-DGS did not achieved the best accuracy
in this data set, it obtained the result very close to the best
one with much smaller DGSs.

IV. DISCUSSION

The results of leukemia data set visually indicate the effec-
tiveness of our SVM-based AM-DGS algorithm. Except the
seeds, all the genes in a DGS are selected according to their
capability for correcting misclassification. Therefore, the
SVM-based AM-DGS can optimize the cooperation among
genes and hence leads to good accuracy and smaller DGSs.
Compared with the filter approaches, e.g., TS and FS, the
SVM-based AM-DGS can greatly reduce the redundancy in
a DGS.

In conclusion, the SVM-AMDGS proposed here is ef-
fective and computationally efficient in searching for good
DGSs, simulations wih the leukemia, and the prostate data
sets show that our algorithm leads to highly accurate classi-
fications with the smallest gene sets found in the literature.
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Set No. Gene Sets Training Accuracy (%) Testing Accuracy (%)
1 U50136 rna1 at 92.11 79.41

X17042 at 100 82.35
2 X95735 at 97.37 94.12

M23197 at 100 94.12
3 M55150 at 97.37 82.35

M84526 at 92.11 82.35
M23197 at 97.37 91.18

4 M16038 at 92.11 79.41
U22376 cds2 s at 94.74 82.35

5 Y12670 at 94.74 64.71
U22376 cds2 s at 100 82.35

6 M23197 at 92.11 85.29
U22376 cds2 s at 97.37 88.24

M63138 at 97.37 94.12
7 D49950 at 97.37 94.12

U22376 cds2 s at 86.84 67.65
X04085 rna1 at 94.74 76.47
U50136 rna1 at 100 82.35

8 X17042 at 89.47 79.41
U22376 cds2 s at 89.47 85.29

M86406 at 94.74 64.71
X95735 at 100 97.06

TABLE I

TRAINING AND TESTING ACCURACIES FOR VARIOUS DGSS OBTAINED BY OUR SVM-BASED AM-DGS ALGORITHM TO THE LEUKEMIA DATA SET.

Fold No. 1 2 3 4 5 6 7 8 9 10
Fold Size 11 11 10 10 10 10 10 10 10 10

Seed 1 (%) 72.7 63.6 80 90 100 90 90 90 90 80
Seed 2 (%) 72.7 63.6 90 100 100 90 80 90 100 90
Seed 3 (%) 90.9 63.6 90 90 100 90 70 100 100 80
Seed 4 (%) 90.9 72.7 90 80 90 80 90 90 90 90
Seed 5 (%) 90.9 63.6 70 80 80 70 80 90 90 90
Seed 6 (%) 72.7 81.8 80 80 80 90 80 90 100 80
Seed 7 (%) 90.9 81.8 100 90 100 70 90 80 90 90
Seed 8 (%) 90.9 81.8 80 100 100 90 90 90 100 90
Seed 9 (%) 81.8 100 80 50 50 70 80 100 80 70
Seed 10 (%) 90.9 63.6 70 80 80 80 90 80 90 80

TABLE II

THE TESTING RESULTS FOR THE 10-FOLD CROSS VALIDATION CONDUCTED IN THE PROSTATE DATA WITH OUR SVM-BASED AM-DGS. EACH RESULT

CONTAINS AN ACCURACY AND AN ERROR NUMBERS. FOR EXAMPLE, 72.7 MEANS THAT THE CORRESPONDING DGS OBTAINED 72.7% ACCURACY.

THE ITALIC RESULTS ARE OBTAINED BY THE DGSS CHOSEN TO CLASSIFY THE TESTING DATA.

