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An Efficient Semi-Unsupervised Gene Selection
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Abstract—Gene selection is an important issue in microarray
data processing. In this paper, we propose an efficient method for
selecting relevant genes. First, we use spectral biclustering to ob-
tain the best two eigenvectors for class partition. Then gene com-
binations are selected based on the similarity between the genes
and the best eigenvectors. We demonstrate our semi-unsupervised
gene selection method using two microarray cancer data sets, i.e.,
the lymphoma and the liver cancer data sets, where our method is
able to identify a single gene or a two-gene combinations which can
lead to predictions with very high accuracy.

Index Terms—Gene ranking, semi-unsupervised gene selection,
spectral biclustering.

I. INTRODUCTION

TYPICALLY, the gene expression data sets contain thou-
sands of genes while the number of tissue samples ranges

from tens to hundreds. When analyzing expression profiles
using machine learning methods, an important issue is gene
selection for the target phenotypes. Of the thousands of genes,
only a small number of them show strong correlation with a cer-
tain phenotype. For instance, for a two-way cancer/noncancer
diagnosis, 50 such informative genes are usually sufficient [1].

From a machine learning point of view, gene selection is a
typical feature selection problem. Successful gene selection will
lead to reduction of classifier complexity and computational
burden. A small number of input attribute will also facilitate vi-
sualization and interpretation of the classification results.

From biological and clinic points of view, finding the small
number of important genes can help medical researchers to
concentrate on these genes and investigate the mechanisms for
cancer development and treatment. It may also bring down the
cost for laboratory tests, because a patient needs to be tested on
only a few genes, rather than thousands of genes. Furthermore,
it may become possible to obtain simple rules for doctors to
make diagnosis without even using a classifier or a computer,
for example, in cases where values for only one or two genes
are required as shown in this paper.

In the context of classification, gene selection methods fall
into two categories: filter methods and wrapper methods [2]. In
the filter methods, genes are selected based on their relevance
to certain classes. Filter methods include, for example, statis-
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tical tests (t-test) [1], [3], [4], information gain, PCC-SNR-ECF
[5], and Markov blanket based on conditional independence [6].
In wrapper methods, gene selection is “wrapped around” a par-
ticular learning algorithm: one can often obtain a very small
subset of genes with relatively high accuracy [7]–[9], because
the characteristics in the gene set correlate strongly with those
of the learning algorithm. Both filter and wrapper methods are
supervised in nature: they depend on class information. This
presents a problem for clustering analysis for discovering new
subtypes or phenotypes: to uncover new subtypes we need a
subset of most relevant genes while the selection of these genes
depends on a priori knowledge of cluster structure that we seek
in the first place. The only solution to this problem is to per-
form unsupervised gene selection, i.e., selecting genes without
prior subtype knowledge. One approach is iterative feature fil-
tering [10]: given the initial clustering, one can use supervised
methods to select relevant genes, which are used in turn to ob-
tain improved clustering. Another approach is to use a two-way
ordering mechanism to approximately identify irrelevant genes
and discard them [11].

However, the gene subsets selected by the previous methods
are usually too large. For example, for the lymphoma data set
[12], the best published result shows that 48 genes are neces-
sary in order to obtain 100% classification accuracy [13]. Such
a large number of genes makes it difficult to identify which
genes are responsible for the disease and, in addition, it may
lead high costs in carrying out the cancer diagnostic tests. In
this paper, we study a new and efficient semi-unsupervised gene
selection method which results in much smaller gene subsets
without prior subtype knowledge.

Kluger [14] first proposed spectral biclustering for processing
gene expression data. But Kluger’s focus is mainly on unsuper-
vised clustering, not on gene selection. Inspired by his research,
we propose a novel approach to gene selection based on spec-
tral biclustering analysis. We attempt to select the most rele-
vant genes with help of the best class partitioning eigenvectors.
Compared with previous methods, our method can make accu-
rate predictions with much smaller gene subsets.

Different from traditional gene selection algorithms [1],
[3]–[6], [9], the proposed semi-unsupervised gene selection
method can find much smaller and informative gene subsets
without class information a priori. Hence, our method is most
suitable for finding important genes from cancer datasets where
class labels are unknown for each patient. The experiments
on two microarray datasets showed that the selected genes are
statistical important from a clinical application point of view.

The organization of this paper is as follows. In the next
section, we describe the method of spectral biclustering. In
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Section III, we propose an efficient semi-unsupervised gene
selection algorithm. The experimental results and discussion
are presented in Section IV. Section V concludes the paper.

II. SPECTRAL BICLUSTERING

Spectral biclustering [14] can be carried out in the following
three steps: data normalization, bistochastization, and seeded
region growing clustering.

