
Detecting Clones in Android Applications through 
Analyzing User Interfaces 

Charlie Soh, Hee Beng Kuan Tan, Yauhen Leanidavich Arnatovich, Lipo Wang 
School of Electrical and Electronic Engineering 
Block S2, Nanyang Technological University 

Nanyang Avenue, Singapore 639798 
{csoh004, ibktan, yauhen, elpwang}@ntu.edu.sg 

 
 

Abstract—The blooming mobile smart phone device industry 
has attracted a large number of application developers. However, 
due to the availability of reverse engineering tools for Android 
applications, it also caught the attention of plagiarists and 
malware writers. In recent years, application cloning has become 
a serious threat to the Android market. In previous work, mobile 
application clone detection mainly focuses on code-based 
analysis. Such an approach lacks resilient to advanced 
obfuscation techniques. Their efficiency is also questionable, as 
billions of opcodes need to be processed for cross-market clone 
detection. In this paper, we propose a novel technique of 
detecting Android application clones based on the analysis of 
user interface (UI) information collected at runtime. By 
leveraging on the multiple entry points feature of Android 
applications, the UI information can be collected easily without 
the need to generate relevant inputs and execute the entire 
application. Another advantage of our technique is obfuscation 
resilient since semantics preserving obfuscation technique do not 
affect runtime behaviors. We evaluated our approach on a set of 
real-world dataset and it has a low false positive rate and false 
negative rate. Furthermore, the results also show that our 
approach is effective in detecting different types of repackaging 
attacks. 

Keywords—Android; Repackaging; Clone detection; User 
interface; Obfuscation resilient  

I. INTRODUCTION 
 Android dominates the worldwide smartphone OS market 
share, holding close to 85% of the market share [1]. At the time 
of writing this paper, Google’s official android application 
(app) market, Google Play, hosts up to 1.3 million apps [2]. 
One of the main reasons for Android to attract a large amount 
of developers could be due to the ease of creating an Android 
app, as the tutorials and tools for android app development are 
readily available. Moreover, mobile app developers are 
encouraged by the potential profits from creating apps as they 
can monetize through various monetization models such as 
paid downloads, in-app purchases, subscriptions, in-app ads, 
sponsorships and crowd funding [3].  

 Despite the fact that source code is usually unavailable for 
published Android apps, it is usually straightforward to reverse 
engineer Android apps due to the availability of reverse 
engineering tools such as apktool [4], dex2jar [5] and Dare [6]. 
Plagiarists can easily make use of these tools to disassemble 
the Android package (an APK file) downloaded from any 

Android market, modify its content, repackage it and sign it as 
their own app. This attack is known as repackaging or cloning. 
The increase in popularity together with the ease of 
repackaging Android apps draws the interest of plagiarists and 
malware writers.  

 A repackaging of the app by redirecting advertisement 
revenues and adding malicious payloads could potentially 
cause the hard working legitimate developers to lose their 
revenues and even reputations. A recent study by Gibler et al. 
[7] reported that with the assumption that the user who 
downloaded the clones would have downloaded the original 
app, legitimate developer lose about 10% of the user base to 
the clones. Zhou et al. [8] found that 86% of the malware 
samples are clones of the legitimate apps. In addition, apart 
from Google Play, there are numerous third-party Android 
markets available for the legitimate developers and plagiarists 
to upload their apps. Most of these third-party Android markets 
do not ensure for the quality of the apps that are published on 
their market. A study by Zhou et al. [9] found that out of 6 
third-party markets, 5-13% of the apps hosted are clones. 
Based on the current Android market growth rate, we envision 
that these figures are likely to increase in the future. 

 From the above, we observed that app cloning is a severe 
problem that does not only affect the developers, but also 
destroy the health of the Android app market, hence proving 
the importance of detecting app clones.  

 Previous studies to perform Android app clone detections 
are mostly based on static code analysis [9-12].  However, 
these approaches may have some weaknesses. The practice of 
code reuse and the usage of the more sophisticated obfuscation 
technique may affect the detection of such approaches [13]. 
Zhou et al. [8] reported that malware writers tend to employ 
obfuscation to avoid detection. Furthermore, since source code 
is generally not publicly available, the analysis is usually 
conducted on opcodes. A study [14] on 30,000 Android apps 
shows that the apps with median size of 754KB have 20,555 
median opcodes. With the need for analysis to be conducted 
across multiple markets, the number of opcodes that need to be 
analyzed would increase greatly, resulting in the “billion 
opcodes” problem [11]. 

 In this paper, we propose a novel approach for cross-market 
Android app clone detection based on robust dynamic software 
birthmarks. The birthmarks are generated by leveraging on the 
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view hierarchy information of the user interface (UI). The view 
hierarchy can be extracted in XML format when the activity is 
in the foreground of the system (displayed on the screen) 
where user can interact with it. The intuition behind our 
approach is based on the following observations: 

 (a) Obfuscation techniques that preserve semantics do not 
affect runtime behaviors. Therefore, dynamic software 
birthmarks have a much better obfuscation resistance compared 
to static software birthmarks. 

