
Detecting Clones in Android Applications through
Analyzing User Interfaces

Charlie Soh, Hee Beng Kuan Tan, Yauhen Leanidavich Arnatovich, Lipo Wang
School of Electrical and Electronic Engineering
Block S2, Nanyang Technological University

Nanyang Avenue, Singapore 639798
{csoh004, ibktan, yauhen, elpwang}@ntu.edu.sg

Abstract—The blooming mobile smart phone device industry
has attracted a large number of application developers. However,
due to the availability of reverse engineering tools for Android
applications, it also caught the attention of plagiarists and
malware writers. In recent years, application cloning has become
a serious threat to the Android market. In previous work, mobile
application clone detection mainly focuses on code-based
analysis. Such an approach lacks resilient to advanced
obfuscation techniques. Their efficiency is also questionable, as
billions of opcodes need to be processed for cross-market clone
detection. In this paper, we propose a novel technique of
detecting Android application clones based on the analysis of
user interface (UI) information collected at runtime. By
leveraging on the multiple entry points feature of Android
applications, the UI information can be collected easily without
the need to generate relevant inputs and execute the entire
application. Another advantage of our technique is obfuscation
resilient since semantics preserving obfuscation technique do not
affect runtime behaviors. We evaluated our approach on a set of
real-world dataset and it has a low false positive rate and false
negative rate. Furthermore, the results also show that our
approach is effective in detecting different types of repackaging
attacks.

Keywords—Android; Repackaging; Clone detection; User
interface; Obfuscation resilient

I. INTRODUCTION
 Android dominates the worldwide smartphone OS market
share, holding close to 85% of the market share [1]. At the time
of writing this paper, Google’s official android application
(app) market, Google Play, hosts up to 1.3 million apps [2].
One of the main reasons for Android to attract a large amount
of developers could be due to the ease of creating an Android
app, as the tutorials and tools for android app development are
readily available. Moreover, mobile app developers are
encouraged by the potential profits from creating apps as they
can monetize through various monetization models such as
paid downloads, in-app purchases, subscriptions, in-app ads,
sponsorships and crowd funding [3].

 Despite the fact that source code is usually unavailable for
published Android apps, it is usually straightforward to reverse
engineer Android apps due to the availability of reverse
engineering tools such as apktool [4], dex2jar [5] and Dare [6].
Plagiarists can easily make use of these tools to disassemble
the Android package (an APK file) downloaded from any

Android market, modify its content, repackage it and sign it as
their own app. This attack is known as repackaging or cloning.
The increase in popularity together with the ease of
repackaging Android apps draws the interest of plagiarists and
malware writers.

 A repackaging of the app by redirecting advertisement
revenues and adding malicious payloads could potentially
cause the hard working legitimate developers to lose their
revenues and even reputations. A recent study by Gibler et al.
[7] reported that with the assumption that the user who
downloaded the clones would have downloaded the original
app, legitimate developer lose about 10% of the user base to
the clones. Zhou et al. [8] found that 86% of the malware
samples are clones of the legitimate apps. In addition, apart
from Google Play, there are numerous third-party Android
markets available for the legitimate developers and plagiarists
to upload their apps. Most of these third-party Android markets
do not ensure for the quality of the apps that are published on
their market. A study by Zhou et al. [9] found that out of 6
third-party markets, 5-13% of the apps hosted are clones.
Based on the current Android market growth rate, we envision
that these figures are likely to increase in the future.

 From the above, we observed that app cloning is a severe
problem that does not only affect the developers, but also
destroy the health of the Android app market, hence proving
the importance of detecting app clones.

 Previous studies to perform Android app clone detections
are mostly based on static code analysis [9-12]. However,
these approaches may have some weaknesses. The practice of
code reuse and the usage of the more sophisticated obfuscation
technique may affect the detection of such approaches [13].
Zhou et al. [8] reported that malware writers tend to employ
obfuscation to avoid detection. Furthermore, since source code
is generally not publicly available, the analysis is usually
conducted on opcodes. A study [14] on 30,000 Android apps
shows that the apps with median size of 754KB have 20,555
median opcodes. With the need for analysis to be conducted
across multiple markets, the number of opcodes that need to be
analyzed would increase greatly, resulting in the “billion
opcodes” problem [11].

 In this paper, we propose a novel approach for cross-market
Android app clone detection based on robust dynamic software
birthmarks. The birthmarks are generated by leveraging on the

2015 IEEE 23rd International Conference on Program Comprehension

978-1-4673-8159-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ICPC.2015.25

163

view hierarchy information of the user interface (UI). The view
hierarchy can be extracted in XML format when the activity is
in the foreground of the system (displayed on the screen)
where user can interact with it. The intuition behind our
approach is based on the following observations:

 (a) Obfuscation techniques that preserve semantics do not
affect runtime behaviors. Therefore, dynamic software
birthmarks have a much better obfuscation resistance compared
to static software birthmarks.

 (b) The plagiarists would want to keep the look and feel of
the UI similar to that of the original app so as to leverage on
the popularity of the original app. Furthermore, it may be easy
to modify the position and size of the UI, but modifying the
functionality of the UI requires more effort and understanding
of the app code. Thus, app clones would likely have UI similar
to the original apps.

 (c) Unlike traditional programs, Android apps have a
unique feature of having multiple entry points. We can
leverage on this feature to access and extract information from
different components of the app directly.

 Our approach provides an alternative to the traditional
code-based static analysis detection approaches and does not
inherit all disadvantages of dynamic analysis approaches. The
proposed approach has the following advantages:

 (a) Obfuscation resilient: The UI information used in our
approach for generating birthmarks does not depend on static
analysis. On the contrary, the UI information is obtained during
runtime, which is not affected by semantics preserving code
obfuscation techniques. Thus, the birthmarks will be resilient
to code obfuscation techniques.