Fold No. 1 2 3 4 5 6 7 8 9 10
Seed 1 (%) 81.0 90.5 77.3 86.4 81.8 81.8 86.4 77.3 72.7 72.7
Seed 2 (%) 81.0 90.5 77.3 95.5 77.3 95.5 86.4 81.8 81.8 90.9
Seed 3 (%) 85.7 90.5 86.4 77.3 95.5 86.4 86.4 86.4 86.4 86.4
Seed 4 (%) 81.0 90.5 81.8 77.3 86.4 81.8 81.8 86.4 95.5 77.3
Seed 5 (%) 76.2 90.5 81.8 77.3 81.8 90.9 77.3 77.3 72.7 77.3
Seed 6 (%) 81.0 85.7 86.4 81.8 77.3 90.9 95.5 72.7 81.8 86.4
Seed 7 (%) 90.5 95.2 86.4 81.8 72.7 72.7 86.4 86.4 77.3 86.4
Seed 8 (%) 81.0 85.7 86.4 77.3 86.4 95.5 86.4 95.5 86.4 95.5
Seed 9 (%) 90.5 81.0 90.9 81.8 81.8 90.9 81.8 77.3 90.9 86.4

Seed 10 (%) 71.4 90.5 81.8 81.8 81.8 77.3 86.4 90.9 95.5 90.9

TABLE III

THE VALIDATION ACCURACY FOR THE 10-FOLD CROSS VALIDATION CONDUCTED IN THE PROSTATE DATA WITH OUR SVM-BASED AM-DGS.
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Fold No. 1 2 3 4 5 6 7 8 9 10
Seed 1 (%) 88.6 95.7 94.3 90 94.3 91.4 88.6 88.6 90 92.9
Seed 2 (%) 87.1 94.3 94.3 94.3 90 94.3 95.7 85.7 84.3 95.7
Seed 3 (%) 87.1 94.3 87.1 92.9 90 97.1 92.9 95.7 94.3 88.6
Seed 4 (%) 91.4 91.4 91.4 94.3 92.9 80 94.3 84.3 85.7 94.3
Seed 5 (%) 90 90 87.1 94.3 87.1 87.1 87.1 97.1 90 91.4
Seed 6 (%) 82.9 85.7 85.7 80 80 94.3 94.3 95.7 84.3 88.6
Seed 7 (%) 92.9 92.9 92.9 84.3 88.6 91.4 84.3 87.1 78.6 84.3
Seed 8 (%) 94.3 94.3 94.3 91.4 82.9 88.6 91.4 91.4 84.3 91.4
Seed 9 (%) 91.4 91.4 91.4 78.6 77.1 84.3 97.1 92.9 82.9 88.6

Seed 10 (%) 91.4 94.3 80 74.3 74.3 95.7 94.3 82.9 91.4 87.1

TABLE IV

THE TRAINING ACCURACY FOR THE 10-FOLD CROSS VALIDATION CONDUCTED IN THE PROSTATE DATA WITH OUR SVM-BASED AM-DGS.

Fold No. 1 2 3 4 5 6 7 8 9 10
Number of Genes in the Set with Seed 1 3 5 4 2 4 4 3 2 3 4
Number of Genes in the Set with Seed 2 1 4 3 3 4 4 4 2 1 4
Number of Genes in the Set with Seed 3 1 3 1 4 4 3 3 6 3 1
Number of Genes in the Set with Seed 4 4 4 4 2 3 1 5 1 3 4
Number of Genes in the Set with Seed 5 3 4 1 4 2 4 2 4 3 3
Number of Genes in the Set with Seed 6 2 5 5 1 1 5 3 4 1 2
Number of Genes in the Set with Seed 7 4 5 5 1 3 3 1 2 1 1
Number of Genes in the Set with Seed 8 4 4 4 3 1 4 4 3 2 4
Number of Genes in the Set with Seed 9 4 4 4 1 1 1 4 5 3 2
Number of Genes in the Set with Seed 10 3 5 1 1 1 3 4 3 4 4

TABLE V

THE NUMBERS OF GENES USED BY THE DGSS IN THE PROSTATE DATA SET FOR THE 10-FOLD CROSS VALIDATION. THE ITALIC NUMBERS ARE FOR

THE DGSS CHOSEN TO CLASSIFY TESTING SAMPLES.

Number of Genes 1 2 5 10 15 20 30 50 100 200 500
t-statistics 24 18 15 14 13 13 17 15 14 12 13
f-statistics 24 19 15 14 14 13 16 14 14 12 12
SVM-RFE 30 24 14 17 15 14 13 14 11 14 15

SVM-based AM-DGS 13 errors using DGSs with 3.8 genes on average.

TABLE VI

THE COMPARISON OF THE ERRORS IN THE PROSTATE DATA SET WITH DIFFERENT APPROACHES.
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