The raw data in many cancer gene-expression datasets can be
arranged in a matrix. In this matrix, denoted by , the rows and
columns represent the genes and the different conditions (e.g.,
different patients), respectively. Then we carry out the data nor-
malization as follows [15]. Take the logarithm of the expression
data. Perform five to ten cycles of subtracting either the mean or
median of the rows (genes) and columns (conditions) and then
perform five to ten cycles of row-column normalization.

Since gene expression microarray experiments can generate
data sets with multiple missing values, the k-nearest neighbor
(KNN) algorithm is used to fill those missing values [16].

Define to be the average of th row,
to be the average of th column, and

to be the average of the whole
matrix, where is the number of genes and the number of
conditions.

Bistochastization may be done as follows. First, we define a
matrix of interactions by

. Then we compute the singular value decomposition (SVD)
of the matrix as given by , where is a diag-
onal matrix of the same dimension as and with nonnegative
diagonal elements in decreasing order, and are and

orthonormal column matrices. We denote the th column
of the matrix is denoted by . Therefore, we can obtain a
scatter plot of experimental conditions of the two best class par-
titioning eigenvectors and . The and are often chosen
as the eigenvectors corresponding to the largest and the second
largest eigenvalues, respectively. The main reason is that they
can capture most of the variance in the data and provide the op-
timal partition of different experimental conditions [2], [14]. In
general, we can obtain an -dimensional scatter plot by using
eigenvectors (with largest eigenvalues).

Define , which has a dimension of .
The rows of matrix stand for different conditions, which will
be clustered using SRG.

Seeded region growing clustering is carried out as follows
[17]. It begins with some seeds (initial state of the clusters).
At each step of the algorithm, we consider all as-yet unallo-
cated samples, which border with at least one of the regions.
Among them one sample, which has the minimum difference
from its adjoining cluster, is allocated to its most similar ad-
joining cluster.

With the result of clustering, we can predict the distinct types
of cancer data with very high accuracy [14]. In the next sec-
tion, we will use such clustering result to select the best gene
combinations.

III. SEMI-UNSUPERVISED GENE SELECTION

The proposed semi-unsupervised gene selection method in-
cludes two steps: gene ranking and gene combination selection.

As stated above, we have obtained the best class partitioning
eigenvectors . Now we will use these eigenvectors
to rank and preselect genes.

The proposed semi-unsupervised gene selection method is
based on the following two assumptions.

• The genes which are most relevant to the cancer should
capture most variance in the data.

• Since may reveal the most variance in the
data, the genes “similar” to should be rel-
evant to the cancer.

The gene ranking and preselecting process can be summa-
rized as follows. After defining the th gene profile as

, we use cosine measure [18] to compute the
correlation (similarity) between each gene profile (e.g., ) and
the eigenvectors (e.g., , ) as

(1)
where means vector 2—norms. Seen from (1), a large ab-
solute of indicates a strong correlation (similarity) between
th gene and th eigenvector. Therefore, we can rank genes as

the absolute correlation values for each eigenvector. For
th eigenvector we can preselect the top genes, denoted by ,

according to the corresponding value for .
The value can be empirically determined. Thus, for each eigen-
vector of , we obtain a set of genes with largest values
of the Cosine Measure.

Since we have obtained the accurate cluster results by spec-
tral biclustering, we will use them to select the best gene com-
binations. First, we choose all possible combinations of
genes, with each gene corresponding to one eigenvector. Then,
for each gene combination, we classify conditions with a su-
pervised classification method: support vector machine (SVM)
[19]. Therefore, the best gene combination must be the one
which obtains the highest accuracy over all conditions.

IV. EXPERIMENTAL RESULTS

A. Results

We now demonstrate our proposed semi-unsupervised gene
selection method using two microarray data sets: the lymphoma
data set [12] and the liver cancer data set [20].

The lymphoma microarray data has three subtypes of cancer,
i.e., CLL, FL, and DLCL. When applying the proposed method
to this data set, we obtained the clustering result with two best
partition eigenvectors and as shown in Fig. 1. Seen from
Fig. 1, the three classes are correctly divided. Then we select two
sets of genes according to and respectively.
(Here we have set to be two.) From the two sets of 20 genes
each, we choose the two-gene combinations that can best divide
the lymphoma data. We have found two pairs of genes: 1) Gene
1622X and Gene 2328X, and 2) Gene 1622X and Gene 3343X,
which perfectly divide the lymphoma data. Since the results are
similar to each other, we only show the result of one group in
Fig. 1. Gene ID and gene names of the selecting genes in the
lymphoma data set are shown in Table I, where we also show
the group and the rank of genes.
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Fig. 1. Lymphoma. (a) Scatter plot of experimental conditions of the best two
class partitioning eigenvectors V1, V2. (b) Scatter plot of experimental condi-
tions of the best two-gene combination. CLL samples are denoted by pluses,
DLCL by circles, and FL by triangles.