(b) No input generation required: By leveraging on the
Android app multiple entry points feature, we extract a list of
activities from the app’s package, and start each of them
explicitly to obtain their runtime UI information. Hence,
despite being based on dynamic analysis, our approach does
not require the generation of inputs to navigate through the
complex UI, which is a process that is hard to automate.

 Research question: We would like to answer the following
research questions in our study:

RQ1. Can our proposed approach effectively detect
different types of application clones across multiple
Android markets?

 In this research question, we want to find out whether our
proposed approach can effectively detect all kinds of clone
attacks. Furthermore, due to the large number of apps across
multiple third-party Android markets, we need to determine
whether our approach is scalable, for it to be of practical use.

RQ2. What are the possible limitations of our approach
and how can we overcome them?

 In this research question, we seek to identify, from our
experimental results, the possible weaknesses and limitations
of our approach and what are the possible solutions to
overcome them.

 In summary, the main contributions of our work are as
follows:

• We propose an approach to detect Android application
clones based on the birthmarks generated from runtime
UI information. To the best of our knowledge, we are
the first to use runtime UI birthmarks for Android app
clone detection.

• Our approach leverages on the multiple entry points
feature of the Android system. Therefore, it does not
require the generation of relevant inputs for execution
of the entire app.

• We evaluate our approach on a set of real-world data
collected from 4 different Android markets.
Experimental results show that our approach has low
false positive and false negative rates.

• We also evaluate the effectiveness of our approach on
a collection of clone set data from another research
group. The results show that our approach can
effectively detect different types of clone attacks.

 This paper is organized as follows: Section II presents the
background. Section III describes the methodology of our
approach in detail. Section IV covers the evaluation of our
technique. Section V presents the discussion of our results.
Section VI discusses related previous work. Section VII
concludes the paper.

II. BACKGROUND

A. Android Application Structure
 An Android app is built from a combination of different
components such as activity, service, content provider and
broadcast receiver. An activity component provides a screen
with UIs, while a service component performs operations in the
background. The content provider manages the data for a set of
shared apps and the broadcast receiver component provides
response to broadcast announcements [15]. These components
together with various resources are compiled and packaged
into an APK file.

 The components communicate with each other through
intents. The intents can be thought of as a messenger that can
be used to make requests to another component. There are 2
types of intents, explicit intent and implicit intent [16]. An
explicit intent specifically states the fully qualified class name
of the component, while an implicit intent states a general
action to perform, without naming a specific class.

 In this paper, we focus on the activity components. An
Android app usually consists of a number of activities that are
not closely related to each other. For example, an email app
might consist of 3 activities, each with a different purpose,
such as compose, read and list emails. If permitted, any one of
these activities can be started by a different app [15]. Hence,
unlike traditional programs that only possess a single entry
point, Android apps possess multiple entry points.

B. User Interface
 The UI components in an activity structure as a hierarchy
of views (e.g., “Button”, “CheckBox”, “TextView”) and view

164

-<node index="1" text="" resource-id="android:id/content" class="android.widget.FrameLayout"
package="com.langlearner.deviceid" content-desc="" checkable="false" checked="false" clickable="false"
enabled="true" focusable="false" focused="false" scrollable="false" long-clickable="false" password="false"
selected="false" bounds="[0,106][720,1184]">

-<node index="0" text="" resource-id="" class="android.widget.LinearLayout"
package="com.langlearner.deviceid" content-desc="" checkable="false" checked="false" clickable="false"
enabled="true" focusable="false" focused="false" scrollable="false" long-clickable="false" password="false"
selected="false" bounds="[0,106][720,1184]">

-<node index="0" text="79e282c78b88011b" resource-id="com.langlearner.deviceid:id/textView1"
class="android.widget.TextView" package="com.langlearner.deviceid" content-desc=""
checkable="false" checked="false" clickable="false" enabled="true" focusable="false" focused="false"
scrollable="false" long-clickable="false" password="false" selected="false" bounds="[0,106][720,288]"
/>

-<node index="1" text="Send" resource-id="com.langlearner.deviceid:id/btnSend"
class="android.widget.Button" package="com.langlearner.deviceid" content-desc="" checkable="false"
checked="false" clickable="true" enabled="true" focusable="true" focused="false" scrollable="false"
long-clickable="false" password="false" selected="false" bounds="[0,288][720,396]" />

Fig.1. Screenshot of an activity with partial corresponding XML

groups (e.g., “FrameLayout”, “LinearLayout”,
“RelativeLayout”). Each of these views or view groups is
tasked to manage a particular rectangular space within the
activity’s window. A view group may be a parent of multiple
views and view groups and it provides a layout of the interface
for its child views [17].

C. Uiautomator Tool
 We use the uiautomator tool from the Android SDK to
extract the UI information for analysis. Uiautomator is a
testing framework that allows the developers to test the UI of
their apps efficiently [18]. The tool provides a function that can
be used to dump the view hierarchy of the current activity as an
XML file. The generated XML file contains runtime
information on all view objects in the activity. Each view and
view group is represented as a node in the XML. In addition,
each node has the exact same 17 distinct attributes with
different possible values. However, if the uiautomator does not
have access to a particular node, then the node will have an
additional NAF attribute. Figure 1 shows an example of an
activity’s screenshot taken from an app and part of the
corresponding XML file generated by the uiautomator tool for
the activity.

D. Types of Application Repackaging
 Generally, to repackage an app, the plagiarist will first
obtain the APK of the target app. The plagiarist will then make
certain modifications to the original app, such as redirecting
advertisement revenue or injecting malicious payload. To
avoid detection, the plagiarist is also likely to apply automatic
code obfuscation techniques to the repackaged apps before
signing it with a private key and publishing it on one or more
Android market(s). In a recent paper, Zhang et al. [19]
suggested that repackaging attacks can be classified into the
following 3 categories:

 Lazy Attack: A clone in the lazy attack category can have
simple changes such as different author name or different
advertisement. Automatic code obfuscation tools may also be
applied without changing its functionalities.