 (b) The plagiarists would want to keep the look and feel of 
the UI similar to that of the original app so as to leverage on 
the popularity of the original app. Furthermore, it may be easy 
to modify the position and size of the UI, but modifying the 
functionality of the UI requires more effort and understanding 
of the app code. Thus, app clones would likely have UI similar 
to the original apps.  

 (c) Unlike traditional programs, Android apps have a 
unique feature of having multiple entry points. We can 
leverage on this feature to access and extract information from 
different components of the app directly.  

 Our approach provides an alternative to the traditional 
code-based static analysis detection approaches and does not 
inherit all disadvantages of dynamic analysis approaches. The 
proposed approach has the following advantages:  

 (a) Obfuscation resilient: The UI information used in our 
approach for generating birthmarks does not depend on static 
analysis. On the contrary, the UI information is obtained during 
runtime, which is not affected by semantics preserving code 
obfuscation techniques. Thus, the birthmarks will be resilient 
to code obfuscation techniques. 

(b) No input generation required: By leveraging on the 
Android app multiple entry points feature, we extract a list of 
activities from the app’s package, and start each of them 
explicitly to obtain their runtime UI information. Hence, 
despite being based on dynamic analysis, our approach does 
not require the generation of inputs to navigate through the 
complex UI, which is a process that is hard to automate.  

 Research question: We would like to answer the following 
research questions in our study: 

RQ1. Can our proposed approach effectively detect 
different types of application clones across multiple 
Android markets? 

 In this research question, we want to find out whether our 
proposed approach can effectively detect all kinds of clone 
attacks. Furthermore, due to the large number of apps across 
multiple third-party Android markets, we need to determine 
whether our approach is scalable, for it to be of practical use.  

RQ2. What are the possible limitations of our approach 
and how can we overcome them? 

 In this research question, we seek to identify, from our 
experimental results, the possible weaknesses and limitations 
of our approach and what are the possible solutions to 
overcome them.  

 In summary, the main contributions of our work are as 
follows:  

• We propose an approach to detect Android application 
clones based on the birthmarks generated from runtime 
UI information.  To the best of our knowledge, we are 
the first to use runtime UI birthmarks for Android app 
clone detection.  

• Our approach leverages on the multiple entry points 
feature of the Android system. Therefore, it does not 
require the generation of relevant inputs for execution 
of the entire app.  

• We evaluate our approach on a set of real-world data 
collected from 4 different Android markets. 
Experimental results show that our approach has low 
false positive and false negative rates.  

• We also evaluate the effectiveness of our approach on 
a collection of clone set data from another research 
group. The results show that our approach can 
effectively detect different types of clone attacks. 

 This paper is organized as follows: Section II presents the 
background. Section III describes the methodology of our 
approach in detail. Section IV covers the evaluation of our 
technique. Section V presents the discussion of our results. 
Section VI discusses related previous work. Section VII 
concludes the paper. 

II. BACKGROUND 

A. Android Application Structure 
 An Android app is built from a combination of different 
components such as activity, service, content provider and 
broadcast receiver. An activity component provides a screen 
with UIs, while a service component performs operations in the 
background. The content provider manages the data for a set of 
shared apps and the broadcast receiver component provides 
response to broadcast announcements [15]. These components 
together with various resources are compiled and packaged 
into an APK file. 

 The components communicate with each other through 
intents. The intents can be thought of as a messenger that can 
be used to make requests to another component. There are 2 
types of intents, explicit intent and implicit intent [16]. An 
explicit intent specifically states the fully qualified class name 
of the component, while an implicit intent states a general 
action to perform, without naming a specific class.  

 In this paper, we focus on the activity components. An 
Android app usually consists of a number of activities that are 
not closely related to each other. For example, an email app 
might consist of 3 activities, each with a different purpose, 
such as compose, read and list emails. If permitted, any one of 
these activities can be started by a different app [15]. Hence, 
unlike traditional programs that only possess a single entry 
point, Android apps possess multiple entry points. 

