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Abstract— In this paper we propose a novel support vector
machine (SVM) with class-dependent features. According to an
importance measure, e.g., the RELIEF weight measure or class
separability measure, we rank the features importance for each
class against the rest of classes. For each class we select an
optimal feature subset using a classifier, e.g., the support vector
machine (SVM). For the classification on these class-dependent
feature subsets, we propose to construct a novel SVM using
“one-against-all” in 2 processes: 1) construct one model for
each class by training the classifier with the class’s optimal
feature subset; 2) during testing, each test pattern is tested on
all models and the model with the maximum output decides the
class of the test pattern. The method’s performance is evaluated
on two benchmark datasets. Our results indicate that our novel
SVM classifier can effectively realize the classification of class-
dependent feature subsets found by our wrapper approach
which can remove irrelevant features for each class and at the
same time maintain or even improve the classification accuracy
in comparison with other feature selection methods.

I. INTRODUCTION

SVM [25] [13] has already been used very successfully
on many areas, such as pattern recognition, pattern classi-
fication, and regression problems etc., since it comes into
our lives. Specially for its attractive features, regarding to
the ability to effectively avoid overfitting, accomodate large
feature spaces and condense the information of the data
set [23], it now has already aroused the interest of many
biomedical researchers, and has already been applied to the
bioinformatics field, for example, cancer diagnosis [1] [6],
protein secondary structure prediction [23][9][22] and gene
analysis [2].

As a classifier, SVM has significantly better performance
than or at least matches that of traditional machine learn-
ing approaches, including neural networks [23]. SVM was
originally designed for binary classification, although most
problems are multi-class. In order to solve those multi-class
problems, some methods have been proposed to effectively
extend the binary SVM to multi-class classification. The
earliest used method is ”one-against-all” [15], which is to
construct D SVMs for the D-class problem. The i-th SVM
is trained with all the examples in the i-th class with positive
labels, and all the other examples with negative labels.
Another method is to construct D(D − 1)/2 classifiers and
each classifier is trained on data only from two classes, which
is called ”one-against-one” method [24]. DAGSVM [10] is
also a method based on solving binary classifications, which
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has the same training phase as ”one-against-one” method and
uses a rooted binary directed acyclic graph in the testing
phase. Also several ”all-together” methods are proposed,
which are to consider all classes at once. With regard to those
methods, Hsu and Lin [5] made a comparison ad pointed
out that ”all-together” methods have advantage on support
vectors, ”one-against-one” and DAGSVM methods are more
suitable for practical use, and ”one-against-all” is a good
method whose performance is comparable to ”one-against-
one”.

Since the given data sets we process are becoming increas-
ingly larger in the number of patterns and the dimension of
features or attributes, this may degrade the efficiency of most
learning algorithms used on them, especially when those data
exist some irrelevant or redundant features. For example,
John [11] showed that a single irrelevant features in data set,
such as credit-approval or diabetes, cut down the prediction
accuracy of C4.5 by 5%. Langely and Sage [18] showed
that the naive Bayes learner performs less optimally in the
presence of irrelevant features. Fu and Wang [27] showed
that deleting those irrelevant features can not only improve
the classification accuracy, but also reduce the structural
complexity of the radial basis function (RBF) neural network.
In these cases, data dimensionality reduction (DDR) is urgent
and necessary before a learning algorithm is used.

As to DDR, there are two commonly used techniques: fea-
ture extraction and feature selection. Feature extraction is the
process of transforming the original set of features into a set
of new features. Many current feature extraction techniques
involve linear transformation of the original pattern vectors
to new vectors of a lower dimensionality, e.g., principal com-
ponent analysis (PCA) [16] and linear discriminant analysis
(LDA)[26]. For PCA and LDA, although they reduce the
dimension of features measured by the classifier, they do not
actually reduce the number of features involved in the classi-
fication, because they linearly transform the original features
into the new feature sets. Hence it will be possible for such
techniques to hinder the target concept learning due to the
irrelevant features. Feature selection [14] is the process of
actually reducing the number of features in the classification,
while maintaining acceptable classification accuracy. The
technique for feature selection eliminate irrelevant features,
leaving the best subset of features which retains sufficient
information to discriminate well among classes. Thus how
to decide which features are relevant or irrelevant and how to
delete those features so as to form the optimal feature subset
are the main objectives of feature selection.