 Amateur Attack: In addition to automatic code
obfuscation, an amateur attack also has changes to a small part
of the app’s functionality. This type of attack requires more
effort and knowledge from the plagiarists.

 Malware: In this attack, a malicious payload is added to
the popular legitimate app to create a malicious app. The
malicious app masquerades the original app by keeping the
functionality and UI similar to the original app to leverage on
its popularity.

 We will evaluate the effectiveness of our approach in
detecting app clones from these 3 different forms of clone
attacks, in Section V.

III. METHODOLOGY
 In this section, we present in detail the methodology of our
proposed approach. Firstly, given the APKs of the Android
apps, we use an Android emulator to extract the names of the
activities and execute them to gather their UI information in
XML format. Secondly, we use 2 filters to exclude unnecessary
information from the XML files and the remaining information
are used to generate birthmarks. Thirdly, we employ locality-
sensitive hashing (LSH) to find the near neighbors for the
birthmarks. If the near neighbor of a birthmark contains more
than 1 activity from another app, we apply the Hungarian
algorithm to find the maximum similarity. Lastly, we cluster
the apps into groups of clone sets. Figure 2 shows the overview
of our approach.

A. Data Extraction
 An Android app consists of multiple components. Each of
these components is a unique point whereby the system can
access the app. We make use of this feature to start each
activity explicitly using explicit intents. By doing so, we avoid
the hassle of generating inputs for the execution of each path in
the app’s control flow graph. However, a drawback of this
method is that the components might not be actual entry points
and some of them are not independent. These components
cannot be accessed directly by using explicit intents.

165

Extract Activities

Run Activities

Uiautomator:
Dump View
Hierarchies

Locality-
Sensitive
Hashing

Match
Assignment

XMLsAPKs
Filters

Birthmarks

Near -
NeighborsClone

Sets

Similarity
Indexes

Android
Markets

Android Emulator

Fig. 2. Overview of our approach

Nevertheless, the same components that are inaccessible in the
original app will most likely also be inaccessible in the clone.
Thus, it may not affect the similarity between this pair of apps,
or at least not significantly.

 Even though this method poses a risk of losing information
when activities fail to start, the complexity and required time is
much lesser as compared to generating inputs for the execution
of the entire app. The data extraction process is automated
using Java programming language. In addition, we employ
Android Debug Bridge (adb) and API libraries from the
Android SDK [20] to interact with the APK files and Android
virtual device. The details of the extraction process can be
broken down into 2 main steps:

 1. Extract activity names: All the activities in the app
must be declared in the AndroidManifest.xml. The Android
system will not see any activities that are not declared and
therefore cannot execute these activities [21]. For each app, we
extract the list of activity names from the APK file. The
extracted names are the fully qualified class names of the
activities and these can be used to start the activities explicitly.
The activities can be classified into 2 general groups: app’s
activities and third-party libraries’ activities. App’s activities
are the activities that are created by the developer of the app
and are unique to the app. On the other hand, third-party
libraries’ activities are the activities that are included by third-
party libraries. We do not consider third-party libraries’
activities, as they can be easily changed and may induce false
positives. For example, an advertisement library will usually
include advertising activities and changing the advertisement
library will also cause a change in the activities.

 2. Obtain XML file: In order to dump the view hierarchy
of the UI using uiautomator tool, the downloaded APKs first
have to be installed no an Android environment. For this
purpose, we use an Android emulator created from the Android

virtual device (AVD) Manager. We use adb commands to
install the app and explicitly start the extracted activities using
their fully qualified class names. When the activity is started,
we use uiautomator to dump the view hierarchy into an XML
file. Thereafter, we stop the current activity and the process is
repeated until we reach the end of the activities list.

B. Birthmark Generation
 Software birthmark is a unique characteristic that the
software possesses and serves as its identity. Software
birthmark can be further classified as static birthmark or
dynamic birthmark. In this paper, we extract the dynamic
software birthmark of the app and use it for clone detection.

 We implemented an XML parser in the Java programming
language to generate the birthmarks. The birthmark of each
activity is generated from their individual XML obtained from
the previous process (Section III-A). As mentioned in Section
II-C, each node in the XML has the exact same 17 distinct
attributes with different possible values. An important attribute
of each node is the “class” attribute, since the value of the
“class” attribute denotes the type of view (e.g., “Button”,
“TextView”, etc.) the node represents. Each birthmark is a
vector where each element in the vector represents the
frequency count of a unique combination of the view class,
selected attribute and value of the selected attribute. If all 17
attributes were used to generate the birthmarks, each vector
would contain a large amount of elements. However, we found
that not all attributes are useful in detecting app clones.
Therefore, to reduce the amount of computations, we apply 2
filters to exclude unnecessary information.

 Filter 1 (F1): There are attributes that do not provide
suitable information for clone detections. Instead, these
attributes would introduce noise into our birthmarks and cause
our detection to be less accurate. There are also attributes with

166

string type values that can be easily manipulated and costly to
compare. We analyze these attributes as follows:

• The “index” attribute simply represents the position of
the node in the view hierarchy. The positions can be
easily switched within or even out of the view group.
By doing so, it would result in a different index value
being assigned to the node.

• The “text” attribute represents the text that is
displayed on screen. Changing the strings.xml file that
can be found in the resource folder can easily change
this text. For example, the plagiarists can change the
text from ‘username’ to ‘login id’ or from ‘email’ to
‘E-mail’.

• The value of the “resource-id” attribute may be empty
when no resource is required for that particular view.
There are 2 ways to access a resource, in code or in
XML [22]. In any case, it can be easily modified at all
places where the resource-id is expected.