B. User Interface 
 The UI components in an activity structure as a hierarchy 
of views (e.g., “Button”, “CheckBox”, “TextView”) and view 
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-<node index="1" text="" resource-id="android:id/content" class="android.widget.FrameLayout" 
package="com.langlearner.deviceid" content-desc="" checkable="false" checked="false" clickable="false" 
enabled="true" focusable="false" focused="false" scrollable="false" long-clickable="false" password="false" 
selected="false" bounds="[0,106][720,1184]"> 

-<node index="0" text="" resource-id="" class="android.widget.LinearLayout" 
package="com.langlearner.deviceid" content-desc="" checkable="false" checked="false" clickable="false" 
enabled="true" focusable="false" focused="false" scrollable="false" long-clickable="false" password="false" 
selected="false" bounds="[0,106][720,1184]"> 

-<node index="0" text="79e282c78b88011b" resource-id="com.langlearner.deviceid:id/textView1" 
class="android.widget.TextView" package="com.langlearner.deviceid" content-desc="" 
checkable="false" checked="false" clickable="false" enabled="true" focusable="false" focused="false" 
scrollable="false" long-clickable="false" password="false" selected="false" bounds="[0,106][720,288]" 
/> 

-<node index="1" text="Send" resource-id="com.langlearner.deviceid:id/btnSend" 
class="android.widget.Button" package="com.langlearner.deviceid" content-desc="" checkable="false" 
checked="false" clickable="true" enabled="true" focusable="true" focused="false" scrollable="false" 
long-clickable="false" password="false" selected="false" bounds="[0,288][720,396]" /> 

Fig.1. Screenshot of an activity with partial corresponding XML 

groups (e.g., “FrameLayout”, “LinearLayout”, 
“RelativeLayout”). Each of these views or view groups is 
tasked to manage a particular rectangular space within the 
activity’s window. A view group may be a parent of multiple 
views and view groups and it provides a layout of the interface 
for its child views [17].  

C. Uiautomator Tool 
 We use the uiautomator tool from the Android SDK to 
extract the UI information for analysis. Uiautomator is a 
testing framework that allows the developers to test the UI of 
their apps efficiently [18]. The tool provides a function that can 
be used to dump the view hierarchy of the current activity as an 
XML file. The generated XML file contains runtime 
information on all view objects in the activity. Each view and 
view group is represented as a node in the XML. In addition, 
each node has the exact same 17 distinct attributes with 
different possible values. However, if the uiautomator does not 
have access to a particular node, then the node will have an 
additional NAF attribute. Figure 1 shows an example of an 
activity’s screenshot taken from an app and part of the 
corresponding XML file generated by the uiautomator tool for 
the activity. 

D. Types of Application Repackaging 
 Generally, to repackage an app, the plagiarist will first 
obtain the APK of the target app. The plagiarist will then make 
certain modifications to the original app, such as redirecting 
advertisement revenue or injecting malicious payload. To 
avoid detection, the plagiarist is also likely to apply automatic 
code obfuscation techniques to the repackaged apps before 
signing it with a private key and publishing it on one or more 
Android market(s). In a recent paper, Zhang et al. [19] 
suggested that repackaging attacks can be classified into the 
following 3 categories: 

 Lazy Attack: A clone in the lazy attack category can have 
simple changes such as different author name or different 
advertisement. Automatic code obfuscation tools may also be 
applied without changing its functionalities. 

 Amateur Attack: In addition to automatic code 
obfuscation, an amateur attack also has changes to a small part 
of the app’s functionality. This type of attack requires more 
effort and knowledge from the plagiarists.  

 Malware:  In this attack, a malicious payload is added to 
the popular legitimate app to create a malicious app. The 
malicious app masquerades the original app by keeping the 
functionality and UI similar to the original app to leverage on 
its popularity.  

 We will evaluate the effectiveness of our approach in 
detecting app clones from these 3 different forms of clone 
attacks, in Section V. 

III. METHODOLOGY 
 In this section, we present in detail the methodology of our 
proposed approach. Firstly, given the APKs of the Android 
apps, we use an Android emulator to extract the names of the 
activities and execute them to gather their UI information in 
XML format. Secondly, we use 2 filters to exclude unnecessary 
information from the XML files and the remaining information 
are used to generate birthmarks. Thirdly, we employ locality-
sensitive hashing (LSH) to find the near neighbors for the 
birthmarks. If the near neighbor of a birthmark contains more 
than 1 activity from another app, we apply the Hungarian 
algorithm to find the maximum similarity. Lastly, we cluster 
the apps into groups of clone sets. Figure 2 shows the overview 
of our approach.  

A. Data Extraction 
 An Android app consists of multiple components. Each of 
these components is a unique point whereby the system can 
access the app. We make use of this feature to start each 
activity explicitly using explicit intents. By doing so, we avoid 
the hassle of generating inputs for the execution of each path in 
the app’s control flow graph.  However, a drawback of this 
method is that the components might not be actual entry points 
and some of them are not independent. These components 
cannot be accessed directly by using explicit intents. 
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Fig. 2. Overview of our approach 

 

Nevertheless, the same components that are inaccessible in the 
original app will most likely also be inaccessible in the clone. 
Thus, it may not affect the similarity between this pair of apps, 
or at least not significantly. 