TABLE I
GENE IDS (CLIDS) AND GENE NAMES IN THE TWO MICROARRAY DATA SETS

Note that here “/” indicates that the gene does not rank in the top 20 in this
group.

We apply the method to the liver cancer data with two classes,
i.e., nontumor liver and HCC. The clustering result with the two
best partition eigenvectors and is shown in Fig. 2. We

Fig. 2. Liver cancer. (a) Scatter plot of experimental conditions of the best two
class partitioning eigenvectors V1, V2. (b) Scatter plot of experimental condi-
tions with the best gene. HCC samples are denoted by circles and nontumor liver
by pluses.

can see there are three samples misclassified and the clustering
accuracy is 98.1%. Actually, we can set so that the scatter
plot is on a single axis. Then we select top 20 genes with the
largest . From the top 20 genes, we found one gene that
can divide the liver cancer data well with accuracy of 98.7%.
The result is shown in Fig. 2. Gene CLID and gene name of
selecting gene in liver cancer data set are shown in Table I.

B. Comparisons With Published Results

We used the paired t-test method to show the statistical differ-
ence between our results and other published results. In general,
given two paired sets and of measured
values, the paired t-test can be employed to compute a -value
between and and determines whether they differ from
each other in a statistically significant way under the assump-
tions that the paired differences are independent and identically
normally distributed. The -value is defined as follows:

(2)
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TABLE II
COMPARISION OF GENERALIZATION ABILITY

Both the mean test accuracy and standard deviations are shown in this table.
The average number of genes, as well as the standard deviations, are also
reported in this table. The p and p value indicated the statistical significance
on number of genes and the test accuracy between the spectral biclustering
method and other published algorithms, respectively.

where , , and , are the mean
values for and , respectively. Hence, all , with
a high -value indicating statistically insignificant differences
and a low -value indicating statistically significant differences
between and .

We shuffled the order of cancer subtypes and carried out the
experiments 20 times for each data set. We built the classi-
fiers with the SVM and applied tenfold cross validation to eval-
uate the generalization ability. Each time we obtained the same
gene selection result for each data set, but slightly different
classification accuracies. We computed the -values for both
numbers of genes and classification accuracies for both data
sets in Table II, which showed that the differences between the
numbers of genes used in our method and other methods are sta-
tistically significant, whereas the differences between the clas-
sification accuracies between our method and other methods are
not statistically significant.

For the lymphoma data set, we compared the generalization
ability of one of our two gene sub sets (gene 1622X and gene
2328X) with 81 genes selected in [13] and the total 4026 genes
[12]. Seen from Table II, our two-gene subsets produced a com-
parable generalization ability compared with 81 genes [13] and
the total 4026 genes [12]. Hence, this represents a remarkable
reduction in the number of genes required to achieve the same
classification accuracy over the best published results in [13].

For the liver cancer data set, the single best gene which we
have selected showed a slightly higher classification accuracy
compared with the 1648 genes used in [20].

V. CONCLUSION

We have proposed an efficient semi-unsupervised gene se-
lection method. We first use the best class partitioning eigen-
vectors as a result of spectral biclustering, to preselect genes.
Then from these genes, we can select the best -gene combina-
tions, which can accurately divide the cancer data. Compared
with previous work, our method can make accurate prediction
with much smaller gene subsets.

The proposed gene selection method is based on the spec-
tral biclustering algorithm proposed by Kluger [14]. However,
Kluger focused on unsupervised clustering, i.e., finding distinc-
tive “checkboard” patterns in matrices of gene expression data,
not on gene selection. Different from [14], we focused on gene
selection by combining spectral biclustering [14] with gene im-
portance ranking, and we have greatly reduced the number of
genes needed to predict particular types of tumors.

Gene selection is an important issue in microarray data pro-
cessing. Selecting a small number of informative genes will lead
to a great reduction of computational burden in cancer classifi-
cation. Furthermore, finding a small number of important genes
can help medical researchers and doctors concentrate on these
genes, investigate the mechanisms for cancer development and
treatment, and even make diagnosis using some very simple
rules. For example, for lymphoma, we have discovered the fol-
lowing simple diagnostic rule from Fig. 1(a): for lymphoma pa-
tients, if the expression value of gene 1622X 0.8, then the
patient has DLCL. If the expression value of gene 1622X 0.8
and the expression value of gene 2328X 1.1, then the patient
has CLL; otherwise, the patient has FL. For liver cancer, from
Fig. 2(b) we found that if the expression value IMAGE 301 122

0.003, then the doctor can make the diagnosis that the patient
has HCC; otherwise, the patient does not have HCC.
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