• The “package” attributes represent the package name
of the app. It is common for plagiarists to modify the
package name to avoid detections. Another reason to
modify the package name could be that some Android
markets do not allow 2 apps with the same package
name to be hosted at the same time on their market.

• The “content-desc” attribute is similar to the text
attribute. Modifying the strings.xml can also easily
change it.

• The “bounds” attribute represents the position and the
area of the rectangular space controlled by the views
and view groups. This can also be easily manipulated
by modifying the layout of the corresponding XML
found in the layout folder.

 In summary, to reduce the amount of computations, F1
excludes the following attributes from the birthmark:
“package”, “index”, “bounds”, “text”, “resource-id” and
“content-desc”. The rest of the attributes represent either the
state or the functionality of the view. Firstly, attributes that
represent the state of the views are as follows: “checked”,
“focused” and “selected”. Secondly, examples of attributes
that represent the functionality are as follows: “clickable”,
“checkable”, and “scrollable”.

 Filter 2 (F2): Due to the nature of the class, the value of
certain attributes in the particular class will always remain the
same across activities and apps. For instance, a node with
“Button” class will never have the value of the password
attribute equals to true. Such attributes do not provide any
useful information for the app clone detection. Therefore, to
further reduce the amount of computations, F2 excludes these
attributes that provide zero information gain for the generation
of our birthmarks.

C. Similarity between Applications
 From the previous step (Section III-B), we have a set of
unordered birthmarks generated from multiple sets of
unordered activities. In this step, we evaluate the similarities
between apps. Apart from Google Play that hosts more than 1.3

million apps, there are also numerous third party markets
available for user to download apps. Based on these evidences,
the intuitive pairwise comparison across these multiple
Android markets is impractical. To design an effective and
efficient solution, there are 2 challenges that we need to
overcome:

 Challenge 1 (C1): Due to the large number of apps across
multiple Android markets, we need a scalable and accurate
method to compare the apps similarity.

 We overcome C1 by using Locality-sensitive hashing
(LSH) algorithm. LSH is a primitive algorithm frequently
employed in high dimension data processing for solving
approximate or exact near neighbor problems. In our approach,
we view the comparison of one vector to another as a near
neighbor problem. For this purpose, we use the E2LSH [23]
tool. The E2LSH tool’s algorithm is based on the LSH
algorithm presented by Datar et al. [24]. The tool solves the
following problem:

Given a set of points P Rd and a radius R > 0, for a query
point q, find all points p P with a probability of at least 1
 such that ||q p||2 R, where ||q p||2 is the Euclidean

distance between point q and point p.

 We use the E2LSH tool to determine the near neighbor
activities within a certain radius for each activity. The radius is
calculated based on the Euclidean distance between the 2
vectors. Instead of using theoretical formulas the E2LSH tool
empirically estimates and optimizes parameters as a function of
P. This is because theoretical formulas focus on worst-case
point sets, thus less suitable for real datasets. It was mentioned
in the E2LSH user manual that since the parameters are
estimated, it might not be optimal in all cases. However, in our
case we found that the estimated parameters provide the best
result. Therefore, we keep the estimated parameters.

 Note that by varying the radius we can affect the false
positive and false negative rates of our approach. Radius is a
threshold that is set based on the desired acceptance of the
difference between the UIs of the activities. However, it should
also be balanced against the number of false positives. Based
on the typical distance of corresponding activity from clones,
we found radius, ρ = 6.5 to be a reliable value in the detection
of app clones.

 Challenge 2 (C2): Since the sets of activities are unordered
and we do not know which activity from app A should be
compared with which activity of app B. Further, each activity
from one app should only be compared to one other activity
from the other app. To ensure that the similarities between the
apps are found, we must compare the activities in a way that
results in the highest similarity scores. For 2 apps that are
similar (as in app clones), their true similarity index can only
be found if the activities are correctly compared with the
corresponding activities in the other app. A wrong match in the
comparison of activities will result in low similarity, despite
the fact that the apps are similar. On the other hand, if the apps
are independently developed, their highest similarity score will
still be low. Note that after matching of near neighbor (solution
to C1), C2 is yet to be resolved in some cases. For example,
app A has 2 activities, A1 and A2. App B is a clone of app A,

167

with 2 activities as well, where B1 is similar to A1 and B2 is
similar to A2. If A1 is similar to A2, then the near neighbor of
A1 will possibly include B1 and B2. This is known as
assignment problem, a fundamental problem in the field of
optimization or operation research in mathematics. Notably,
this is not a balanced assignment problem. Firstly, when the
pair of apps has a different number of activities the problem
becomes unbalanced. Secondly, not all activities from one app
will be in the near neighbor of another app. In this case, there
will be invalid assignments.

 To overcome C2, we employ the Hungarian algorithm [25]
that is frequently used to solve assignment problems. The
Hungarian algorithm is an algorithm that finds the optimal
minimum match. We use the algorithm to find the optimal
pairs of most similar screens between 2 apps so that the overall
Euclidean distance is minimized. The Hungarian algorithm is
based on the following principle: if a constant is added to or
subtracted from every element on any row or column of the
cost matrix for a given assignment problem, then the optimal
solution for the resulting cost matrix will have the same
optimal solution as the original cost matrix. To employ the
Hungarian algorithm for each pair of apps with the assignment
problem, we first construct the cost matrix for the apps pair.
The cost will be the Euclidean distance for each activities pair
between the apps. Secondly, if the total number of activities
between the pair of apps is not equal, we add dummy rows
and/or columns with zero values to make the cost matrix a
square matrix. Lastly, if there are assignments that are invalid,
such as when the pair of activities between the apps are not
near neighbors, we assign these activities pair a large positive
number as the cost value.