In feature selection, one usually chooses the same feature
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subset for all classes in a given classification problem, which
is called class-independent feature selection [27] [12] [21]
[20]. In order to make advantage of the possibility that
different groups of features may have different power in
distinguishing different classes, we tend to choose a different
feature subset for each class, which is called class-dependent
feature selection [7] [8]. Class-dependent feature selection
can have matched effect or be significantly better than that
of class-independent feature selection. For example, Oh et al.
proposed [7] [8] a filter approach to class-dependent feature
selection to improve recognition performance for handwrit-
ing digits. They proposed an estimated class distribution
and used it to calculate each feature’s class separation for
different classes. In [28], Fu and Wang used GA to select
the optimal feature subset for each class based on an RBF
classifier. This class-dependent feature selection approach
made explicit use of the clustering property of the RBF
neural network and can not work for a general classifier,
i.e., SVM.

Considering many attractive features of SVM, we’d like
to choose it as the classifier used in the process of selecting
features and also in the final classification. When selecting
class-dependent features, we first rank the importance of the
features for class i (i = 1, 2, ..., N , N is the number of
classes) using a feature importance measure, i.e., RELIEF
weight measure [12] or the class separability measure [27].
We then select an optimal feature set from the ranking list
for class i using SVM. This process will be repeated N
times until N classes have their own feature subsets. Due to
the fact of class-dependent feature selection, in this paper,
we propose a novel SVM with class-dependent features. For
each class, we construct one model by training the classifier
with the class’s optimal feature subset. Then during testing,
each test pattern is tested on all models and the model with
the maximum output decides the class of the test pattern.

The paper are organized as follows. In section 2 we first
present our wrapper approach to class-dependent features
selection, with two ranking measures. Then we propose our
constructed SVM classifier with class-dependent features. In
section 3, we present experimental results on two data sets
from the UCI database [3], comparing class-dependent fea-
ture selection (CDFS) and class-independent feature selec-
tion (CIFS), together with published results on classification
accuracy. In section 4 we provide a summary and discussion
for future work.

II. METHODOLOGY

In this part, we first introduce our wrapper approach
to selecting class-dependent features. Then we will simply
review the original SVM and describe our constructed class-
dependent SVM classifier. As to the RELIEF weight measure
[12] and CSM [27][19], we won’t give more details here.

A. Our Wrapper Approach to Selection of Class-dependent
Features

Our wrapper approach to selection of class-dependent
features consists of the following three steps (Fig. 1). In

.
.
.

Fig. 1. Our wrapper approach to selection of class-dependent features.

step one, we convert a N -class classification problem to N
2-class classification problems, i.e., problem 1, problem 2,
· · ·, and problem N . Problem i only has two classes: one is
the original class, and the other includes all the other classes.
It’s goal is to correctly separate the two classes.

In step two, we need to rank the attribute importance
using a feature importance ranking measure, i.e, probabilis-
tic distance measure, RELIEF weight measure [12], class
separability measure [27][19], information theoretic measure
[17]. In this paper, we adopt the RELIEF weight measure
and class separability measure to evaluate the importance of
the features for each class and make a comparison about
the final classifications. In this case, the attribute importance
ranking thus obtained is called as class-dependent attribute
importance ranking.

After obtaining the attribute importance ranking of each
class, we then turn to step three: choose an optimal feature
subset for each class through SVM. For each class we start
with the most important feature as the first subset, and then
each time add one attribute into the previous subset from
the ranking list to form a new feature subset, until all the
attributes in this class are added. Inputting each feature sub-
set into the classifier, we can obtain different classification
accuracy for different feature subsets. The optimal feature
subset will be the one with the highest classification accuracy
or lowest error rate.

For convenience, we use feature masks to represent feature
subsets. Feature mask only has value “0” or “1”, indicating
the absence or presence of a particular feature. For example,
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Fig. 2. Architecture of our novel SVM classifier with class-dependent
features

if originally there are 5 features, i.e., {x1, x2, x3, x4, x5},
the optimal feature subset is {x1, x2, x3} with the forth and
fifth features deleted, the feature mask will be {1, 1, 1, 0, 0}.

After introducing the wrapper approach to selection of
class-dependent features, we will turn to the introduction of
our novel SVM with class-dependent features.

B. Our Novel SVM with Class-dependent Features

In our experiment, because the data are with class-
dependent feature subsets, we can not directly input the
different feature subsets into any one of the SVM classifier
mentioned above at one time. Here there are two choices.
One is to recode the SVM classifier with ”all-together”
method for our purpose, which may be time-consuming
and inconvenient. The other one is adopt the LIBSVM in
our experiment, which is an efficient software for SVM
classification, and make some modifications to form a class-
dependent SVM classifier for our data. In our experiment, we
will adopt the “one-against-all” method to construct a class-
dependent SVM classifier, which is also consistent with our
feature selection process. In Fig. 2, we present the classifier’s
architecture using LIBSVM to train and test the patterns with
class-dependent feature subsets, which are described in the
following 2 processes:

1) The training process:
In this process, we use training patterns to construct N
SVM models, where N is the number of classes. The
SVM k is trained using all of the training examples in
class k with positive labels and all the other examples
with negative labels. A feature mask is obtained for
each SVM as described in the previous subsection. For
instance, given a training pattern (X, y), where y is the
class label of input X , the training pattern X to form
the k-th model is presented as Xk with Mk features,
Mk being the number of ‘1’ in the feature mask of
class k. y = +1 if Xk belongs to class k and y = −1
otherwise.
SVM model k solves the following problem (see 1)
[5]:

minwk,bk,ξk

1
2
(wk)T wk + Ck

∑
ξk

(wk)T φ(Xk) + bk ≥ 1 − ξk, if y = +1,

(wk)T φ(Xk) + bk ≤ −1 + ξk, if y = −1,

ξk ≥ 0 (1)

Here wk denotes a set of linear weights connecting the
feature space to the output space. Input Xk is mapped
to a higher dimensional space by the transformation
function φ. Ck is a tradeoff parameter between
the error and margin, and ξk are “slack variables”
in optimization theory. Minimizing 1

2 (wk)T wk is
equivalent to maximizing the margin between two
classes of data. When data are not linearly separable,
Ck

∑
ξk is used as the penalty term to reduce the

number of training errors.

2) The testing process:
After all the models are formed, we will use them to
test unlabeled patterns. Same as the training process,
each testing pattern is filtered with one class’s feature
mask before input into the corresponding SVM model
and the original attributes corresponding to ‘0’ in the
feature mask are removed. Assume that X is one
original testing pattern, then N different feature subsets
X1, . . ., X i, . . ., XN will be separately input into
the corresponding N models. We then classify X to
the class which has the largest value of N decision
functions:

class of X ≡ argmaxj=1,...,N ((wj)T φ(Xj) + bj)
(2)

In order to compare the N decision functions from LIB-
SVM on class-dependent feature subsets, we need specify
the parameter ‘-b’ as 1 in function ‘svmpredict’ [4] so that
we can obtain a matrix output which consists of predicted
labels and the corresponding probabilities. When one testing
pattern is separately input into N models, we obtain N
matrix outputs: O1, . . . , Oi, . . . , ON , all of which are
vectors with dimension 3. The first element of the vector
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TABLE I

THE NUMBER OF FEATURES ELIMINATED IN EACH OF THE 10

SIMULATIONS, THE AVERAGE NUMBER AND ITS STANDARD DEVIATION,

USING RELIEF RANKING METHOD FOR THE BREAST CANCER DATA SET.

The number of features
deleted in each of the 10
simulations (RELIEF)

Average
and Std
(RELIEF)

Class-independent 3 3 4 3 3 0 0 4 1 1 2.2±1.5

Class-dependent 3 3 4 3 3 0 0 4 1 1 2.2±1.5

TABLE II

THE NUMBER OF FEATURES ELIMINATED IN EACH OF THE 10

SIMULATIONS, THE AVERAGE NUMBER AND ITS STANDARD DEVIATION,

USING CSM RANKING METHOD FOR THE BREAST CANCER DATA SET.

The number of features
deleted in each of the 10
simulations (CSM)

Average and
Std (CSM)

Class-independent 0 0 0 0 0 1 1 1 0 0 0.3±0.5

Class-dependent 0 0 0 0 0 1 1 1 0 0 0.3±0.5

is the predicted class label, the second and third element are
probabilities. The probability that indicates the test data is
in the class is what we need. Among the N probabilities
obtained, the testing pattern belongs to the class with the
largest probability, which is equivalent to ( 2).

III. EXPERIMENTAL RESULTS

We apply our feature selection method to the Breast
cancer and Ecoli data sets from the UCI Machine Learning
Repository databases [3] and then classify them with our
novel SVM classifier. The Breast cancer data set has 699
samples, 9 attributes and 2 classes. The Ecoli data set
describes the protein localization sites with 336 samples, 7
attributes and 8 classes.

From Table I to IV, we list the number of deleted features
in each of the 10 simulations (10-fold) , the average number
of deleted features and its standard deviation for two data
sets. For Table I and Table II, we can see that the Breast

TABLE III

THE TOTAL NUMBER OF FEATURES ELIMINATED IN EACH OF THE 10

SIMULATIONS, THE AVERAGE NUMBER AND ITS STANDARD DEVIATION,

USING RELIEF RANKING METHODS FOR THE ECOLI DATA SET.