 Even though this method poses a risk of losing information 
when activities fail to start, the complexity and required time is 
much lesser as compared to generating inputs for the execution 
of the entire app. The data extraction process is automated 
using Java programming language. In addition, we employ 
Android Debug Bridge (adb) and API libraries from the 
Android SDK [20] to interact with the APK files and Android 
virtual device. The details of the extraction process can be 
broken down into 2 main steps: 

 1. Extract activity names:  All the activities in the app 
must be declared in the AndroidManifest.xml. The Android 
system will not see any activities that are not declared and 
therefore cannot execute these activities [21]. For each app, we 
extract the list of activity names from the APK file. The 
extracted names are the fully qualified class names of the 
activities and these can be used to start the activities explicitly. 
The activities can be classified into 2 general groups: app’s 
activities and third-party libraries’ activities. App’s activities 
are the activities that are created by the developer of the app 
and are unique to the app. On the other hand, third-party 
libraries’ activities are the activities that are included by third-
party libraries. We do not consider third-party libraries’ 
activities, as they can be easily changed and may induce false 
positives. For example, an advertisement library will usually 
include advertising activities and changing the advertisement 
library will also cause a change in the activities.  

 2. Obtain XML file: In order to dump the view hierarchy 
of the UI using uiautomator tool, the downloaded APKs first 
have to be installed no an Android environment. For this 
purpose, we use an Android emulator created from the Android 

virtual device (AVD) Manager. We use adb commands to 
install the app and explicitly start the extracted activities using 
their fully qualified class names. When the activity is started, 
we use uiautomator to dump the view hierarchy into an XML 
file. Thereafter, we stop the current activity and the process is 
repeated until we reach the end of the activities list.  

B. Birthmark Generation 
 Software birthmark is a unique characteristic that the 
software possesses and serves as its identity. Software 
birthmark can be further classified as static birthmark or 
dynamic birthmark. In this paper, we extract the dynamic 
software birthmark of the app and use it for clone detection.  

 We implemented an XML parser in the Java programming 
language to generate the birthmarks. The birthmark of each 
activity is generated from their individual XML obtained from 
the previous process (Section III-A). As mentioned in Section 
II-C, each node in the XML has the exact same 17 distinct 
attributes with different possible values. An important attribute 
of each node is the “class” attribute, since the value of the 
“class” attribute denotes the type of view (e.g., “Button”, 
“TextView”, etc.) the node represents. Each birthmark is a 
vector where each element in the vector represents the 
frequency count of a unique combination of the view class, 
selected attribute and value of the selected attribute. If all 17 
attributes were used to generate the birthmarks, each vector 
would contain a large amount of elements. However, we found 
that not all attributes are useful in detecting app clones. 
Therefore, to reduce the amount of computations, we apply 2 
filters to exclude unnecessary information. 

 Filter 1 (F1): There are attributes that do not provide 
suitable information for clone detections.  Instead, these 
attributes would introduce noise into our birthmarks and cause 
our detection to be less accurate. There are also attributes with 
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string type values that can be easily manipulated and costly to 
compare. We analyze these attributes as follows:  

• The “index” attribute simply represents the position of 
the node in the view hierarchy. The positions can be 
easily switched within or even out of the view group. 
By doing so, it would result in a different index value 
being assigned to the node.  

• The “text” attribute represents the text that is 
displayed on screen. Changing the strings.xml file that 
can be found in the resource folder can easily change 
this text.  For example, the plagiarists can change the 
text from ‘username’ to ‘login id’ or from ‘email’ to 
‘E-mail’. 

• The value of the “resource-id” attribute may be empty 
when no resource is required for that particular view. 
There are 2 ways to access a resource, in code or in 
XML [22]. In any case, it can be easily modified at all 
places where the resource-id is expected.  

• The “package” attributes represent the package name 
of the app. It is common for plagiarists to modify the 
package name to avoid detections. Another reason to 
modify the package name could be that some Android 
markets do not allow 2 apps with the same package 
name to be hosted at the same time on their market. 

•  The “content-desc” attribute is similar to the text 
attribute. Modifying the strings.xml can also easily 
change it. 

• The “bounds” attribute represents the position and the 
area of the rectangular space controlled by the views 
and view groups. This can also be easily manipulated 
by modifying the layout of the corresponding XML 
found in the layout folder.  

 In summary, to reduce the amount of computations, F1 
excludes the following attributes from the birthmark: 
“package”, “index”, “bounds”, “text”, “resource-id” and 
“content-desc”. The rest of the attributes represent either the 
state or the functionality of the view. Firstly, attributes that 
represent the state of the views are as follows: “checked”, 
“focused” and “selected”. Secondly, examples of attributes 
that represent the functionality are as follows: “clickable”, 
“checkable”, and “scrollable”. 