 Finally, after overcoming C1 and C2, we compute the
similarity index (SI) between each pair of potential clones. The
SI is computed based on the ratio between the number of
similar activities matched and the maximum number of
activities between the pair:

 ()BA

BA

ss
ss

SI
,max

∩= (1)

 In summary, to compute similarities, we first use E2LSH to
find the near neighbors within a fixed radius for all activities.
Then we apply the Hungarian algorithm to find the pairs of
activities within the nearest neighbor that will result in the
highest similarity score. Lastly, we compute similarity index
based on (1).

D. Clone Clustering
 By clustering the apps into groups of clone sets we can
determine how the clones are distributed across the Android
markets. Furthermore, the clone sets can be used for further
analysis of the relationships between the clones and to
understand the behavior of the plagiarists. If the SI between 2
apps are above or equal to the pre-defined threshold (SI σ)
then they will be considered as clones. The clone set clustering
is based on the following algorithm: The output is a clustering
S for the apps, in which all apps in a cluster are with similarity
index SI greater than or equal to σ, i.e., SI σ. Each clone set

will contain at least 2 apps. σ can be set based on the desired
number of false positive versus false negative ratio. Generally,
as the value of σ increases, it would decrease the number of
apps in a set and increase the probability of incurring false
negatives. On the other hand, as the value of σ decreases, the
number of apps in the set and the probability of incurring false
positives would increase. We empirically found that the
similarity threshold, σ = 0.76 is a reliable value in Android app
clone detection. Figure 3 shows a distribution of the number of
false positives and false negatives with different thresholds.

IV. EVALUATION
 We implemented a prototype of our approach in Java
programming language and shell script. The experiments are
conducted on Linux with 3.2GHz Intel Xeon CPU and 8 GB of
RAM.

A. Dataset
 In the official Android market, Google Play, close to 85%
of the apps belongs to the free category (requires no cost to
download) [26]. Similarly, in third-party markets we also
observed that the proportion of free apps is significantly larger
than paid apps. Therefore, we limit our dataset to only free
apps. The dataset was collected from Google Play and 3 other
different third-party Android markets, Anruan [27], Appsapk
[28] and Pandaapp [29]. The apps are usually categorized
differently in different markets. We believe that from the
perspective of the plagiarists, popular apps have more
repackaging values. From each market we downloaded their
top free popular apps. The number of apps from each market is
presented in Table I.

 To evaluate the false positive and false negative rates, we
would need a set of benchmark apps that are labeled
accordingly. Therefore, in order to evaluate our approach, we
manually checked the set of real world apps, and labeled them
as clones or unique, accordingly. With a dataset of 521 apps we
have 135,460 pairs of apps. Since comparing the 135,460 pairs
of apps pairwise is almost impossible, we apply a more
efficient approach as follows:

Fig. 3. Number of false positive and false negative with various similarity

indexes

0
10
20
30
40
50
60
70
80
90

100

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r o

f F
al

se
 P

os
iti

ve
 (F

P)
 &

 F
al

se

N
eg

at
iv

e
(F

N
)

Similarity Index (SI)

FP

FN

168

TABLE I. NUMBER OF APPLICATIONS FROM EACH MARKET

Market Number of apps from each market

Google Play 105

Anruan 100

Appsapk 167

Pandaapp 149

 1. Categorization: To greatly reduce the number of
comparisons, we first divide the apps into various categories.
We manually installed and launched each app to briefly grasp
an idea of the app’s main functionality. Next, we categorize
each app to a category based on what we observed. To reduce
the number of apps in each category, the categories we chose
are more specific. For example, for an app that has calculator
as main functionality, instead of a general category such as
education we assign it under the category named calculator.

 2. Clones within category: In this step, we determine the
clone sets among the apps within each category (with >1 app)
from 2 aspects: 1) We manually navigated through the apps to
check for similarities in the functionalities among apps. 2)
With the aid of apktool, we disassembled the APKs to check
the smali code and resource. Apktool is able to decode the
app’s resources back to nearly its original form. If the apps are
similar in both aspects, we include them in the same clone set.
At the end of this process, we found 14 sets of clones with 33
apps in total.

B. False Positive
 To measure the false positive rate (FPR), we execute our
prototype implementation on the same dataset which we
manually validated for clones. Any apps that were detected as
clone by our approach, but not labeled as the clone is
considered to be false positive. With radius ρ = 6.5 and
threshold σ = 0.76, we found 15 sets of clones with 35 apps in
total. Out of these 15 sets of clones, a clone set of 2 apps is
found to be false positive, the remaining 14 sets were correctly
detected. Therefore, with radius ρ = 6.5 and threshold σ = 0.76,
our false positive rate, FPR = 0.4%.

 We investigated the 2 false positive apps and found that
there are only 2 activities with 1 view in each of these apps.
The number of apps found from each market is shown in Table
II. Figure 4 shows the distribution of the similarity index
among the apps pairs.

C. False Negative
 Any apps that are labeled as clones from our manual
inspection, but not detected by our approach are considered to
be false negatives. As aforementioned, our approach detected
all the clone sets that were manually validated. Since our
approach detected all app clones, our approach has 0 false
negative. Therefore, with radius ρ = 6.5 and threshold σ =
0.76, our false negative rate, FNR = 0.0%.

TABLE II. NUMBER OF APPLICATIONS DETECTED AS CLONES

Android
App

Markets

Number of
Apps Detected

as a clone

Percentage of Apps in our
dataset from individual

market detected as clone
(%)

Google Play 8 7.6

Anruan 8 8

Appsapk 7 4.8

Pandaapp 12 7.1

D. Performance
 We evaluate the performance of our approach from 2
aspects: 1) The time needed to obtain the UI hierarchy dumps
from APKs. 2) The time needed to detect clone sets given the
XML of UI hierarchy dumps.

