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Abstract—Everyone experiences stress in life. Moderate stress 
can be beneficial to human; however, excessive stress is harmful 
to the health. To monitor stress, different methods can be used. 
In this work, an algorithm for stress level recognition from 
Electroencephalogram (EEG) is proposed. To validate the 
algorithm, an experiment is designed and carried out with 9 
subjects. A Stroop colour-word test is used as a stressor to induce 
4 levels of stress, and the EEG data are recorded during the 
experiment. Different feature combinations and classifiers are 
proposed and analyzed. By combining fractal dimension and 
statistical features and using Support Vector Machine (SVM) as 
the classifier, four levels of stress can be recognized with an 
average accuracy of 67.06%, three levels of stress can be 
recognized with an accuracy of 75.22%, and two levels of stress 
can be recognized with an accuracy of 85.71%. The algorithm is 
integrated into the system CogniMeter for stress state 
monitoring. Stress level of the user is visualized on the meter in 
real time. The system can be applied for stress monitoring of air-
traffic controllers, operators, etc.  

Keywords-EEG; stress recognition; user interface; EEG, 
monitoring 

I.  INTRODUCTION 
Most of the people experience stress from time to time in 

their daily life. Complex reasons can cause stress. It is a 
common physical response to the environment that makes 
people feel challenged or threatened. It can be observed while 
people are facing a challenging work, coping with a strained 
relationship or engaged in an intense competition [1]. Many 
health problems are also related to stress [2]. People under high 
pressure at work or in life may not only feel negative emotions, 
but also get depressed. On the other hand, moderate stress is 
beneficial to human because it helps to stay focused and alert. 
In this case, stress can be a way to improve performance during 
a presentation at work or during taking exams at school.  

It is challenging to assess and monitor stress, because 
everyone experiences stress in different ways. Signs and 
symptoms of stress could be recognized using psychoanalysis, 
biosignals, and medical tests. Basic symptoms of high stress 
include headaches, tense muscles, insomnia, and rapid 
heartbeat [7]. There are many novel wearable devices such as 
Olive, Spire, BreathAcoustics, and Gizmodo integrated with 
various biosensors that help people monitor stress and 
organize accordingly their daily lives.   

Electroencephalogram (EEG) signals are widely used in 

clinical diagnosis of mental diseases and in bioengineering 
research. EEG-based interfaces can be used in many 
applications including psychophysiology, psychology, serious 
games, etc. In this paper, we propose a novel algorithm to 
recognize different stress states from EEG signals. An 
experiment to induce different levels of stress using a Stroop 
colour-word test is designed and carried out. The EEG data 
recorded during the experiment are used to validate the 
proposed algorithm. Finally, a real-time stress-monitoring 
interface based on the proposed algorithm is implemented.  

This paper is structured as follows: Section II introduces 
related works such as definition of stress, review on stress 
experiments, and existing EEG-based stress recognition 
algorithms. Section III introduces the experiment design, 
describes the proposed EEG-based stress recognition 
algorithm, and presents results of processing and analyses of 
EEG data collected from 9 subjects. Section IV introduces a 
real-time stress monitoring interface. Finally, conclusions are 
given in Section V. 

II. RELATED WORK 

A. Stress Definition 
The definition of stress has been a subject of debate ever 

since it was proposed. There is no common accepted definition 
of stress. In previous researches, some definitions were 
proposed from different perspectives to give a general 
description of stress. According to Humphrey [3], stress is 
defined as a factor that makes people to feel difficult to adapt 
and maintain an equilibrium state both internally and with 
external environment. According to Koolhaas et al. [4], the 
term “stress” should be described from two dimensions: 
uncontrollability/unpredictability and life-threatening nature of 
the situation. Humans get stressed in particular environment 
when unpredictable and uncontrollable situations exceed the 
nature capacity of people. In this paper, we follow Lazarus and 
Folkman [5]’s definition of stress: psychological stress is 
defined as a particular relationship between people and 
environment that exceed their resources and endanger their 
well-being.  

B. Stress Experiments 
The stress response can be measured from perceptual and 

physical human responses [6]. There are various questionnaires 
for self-reviewing stress assessments that allow define the 
individual’s level of stress. Some of the best known 
questionnaires include the perceived stress scale [7], the 
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holmes rahe stress inventory [8], and the hamilton depression 
rating scale [9].  