 Filter 2 (F2): Due to the nature of the class, the value of 
certain attributes in the particular class will always remain the 
same across activities and apps. For instance, a node with 
“Button” class will never have the value of the password 
attribute equals to true. Such attributes do not provide any 
useful information for the app clone detection. Therefore, to 
further reduce the amount of computations, F2 excludes these 
attributes that provide zero information gain for the generation 
of our birthmarks.  

C. Similarity between Applications 
 From the previous step (Section III-B), we have a set of 
unordered birthmarks generated from multiple sets of 
unordered activities. In this step, we evaluate the similarities 
between apps. Apart from Google Play that hosts more than 1.3 

million apps, there are also numerous third party markets 
available for user to download apps. Based on these evidences, 
the intuitive pairwise comparison across these multiple 
Android markets is impractical. To design an effective and 
efficient solution, there are 2 challenges that we need to 
overcome: 

 Challenge 1 (C1): Due to the large number of apps across 
multiple Android markets, we need a scalable and accurate 
method to compare the apps similarity.  

 We overcome C1 by using Locality-sensitive hashing 
(LSH) algorithm. LSH is a primitive algorithm frequently 
employed in high dimension data processing for solving 
approximate or exact near neighbor problems. In our approach, 
we view the comparison of one vector to another as a near 
neighbor problem. For this purpose, we use the E2LSH [23] 
tool. The E2LSH tool’s algorithm is based on the LSH 
algorithm presented by Datar et al. [24]. The tool solves the 
following problem:  

Given a set of points P  Rd and a radius R > 0, for a query 
point q, find all points p  P with a probability of at least 1  
 such that ||q  p||2  R, where ||q  p||2 is the Euclidean 

distance between point q and point p.  

 We use the E2LSH tool to determine the near neighbor 
activities within a certain radius for each activity. The radius is 
calculated based on the Euclidean distance between the 2 
vectors. Instead of using theoretical formulas the E2LSH tool 
empirically estimates and optimizes parameters as a function of 
P. This is because theoretical formulas focus on worst-case 
point sets, thus less suitable for real datasets. It was mentioned 
in the E2LSH user manual that since the parameters are 
estimated, it might not be optimal in all cases. However, in our 
case we found that the estimated parameters provide the best 
result. Therefore, we keep the estimated parameters.   

 Note that by varying the radius we can affect the false 
positive and false negative rates of our approach. Radius is a 
threshold that is set based on the desired acceptance of the 
difference between the UIs of the activities. However, it should 
also be balanced against the number of false positives. Based 
on the typical distance of corresponding activity from clones, 
we found radius, ρ = 6.5 to be a reliable value in the detection 
of app clones. 

 Challenge 2 (C2): Since the sets of activities are unordered 
and we do not know which activity from app A should be 
compared with which activity of app B. Further, each activity 
from one app should only be compared to one other activity 
from the other app. To ensure that the similarities between the 
apps are found, we must compare the activities in a way that 
results in the highest similarity scores. For 2 apps that are 
similar (as in app clones), their true similarity index can only 
be found if the activities are correctly compared with the 
corresponding activities in the other app. A wrong match in the 
comparison of activities will result in low similarity, despite 
the fact that the apps are similar. On the other hand, if the apps 
are independently developed, their highest similarity score will 
still be low. Note that after matching of near neighbor (solution 
to C1), C2 is yet to be resolved in some cases. For example, 
app A has 2 activities, A1 and A2. App B is a clone of app A, 
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with 2 activities as well, where B1 is similar to A1 and B2 is 
similar to A2. If A1 is similar to A2, then the near neighbor of 
A1 will possibly include B1 and B2. This is known as 
assignment problem, a fundamental problem in the field of 
optimization or operation research in mathematics. Notably, 
this is not a balanced assignment problem. Firstly, when the 
pair of apps has a different number of activities the problem 
becomes unbalanced. Secondly, not all activities from one app 
will be in the near neighbor of another app. In this case, there 
will be invalid assignments. 

 To overcome C2, we employ the Hungarian algorithm [25] 
that is frequently used to solve assignment problems. The 
Hungarian algorithm is an algorithm that finds the optimal 
minimum match. We use the algorithm to find the optimal 
pairs of most similar screens between 2 apps so that the overall 
Euclidean distance is minimized. The Hungarian algorithm is 
based on the following principle: if a constant is added to or 
subtracted from every element on any row or column of the 
cost matrix for a given assignment problem, then the optimal 
solution for the resulting cost matrix will have the same 
optimal solution as the original cost matrix. To employ the 
Hungarian algorithm for each pair of apps with the assignment 
problem, we first construct the cost matrix for the apps pair. 
The cost will be the Euclidean distance for each activities pair 
between the apps. Secondly, if the total number of activities 
between the pair of apps is not equal, we add dummy rows 
and/or columns with zero values to make the cost matrix a 
square matrix. Lastly, if there are assignments that are invalid, 
such as when the pair of activities between the apps are not 
near neighbors, we assign these activities pair a large positive 
number as the cost value.   