 The time needed to obtain the XML depends on the number
of activities in the app. For the dataset of 521 apps we have
approximately 16,000 activities in total. Figure 5 presents the
relationship between the number of activities and the time
taken to obtain the XML from 1 Android emulator. In Fig. 5,
we can see that the time needed increase linearly with
increasing number of activities. On average it takes less than 2
seconds per activity to dump its UI hierarchy. Figure 6 presents
a histogram of the number of activity components within the
apps in logarithmic scale. For better presentation we split the
activity counts into bins of 50. In Fig. 6, we can observe that
majority of the apps contain less than 50 activities.

 After applying the filter F1, we are left with 10 attributes
from each node in the XML for birthmark generation. After
applying the Filter F2, the number of elements in the birthmark
vectors is reduced by nearly 40%. For the dataset of 521 apps,
the time from birthmarks generation to clone sets output takes
about 55 seconds.

E. Comparison with Existing Approach
 In this section, we evaluate our prototype implementation
on a dataset provided by a research group [11]. The dataset
includes 259 apps which are divided into 99 clone sets as
detected by their algorithm, with each clone set consisting of 2
or more apps. Based on this dataset, we evaluate the
effectiveness of our approach in detecting different types of
clones. In addition, we also measured the false negative rate of
our approach on this dataset.

 One of their clone sets contains 3 service apps. These non-
typical apps are not within our scope because unlike typical
Android apps, these apps execute services in the background
and do not require UI for user interactions. With radius ρ = 6.5
and threshold σ = 0.76, we detected 96 clone sets and some of
which are not identical to clone sets they have detected. We
manually investigated all cases where our clone sets do not
coincide with their clone sets.

169

Fig. 4. Histogram of detected application pairs sim

Fig. 5. Time taken to collect XMLs

Firstly, apps in 2 of their clone sets were
different clone sets by our approach. When w
in these 4 clone sets, we found that the apps w
set were indeed more similar. There were s
between these apps, but we do not perceive th
their functionalities are different. Secondly, w
clones that were falsely included in their clon
in each of these 3 sets were signed by the sam
but with different functionalities. We believ
apps, the high similarity scores resulting
detection are due to developers reusing most
their other apps. Lastly, another mismatch we
both apps in the set consist of only a few act
activities are not similar. The differences in a
these 2 apps are due to different third party
between these 2 apps is 66.6%. This shows tha
able to detect their similar activities. For th
radius ρ = 6.5 and threshold σ = 0.76, our fa
FNR = 0.8%.

 Based on the clone sets that we have det
experiments, we evaluate the ability of our ap
different types of clones. Of all the clone sets
found 14 clone sets with at least a pair of ap
amateur attacks. For example, we found clon
social media functions. This partially affects th
and UIs of the app. In addition, we also foun
are translated and signed with a different
Further investigation is required to determine
actual clone case or a legal translation. All o
remaining clone sets belong to lazy attacks.

1

10

100

1000

10000

0.1 0.2 0.3 0.4 0.5 0.6 0.7

N
um

be
r o

f A
pp

lic
at

io
n

Pa
irs

Similarity Index

0
5000

10000
15000
20000
25000
30000
35000
40000
45000

0 4000 8000 12000

To
ta

l T
im

e
Ta

ke
n

(S
ec

on
ds

)

Activities

milarity index

e divided into 4
we check the apps
within each clone
some similarities
hem as clones as

we found 3 sets of
ne sets. The apps
me developer key
ve that for these
from code base
of their codes in

e have is because
tivities and some

activities between
libraries. The SI

at our approach is
his dataset, with

alse negative rate,

tected from the 2
pproach to detect
s we detected, we
pps belonging to

nes with different
he functionalities

nd some apps that
t developer key.
e whether it is an
other apps in the

Fig. 6. Histogram of activities c

 To determine whether the app
them to VirusTotal [30] for scann
online service that allows user to u
analyzing to identify malware. A
detected from both experiments are
least one of the scanners from Virus
are adware, Trojan horses and th
spyware. Note that malware attack
classified as lazy attack or amateu
lazy attack or an amateur attack
attached will also be classified as
detected clone sets, most of the ma
classified as lazy attacks.

V. DISCUSS

A. Accuracy and Efficiency
 In Section II, we mentioned tha
repackaging attacks: lazy attack, am
attack. In this section, we discuss
approach to detect the attack in each

 Lazy attack: In lazy attack
simple changes to the apps. Such
impact on the views in the activitie
can effectively detect lazy attacks.

 Amateur attack: An amateur
and knowledge from the plagiaris
code obfuscation and also mak
functionality of the app. Code obfu
UIs of the activities. The small cha
the app may or may not affect the U
Our approach detects similar ac
activities. In other words, it can to
changes in the view hierarchy. Mor
the functionality may affect only
activities. If there are many activiti
the changes, it will not affect our ov

 Malware: The clone with malic
masquerade as the original app by
and user interface similar to the ori
popularity. Since our approach focu
we can effectively detect this type
additional malicious payload usu

0.8 0.9 1

16000 20000

1

10

100

1000

50 100 150 2

N
um

be
r

of
 A

pp
lic

at
io

ns

Acti

counts per application

s are malware, we upload
ning. VirusTotal is a free
upload a suspicious file for
About 67% of the clones
e reported as malware by at
sTotal. Most of the malware
here are also a number of
k can, at the same time, be
ur attack. In other words, a
k with malicious payload
 a malware attack. In our

alware attacks are primarily

SION

at there are 3 categories of
mateur attack and malware
s the effectiveness of our

h of these categories.

the plagiarist makes only
an attack has little or no

es. Therefore, our approach

attack requires more effort
st. They employ automatic
ke small changes to the
uscation will not affect the
nges in the functionality of

UIs in some of the activities.
ctivities and not identical
olerate a certain degree of
reover, the small changes in
some activities but not all
ies that are not affected by

verall detection.

cious payload attached often
y keeping the functionality
ginal app to leverage on its

uses on detecting similar UI,
of attack. Furthermore, the
ally does not include an

00 250 300 >300

ivities

170

additional activity that has views visible to the user. Thus, it
will not affect our detection.