Classes The number of fea-
tures deleted in each
of the 10 simulations
(RELIEF)

Average
and Std
(RE-
LIEF)

Class-independent all
classes

0 0 0 0 1 0 0 1 0 0 0.2±0.4

class 1 2 2 2 2 3 2 2 2 3 2 2.2±0.4
class 2 3 5 5 3 5 3 1 2 5 4 3.6±1.4
class 3 0 1 1 1 0 2 0 0 1 1 0.7±0.7

Class-dependent class 4 1 3 2 4 5 2 2 2 2 1 2.4±1.3
class 5 3 4 3 2 1 4 0 4 4 1 2.6±1.5
class 6 0 0 0 4 2 2 5 1 0 0 1.4±1.8
class 7 6 6 6 6 6 5 6 6 6 6 5.9±0.3
class 8 6 6 6 6 6 6 6 6 6 6 6.0±0.0

TABLE IV

THE TOTAL NUMBER OF FEATURES ELIMINATED IN EACH OF THE 10

SIMULATIONS, THE AVERAGE NUMBER AND ITS STANDARD DEVIATION,

USING CSM RANKING METHODS FOR THE ECOLI DATA SET.

Classes The number of fea-
tures deleted in each
of the 10 simulations
(CSM)

Average
and Std
(CSM)

Class-independent all
classes

0 0 0 0 0 1 0 0 0 0 0.1±0.3

class 1 0 0 0 0 1 1 0 0 1 0 0.3±0.5
class 2 0 0 0 0 0 0 0 0 0 0 0
class 3 0 0 1 1 1 1 0 1 1 1 0.7±0.5

Class-dependent class 4 2 4 1 4 2 4 4 5 4 4 3.4±1.3
class 5 2 1 3 0 0 3 1 2 2 3 1.7±1.2
class 6 4 4 4 4 4 2 4 4 4 4 3.8±0.6
class 7 6 6 6 6 6 4 6 6 6 6 5.8±0.6
class 8 6 6 6 6 6 6 6 6 6 6 6.0±0

TABLE V

CLASSIFICATION ACCURACY COMPARISON WITH OTHER METHODS FOR

BREAST CANCER AND ECOLI DATA SET. OUR METHODS USE RELIEF

AND CSM RANKING MEASURES (10-FOLD CROSS VALIDATION), IN

WHICH ‘–’ MEANS UNAVAILABLE. CDFS IS ABBREVIATION OF

CLASS-DEPENDENT FEATURE SELECTION. CIFS IS ABBREVIATION OF

CLASS-INDEPENDENT FEATURE SELECTION.

Method Accuracy for Breast can-
cer data

Accuracy
for Ecoli
data

Without feature selection 96.49 % 86.61 %
CIFS with RELIEF 96.34 % 85.71%
CDFS with RELIEF 96.34% 86.31%
CIFS with CSM 96.49% 86.61%
CDFS with CSM 96.49% 86.91%
SOAP with C4.5[21] 94.84% –
RELIEFF with C4.5[21] 95.02% –

Cancer data set have few irrelevant or redundant features.
Using RELIEF measure, it has on average 2 features are
removed. While using CSM, it has on average no features
deleted. For Table III and Table IV, we can see the Ecoli
data set has different feature subset for different classes with
CDFS, e.g, for class 1 to class 5, the number of features
eliminated is less, while for class 7 and 8, the number of
deleted features is nearly 6. Compared with CIFS, the CDFS
can show us that different features have different power
in discriminating different classes. Then for these class-
dependent features, our constructed novel SVM classifier will
be able to effectively realize the classification. In table V,
we list the classification accuracy with two ranking measures,
two feature selection methods, and compare them with the
classification accuracy of SOAP and Relief [21]. Our feature
selection method has better accuracy with our constructed
SVM. Besides these two biomedical data sets, we also try on
several other data sets from UCI, such as Thyroid, Waveform,
Pima, etc on., and also obtain very good results.
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IV. SUMMARY

In this paper, we have proposed a novel SVM with class-
dependent features selected from our wrapper approach.
We try the RELIEF weight measure and class separability
measure to rank the features importance and select the
optimal feature subsets for each class with normal SVM.
For the classification on the class-dependent feature subsets,
we constructed a novel SVM classifier with different models
to accommodate different feature subsets. The experimental
results for UCI data sets show that each feature has different
classification capability in discriminating different classes,
and our method has improved or at least maintained the clas-
sification accuracy, while reducing the number of features.
Hence both our class-dependent feature selection and SVM
are very effective in deleting irrelevant or redundant features
and realize the classification with class-dependent features.

Since class-dependent feature selection method requires
determination of feature subsets of every class, it is likely to
be more computationally expensive compared to other class-
independent feature selection methods. However the extra
computational cost may be worthwhile in certain applications
where improvements of accuracy are very important and
meaningful. When class-dependent feature selection is used
on data, our SVM with class-dependent features can be
used conveniently. Further research on feature selection and
classification for biological data is currently in progress,
such as choosing ’tagging’ single nucleotide polymorphisms
(SNP) [29] to classify the ethnic groups with individual
genotype data.
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