 Finally, after overcoming C1 and C2, we compute the 
similarity index (SI) between each pair of potential clones. The 
SI is computed based on the ratio between the number of 
similar activities matched and the maximum number of 
activities between the pair: 

 ( )BA

BA

ss
ss

SI
,max

∩=  (1) 

 In summary, to compute similarities, we first use E2LSH to 
find the near neighbors within a fixed radius for all activities. 
Then we apply the Hungarian algorithm to find the pairs of 
activities within the nearest neighbor that will result in the 
highest similarity score. Lastly, we compute similarity index 
based on (1).  

D. Clone Clustering 
 By clustering the apps into groups of clone sets we can 
determine how the clones are distributed across the Android 
markets. Furthermore, the clone sets can be used for further 
analysis of the relationships between the clones and to 
understand the behavior of the plagiarists. If the SI between 2 
apps are above or equal to the pre-defined threshold (SI  σ) 
then they will be considered as clones. The clone set clustering 
is based on the following algorithm: The output is a clustering 
S for the apps, in which all apps in a cluster are with similarity 
index SI greater than or equal to σ, i.e., SI  σ. Each clone set 

will contain at least 2 apps. σ can be set based on the desired 
number of false positive versus false negative ratio. Generally, 
as the value of σ increases, it would decrease the number of 
apps in a set and increase the probability of incurring false 
negatives. On the other hand, as the value of σ decreases, the 
number of apps in the set and the probability of incurring false 
positives would increase. We empirically found that the 
similarity threshold, σ = 0.76 is a reliable value in Android app 
clone detection.  Figure 3 shows a distribution of the number of 
false positives and false negatives with different thresholds. 

IV. EVALUATION 
 We implemented a prototype of our approach in Java 
programming language and shell script. The experiments are 
conducted on Linux with 3.2GHz Intel Xeon CPU and 8 GB of 
RAM. 

A. Dataset 
 In the official Android market, Google Play, close to 85% 
of the apps belongs to the free category (requires no cost to 
download) [26]. Similarly, in third-party markets we also 
observed that the proportion of free apps is significantly larger 
than paid apps. Therefore, we limit our dataset to only free 
apps. The dataset was collected from Google Play and 3 other 
different third-party Android markets, Anruan [27], Appsapk 
[28] and Pandaapp [29]. The apps are usually categorized 
differently in different markets. We believe that from the 
perspective of the plagiarists, popular apps have more 
repackaging values. From each market we downloaded their 
top free popular apps. The number of apps from each market is 
presented in Table I. 

 To evaluate the false positive and false negative rates, we 
would need a set of benchmark apps that are labeled 
accordingly. Therefore, in order to evaluate our approach, we 
manually checked the set of real world apps, and labeled them 
as clones or unique, accordingly. With a dataset of 521 apps we 
have 135,460 pairs of apps. Since comparing the 135,460 pairs 
of apps pairwise is almost impossible, we apply a more 
efficient approach as follows: 

 

 
Fig. 3. Number of false positive and false negative with various similarity 

indexes 
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TABLE I.  NUMBER OF APPLICATIONS FROM EACH MARKET 

Market Number of apps from each market 

Google Play 105 

Anruan 100 

Appsapk 167 

Pandaapp 149 

 
 1. Categorization: To greatly reduce the number of 
comparisons, we first divide the apps into various categories. 
We manually installed and launched each app to briefly grasp 
an idea of the app’s main functionality. Next, we categorize 
each app to a category based on what we observed. To reduce 
the number of apps in each category, the categories we chose 
are more specific. For example, for an app that has calculator 
as main functionality, instead of a general category such as 
education we assign it under the category named calculator. 

 2. Clones within category: In this step, we determine the 
clone sets among the apps within each category (with >1 app) 
from 2 aspects: 1) We manually navigated through the apps to 
check for similarities in the functionalities among apps. 2) 
With the aid of apktool, we disassembled the APKs to check 
the smali code and resource. Apktool is able to decode the 
app’s resources back to nearly its original form. If the apps are 
similar in both aspects, we include them in the same clone set. 
At the end of this process, we found 14 sets of clones with 33 
apps in total.  

B. False Positive 
 To measure the false positive rate (FPR), we execute our 
prototype implementation on the same dataset which we 
manually validated for clones. Any apps that were detected as 
clone by our approach, but not labeled as the clone is 
considered to be false positive. With radius ρ = 6.5 and 
threshold σ = 0.76, we found 15 sets of clones with 35 apps in 
total. Out of these 15 sets of clones, a clone set of 2 apps is 
found to be false positive, the remaining 14 sets were correctly 
detected. Therefore, with radius ρ = 6.5 and threshold σ = 0.76, 
our false positive rate, FPR = 0.4%.  