RQ1. Can our proposed approach effectively detect
different types of application clones across multiple
markets?

The result shows that, our approach is effective in detecting
lazy, amateur and malware attacks. Our approach may not be
able to detect certain amateur attacks, depending on the extent
of the changes to the apps. However, it is not common for the
plagiarist to bother understanding its bytecodes to make
extensive modifications to the app. We note that there is no
general solution for detecting similar app with extensive
changes. In addition, our approach certainly raises the bar for
the plagiarist to repackage apps without being detected when
uploaded. To avoid detection by our approach by modifying
the UIs without proper planning will affect the user experience
and in turn affect the popularity of their repackaged apps.
Proper modification of the UI requires the plagiarists to put in
extra effort to redesign the UI carefully.

The performance bottleneck of our approach is the speed of
the emulator that limits the efficiency of dumping the UI
hierarchies from APKs. However, this process can be
parallelized for better efficiency. For example, we can use
multiple computers with each computer running multiple
emulators.

B. Limitations and Future Works
 RQ2. What are the possible limitations of our approach
and how can we overcome them?

 Firstly, our approach is unable to detect clones in service
apps since they just provide services in the background and
usually do not contain UIs that are necessary for user
interaction.

 Secondly, apps with a small number of activities or with
low view counts in the activities may increase the false positive
rate. However, we noted that this is a common limitation for
most birthmark or finger print clone detection approaches.

 Thirdly, our approach may also be limited by apps with
multiple data dependent activities. For example, apps that
require login credential is one of them, this category of apps
usually restricts their entry point to the main activity with login
UI. Any attempt to enter into the app from other activity will
fail or be redirected to the main login activity. The information
that can be obtained from these apps is limited, thus affecting
the accuracy of our approach.

 Lastly, our evaluation is based only on free apps and the
result may be different for paid apps, which requires the users
to pay certain fees before the download is available to them.
Cloning may be more prevail in paid apps, since users would
be more likely to choose the similar but free apps. Conversely,
the plagiarists may be less willing to purchase the app to
repackage it.

 For future work, we would like to conduct more in-depth
studies on how different types of repackaging attacks can affect
the UIs. We would also like to explore additional alternatives
to extract more relevant information from the APKs, such as

those data dependent activities. These would help us to design
better software birthmarks that may further improve our
accuracy and efficiency. Due to the complex nature Android
apps, code or resource analysis alone is insufficient for clone
detection. We believe that a hybrid static and dynamic analysis,
which integrates both code and UI information for app clone
detection, would be a very promising and interesting research
direction.

V. RELATED WORK
 A number of previous studies have already been conducted
on Android clone detection. Most of the existing approaches
only focus on code-based similarities.

 Zhou et al. [9] proposed an app similarity measure system,
DroidMOSS, to detect repackaged apps in third-party Android
markets. DroidMOSS first compute the fuzzy hashes for each
method within the app to generate a fingerprint for the app.
They then compute a similarity score based on the edit distance
between the 2 fingerprints.

 DNADroid [12] first detect potential similar apps based on
their meta information that is used to describe the app. In the
second stage, DNADroid creates the program dependency
graph (PDG) as a fingerprint for each app that is to be
compared. Lastly, they apply a filter to prune unlikely clones,
before comparing the rest of the PDG pairs that passed the
filter using a subgraph isomorphism.

 Androguard [10] provides a similarity measure tool that
supports several standard similarity metrics. The similarity is
computed by comparing similar methods in the dex code of the
apps. Rather than detecting cross-market app clones,
Androguard is meant for finding the difference between 2 apps
on a small set of data.

 Chen et al. [11] extracted the methods from the apps and
construct a 3D-control flow graph (3D-CFG) to get the
centroid. They then leverage the centroid to measure method
level-similarity across multiple markets. Lastly, the method-
level similarity result is used to group similar apps together.

 Zhou et al. [31] focused on the problem of detecting
“piggybacked' apps, which are clones with additional malicious
payload attached. They first perform module-decoupling
technique to split the code into primary and non-primary
modules. They then extract a semantic feature fingerprint for
each primary module and use a linearithmic search algorithm
to detect similar apps.

 Hanna et al. [14] proposed Juxtapp, a tool to detect code
reuse among Android apps. Juxtapp uses k-grams of the
opcode sequences and apply the feature hashing to extract the
feature of the apps. Juxtapp can identify vulnerable code reuse,
instance of known malware and pirated copies of the original
apps.

 All these approaches focus on static code-based detections
that are vulnerable to advance obfuscation techniques. On the
other hand, there are a few existing works that detect Android
app clones without relying on code similarities.

 Differing from code similarity based approaches,
FSquaDRA [32] detects Android app clones based on the

171

comparison of the resource files that are necessary for creating
the APK. They leverage on the hashes that were computed and
stored in the package during the process of app signing. This
approach is resilient to code obfuscation, but some small
changes in the resources will affect the similarity.

 Viewdroid [19] proposed a user interface based approach to
detect app repackaging. Our approach is similar to Viewdroid
in the sense that both our approaches leverage on UI
information. However, they construct view graph based on
static analysis of the control flow relationship between the
views within the app. Our approach differs from them in that
our birthmark information is collected from runtime and we
generate vectors from this information.