 We investigated the 2 false positive apps and found that 
there are only 2 activities with 1 view in each of these apps. 
The number of apps found from each market is shown in Table 
II. Figure 4 shows the distribution of the similarity index 
among the apps pairs.  

C. False Negative 
 Any apps that are labeled as clones from our manual 
inspection, but not detected by our approach are considered to 
be false negatives. As aforementioned, our approach detected 
all the clone sets that were manually validated. Since our 
approach detected all app clones, our approach has 0 false 
negative. Therefore, with radius ρ = 6.5 and threshold σ = 
0.76, our false negative rate, FNR = 0.0%. 

 

 

TABLE II.  NUMBER OF APPLICATIONS DETECTED AS CLONES 

Android 
App 

Markets 

Number of 
Apps Detected 

as a clone 

Percentage of Apps in our 
dataset from individual 

market detected as clone 
(%) 

Google Play 8 7.6 

Anruan 8 8 

Appsapk 7 4.8 

Pandaapp 12 7.1 

 

D. Performance 
 We evaluate the performance of our approach from 2 
aspects: 1) The time needed to obtain the UI hierarchy dumps 
from APKs. 2) The time needed to detect clone sets given the 
XML of UI hierarchy dumps.  

  The time needed to obtain the XML depends on the number 
of activities in the app. For the dataset of 521 apps we have 
approximately 16,000 activities in total. Figure 5 presents the 
relationship between the number of activities and the time 
taken to obtain the XML from 1 Android emulator. In Fig. 5, 
we can see that the time needed increase linearly with 
increasing number of activities. On average it takes less than 2 
seconds per activity to dump its UI hierarchy. Figure 6 presents 
a histogram of the number of activity components within the 
apps in logarithmic scale. For better presentation we split the 
activity counts into bins of 50. In Fig. 6, we can observe that 
majority of the apps contain less than 50 activities.  

 After applying the filter F1, we are left with 10 attributes 
from each node in the XML for birthmark generation. After 
applying the Filter F2, the number of elements in the birthmark 
vectors is reduced by nearly 40%. For the dataset of 521 apps, 
the time from birthmarks generation to clone sets output takes 
about 55 seconds. 

E. Comparison with Existing Approach 
 In this section, we evaluate our prototype implementation 
on a dataset provided by a research group [11]. The dataset 
includes 259 apps which are divided into 99 clone sets as 
detected by their algorithm, with each clone set consisting of 2 
or more apps. Based on this dataset, we evaluate the 
effectiveness of our approach in detecting different types of 
clones. In addition, we also measured the false negative rate of 
our approach on this dataset. 

 One of their clone sets contains 3 service apps. These non-
typical apps are not within our scope because unlike typical 
Android apps, these apps execute services in the background 
and do not require UI for user interactions. With radius ρ = 6.5 
and threshold σ = 0.76, we detected 96 clone sets and some of 
which are not identical to clone sets they have detected. We 
manually investigated all cases where our clone sets do not 
coincide with their clone sets.  
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Fig. 4. Histogram of detected application pairs sim

Fig. 5. Time taken to collect XMLs 
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additional activity that has views visible to the user. Thus, it 
will not affect our detection.  

RQ1. Can our proposed approach effectively detect 
different types of application clones across multiple 
markets? 

The result shows that, our approach is effective in detecting 
lazy, amateur and malware attacks. Our approach may not be 
able to detect certain amateur attacks, depending on the extent 
of the changes to the apps. However, it is not common for the 
plagiarist to bother understanding its bytecodes to make 
extensive modifications to the app. We note that there is no 
general solution for detecting similar app with extensive 
changes. In addition, our approach certainly raises the bar for 
the plagiarist to repackage apps without being detected when 
uploaded. To avoid detection by our approach by modifying 
the UIs without proper planning will affect the user experience 
and in turn affect the popularity of their repackaged apps. 
Proper modification of the UI requires the plagiarists to put in 
extra effort to redesign the UI carefully.  

The performance bottleneck of our approach is the speed of 
the emulator that limits the efficiency of dumping the UI 
hierarchies from APKs. However, this process can be 
parallelized for better efficiency. For example, we can use 
multiple computers with each computer running multiple 
emulators.  

B. Limitations and Future Works 
 RQ2. What are the possible limitations of our approach 
and how can we overcome them? 

 Firstly, our approach is unable to detect clones in service 
apps since they just provide services in the background and 
usually do not contain UIs that are necessary for user 
interaction.  

 Secondly, apps with a small number of activities or with 
low view counts in the activities may increase the false positive 
rate. However, we noted that this is a common limitation for 
most birthmark or finger print clone detection approaches. 

 Thirdly, our approach may also be limited by apps with 
multiple data dependent activities. For example, apps that 
require login credential is one of them, this category of apps 
usually restricts their entry point to the main activity with login 
UI. Any attempt to enter into the app from other activity will 
fail or be redirected to the main login activity. The information 
that can be obtained from these apps is limited, thus affecting 
the accuracy of our approach. 

 Lastly, our evaluation is based only on free apps and the 
result may be different for paid apps, which requires the users 
to pay certain fees before the download is available to them. 
Cloning may be more prevail in paid apps, since users would 
be more likely to choose the similar but free apps. Conversely, 
the plagiarists may be less willing to purchase the app to 
repackage it.  

 For future work, we would like to conduct more in-depth 
studies on how different types of repackaging attacks can affect 
the UIs. We would also like to explore additional alternatives 
to extract more relevant information from the APKs, such as 

those data dependent activities. These would help us to design 
better software birthmarks that may further improve our 
accuracy and efficiency. Due to the complex nature Android 
apps, code or resource analysis alone is insufficient for clone 
detection. We believe that a hybrid static and dynamic analysis, 
which integrates both code and UI information for app clone 
detection, would be a very promising and interesting research 
direction.  

V. RELATED WORK 
 A number of previous studies have already been conducted 
on Android clone detection. Most of the existing approaches 
only focus on code-based similarities. 

 Zhou et al. [9] proposed an app similarity measure system, 
DroidMOSS, to detect repackaged apps in third-party Android 
markets. DroidMOSS first compute the fuzzy hashes for each 
method within the app to generate a fingerprint for the app. 
They then compute a similarity score based on the edit distance 
between the 2 fingerprints. 

 DNADroid [12] first detect potential similar apps based on 
their meta information that is used to describe the app. In the 
second stage, DNADroid creates the program dependency 
graph (PDG) as a fingerprint for each app that is to be 
compared. Lastly, they apply a filter to prune unlikely clones, 
before comparing the rest of the PDG pairs that passed the 
filter using a subgraph isomorphism. 

 Androguard [10] provides a similarity measure tool that 
supports several standard similarity metrics. The similarity is 
computed by comparing similar methods in the dex code of the 
apps. Rather than detecting cross-market app clones, 
Androguard is meant for finding the difference between 2 apps 
on a small set of data. 

 Chen et al. [11] extracted the methods from the apps and 
construct a 3D-control flow graph (3D-CFG) to get the 
centroid. They then leverage the centroid to measure method 
level-similarity across multiple markets. Lastly, the method-
level similarity result is used to group similar apps together. 

 Zhou et al. [31] focused on the problem of detecting 
“piggybacked' apps, which are clones with additional malicious 
payload attached. They first perform module-decoupling 
technique to split the code into primary and non-primary 
modules.  They then extract a semantic feature fingerprint for 
each primary module and use a linearithmic search algorithm 
to detect similar apps. 

 Hanna et al. [14] proposed Juxtapp, a tool to detect code 
reuse among Android apps. Juxtapp uses k-grams of the 
opcode sequences and apply the feature hashing to extract the 
feature of the apps. Juxtapp can identify vulnerable code reuse, 
instance of known malware and pirated copies of the original 
apps.  

 All these approaches focus on static code-based detections 
that are vulnerable to advance obfuscation techniques. On the 
other hand, there are a few existing works that detect Android 
app clones without relying on code similarities. 

 Differing from code similarity based approaches, 
FSquaDRA [32] detects Android app clones based on the 
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comparison of the resource files that are necessary for creating 
the APK. They leverage on the hashes that were computed and 
stored in the package during the process of app signing. This 
approach is resilient to code obfuscation, but some small 
changes in the resources will affect the similarity. 

 Viewdroid [19] proposed a user interface based approach to 
detect app repackaging. Our approach is similar to Viewdroid 
in the sense that both our approaches leverage on UI 
information. However, they construct view graph based on 
static analysis of the control flow relationship between the 
views within the app. Our approach differs from them in that 
our birthmark information is collected from runtime and we 
generate vectors from this information.  

VI. CONCLUSION 
 In this paper, we presented a novel approach to detect 
Android app clones based on birthmarks generated from 
runtime UI information. Our approach uses locality sensitive 
hashing to find a near neighbor for similar birthmarks and 
apply the Hungarian algorithm to find the optimal activities 
pairs with the overall highest similarity. The result shows that 
our approach can effectively detect different types of 
repackaging attacks such as, lazy, amateur and malware attacks 
with low false positive (FPR=0.4%) and false negative 
(FNR=0.8%) rates. Many of our detected apps (67%) belong to 
malware attacks, this call for a more rigorous vetting across all 
Android markets. Our paper helps the reader to understand the 
UI of Android apps and how this information can be applied to 
clone detection. We believe that our study supports a new 
research direction or can be used to complement existing code-
based approaches in mobile app clone detection. 
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