VI. CONCLUSION
 In this paper, we presented a novel approach to detect
Android app clones based on birthmarks generated from
runtime UI information. Our approach uses locality sensitive
hashing to find a near neighbor for similar birthmarks and
apply the Hungarian algorithm to find the optimal activities
pairs with the overall highest similarity. The result shows that
our approach can effectively detect different types of
repackaging attacks such as, lazy, amateur and malware attacks
with low false positive (FPR=0.4%) and false negative
(FNR=0.8%) rates. Many of our detected apps (67%) belong to
malware attacks, this call for a more rigorous vetting across all
Android markets. Our paper helps the reader to understand the
UI of Android apps and how this information can be applied to
clone detection. We believe that our study supports a new
research direction or can be used to complement existing code-
based approaches in mobile app clone detection.

VI. REFERENCES
[1] IDC Corporate USA. (2014, 2 dec). Smartphone OS Market

Share, Q3 2014. Available:
http://www.idc.com/prodserv/smartphone-os-market-
share.jsp

[2] AppBrain. (16 Sep). Number of Android applications.
Available: http://www.appbrain.com/stats/number-of-
android-apps

[3] Business and Revenue Working Group. (3 Dec).
Monetization: Picking the Path to App Profitability.
Available: http://www.appdevelopersalliance.org/app-
monetization/

[4] (18 Sep). android-apktool: A tool for reverse engineering
Android apk files. Available: code.google.com/p/android-
apktool/

[5] (28 SEP). dex2jar: Tools to work with android .dex and java
.class files. Available: https://code.google.com/p/dex2jar/

[6] D. Octeau, S. Jha, and P. McDaniel, "Retargeting Android
applications to Java bytecode," presented at the Proceedings
of the ACM SIGSOFT 20th International Symposium on
the Foundations of Software Engineering, Cary, North
Carolina, 2012.

[7] C. Gibler, R. Stevens, J. Crussell, H. Chen, H. Zang, and H.
Choi, "Adrob: Examining the landscape and impact of
android application plagiarism," in Proceeding of the 11th
annual international conference on Mobile systems,
applications, and services, 2013, pp. 431-444.

[8] Y. Zhou and X. Jiang, "Dissecting android malware:
Characterization and evolution," in Security and Privacy
(SP), 2012 IEEE Symposium on, 2012, pp. 95-109.

[9] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, "Detecting
repackaged smartphone applications in third-party android
marketplaces," in Proceedings of the second ACM
conference on Data and Application Security and Privacy,
2012, pp. 317-326.

[10] (24 Sep). Androguard: Reverse engineering, Malware and
goodware analysis of Android applications. Available:
https://code.google.com/p/androguard/

[11] K. Chen, P. Liu, and Y. Zhang, "Achieving accuracy and
scalability simultaneously in detecting application clones on
Android markets," in ICSE, 2014, pp. 175-186.

[12] J. Crussell, C. Gibler, and H. Chen, "Attack of the Clones:
Detecting Cloned Applications on Android Markets," in
Computer Security – ESORICS 2012. vol. 7459, S. Foresti,
M. Yung, and F. Martinelli, Eds., ed: Springer Berlin
Heidelberg, 2012, pp. 37-54.

[13] H. Huang, S. Zhu, P. Liu, and D. Wu, "A Framework for
Evaluating Mobile App Repackaging Detection
Algorithms," in Trust and Trustworthy Computing, ed:
Springer, 2013, pp. 169-186.

[14] S. Hanna, L. Huang, E. Wu, S. Li, C. Chen, and D. Song,
"Juxtapp: A scalable system for detecting code reuse among
android applications," in Detection of Intrusions and
Malware, and Vulnerability Assessment, ed: Springer, 2013,
pp. 62-81.

[15] Google Inc. (10 Dec). Application Fundamentals.
Available:
http://developer.android.com/guide/components/fundamenta
ls.html

[16] Google Inc. (25 Sep). Intents and Intent Filters. Available:
http://developer.android.com/guide/components/intents-
filters.html

[17] Google Inc. (10). Activities. Available:
http://developer.android.com/guide/components/activities.ht
ml

[18] Google Inc. (27 Sep). uiautomator. Available:
http://developer.android.com/tools/help/uiautomator/index.h
tml

[19] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu,
"ViewDroid: Towards obfuscation-resilient mobile
application repackaging detection," in Proceedings of the
7th ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec 2014). ACM, 2014.

[20] Google Inc. (4 Dec). Tools Help. Available:
http://developer.android.com/tools/help/index.html

[21] Google Inc. (25 SEP). <activity>. Available:
http://developer.android.com/guide/topics/manifest/activity-
element.html

[22] Google Inc. (03 DEC). Accessing Resources. Available:
http://developer.android.com/guide/topics/resources/accessi
ng-resources.html

[23] LSH Algorithm and Implementation (E2LSH). Available:
http://www.mit.edu/~andoni/LSH/

[24] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni,
"Locality-sensitive hashing scheme based on p-stable
distributions," in Proceedings of the twentieth annual
symposium on Computational geometry, 2004, pp. 253-262.

[25] H. W. Kuhn, "The Hungarian method for the assignment
problem," Naval research logistics quarterly, vol. 2, pp. 83-
97, 1955.

172

[26] AppBrain. (1 Dec). Free vs. paid Android apps. Available:
http://www.appbrain.com/stats/free-and-paid-android-
applications

[27] (05 SEP). Anruan. Available: http://www.anruan.com/
[28] (05 SEP). Appsapk. Available: http://www.appsapk.com/
[29] (05 SEP). Pandaapp download center. Available:

http://download.pandaapp.com
[30] (03 JAN). VirusTotal. Available:

https://www.virustotal.com/en/

[31] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, "Fast,
scalable detection of piggybacked mobile applications," in
Proceedings of the third ACM conference on Data and
application security and privacy, 2013, pp. 185-196.

[32] Y. Zhauniarovich, O. Gadyatskaya, B. Crispo, F. La Spina,
and E. Moser, "FSquaDRA: Fast Detection of Repackaged
Applications," in Data and Applications Security and
Privacy XXVIII, ed: Springer, 2014, pp. 130-145.

173