Apart from the perceptual responses, when the body is 
under the stress circumstances, it releases stress-related 
hormones to cause hormonal changes in the body. These 
hormonal changes can help the body to cope with the stress. 
Hence, the physical responses can be used as indicators to 
measure or diagnose the stress. It has been shown that stress 
can be assessed from physiological variables including EEG 
[10, 11], blood pressure [12], heart rate variability [6, 13], skin 
conductance level [14], and electromyography [15]. 

There are many techniques that can be used to induce levels 
of stress in lab settings. A detailed review of the experiments to 
elicit stress is published in [16]. The most commonly used 
techniques to induce stress are the Stroop colour-word test [17], 
the Trier Social Stress Test (TSST) [18], the cold pressor test 
[19], as well as the mental arithmetic task [20]. 

Stroop colour-word test is often used as a psychological 
stressor [21], in which subjects are presented with lists of color 
words in matching and non-matching colors. It is proved to be 
one of the most effective methods for research in human 
psychophysiological reactivity under stress environment. In 
work [17], the research is aimed at inspecting whether the 
Stroop colour-word test is able to meet the basic four criteria to 
be conferred that the test can induce stress. The four criteria 
characterizing the adequate and successful stressors are 
physiological changes that reflect increased distress, sympathy-
adrenal activation, human fight-or-flight mechanism, and 
neuronal changes. The analysis of all physiological indicators 
results confirmed that the Stroop colour-word test is reliable as 
stress stimulus since it meets all four requirements. In work 
[21], the research is aimed at validating Stroop colour-word test 
as an accurate experimental stressor by monitoring heart rate 
variability. Waldstein et al. [22] used the Stroop test to study 
the process of active coping and cardiovascular reactivity 
during the stressful situation.  

TSST requires participants to deliver a free speech in front 
of a group of important audience for 10 minutes. It has been 
proved that it can induce stress responses with considerable 
changes in heart rate, cortisol, growth hormone and 
adrenocorticotropic hormone [18]. In [23], TSST is used to 
induce stress environment to explore the causes of false 
recognition. 

Cold pressor test is an interesting test to induce stress where 
subjects are required to place their hands in ice cold water [19]. 
This test however is not desirable as it induces less 
hypothalamic-pituitary-adrenal axis activation and can be 
painful for the participants. 

Mental arithmetic tasks, puzzles and IQ questions can also 
be used to induce different levels of stress. For example, the IQ 
questions are used to induce different stress states in the 
experiment [10]. In [24], a puzzle is used to induce mild 
uncontrollable stress situations. 

As the Stroop colour-word test is one of the most effective 
methods to study human psychophysiological reactivity under 
stress environment, we propose to use it in our experiment to 
induce different levels of stress in participants. 

C. EEG-based Stress Recognition Algorithms 
EEG signal can be used to recognize human emotions [32, 

37], mental workload, vigilance, etc. It can be used to identify 
human stress level as well since it is already proved that there 
is significant correlation between levels of psychological stress 
and EEG power. For example, in [6], the experiment shows 
that the stress is positively correlated with beta EEG power at 
anterior temporal lobe. Power spectrum features are often used 
in EEG-based stress recognition [11, 25]. In [11], higher order 
spectra is used, and genetic algorithm is applied to do feature 
selection. Support Vector Machine (SVM) with radial basis 
function kernel is chosen as a classifier, and the accuracy 
calculated with 5-fold cross validation for recognition of two 
stress states is 79.2%. [25] uses the features such as Gaussian 
mixtures of EEG spectrogram, fractal dimension and 
magnitude square coherence estimation in stress recognition. 
The classification of two levels of mental stress is done by k-
NN and SVM classifiers and the best accuracy is 90% for two 
stress states. However, neither [11] nor [25] use standard 
stressor to induce stress in the experiments. Pictures are used in 
[11] to evoke different stress states. In [25], EEG data recorded 
before and after examination period are used in the data 
analysis.  

In [26], a Stroop colour-word test is used to induce stress. 
The discrete cosine transform is applied to reduce the data size 
and extract features from frequency domain. Classification is 
done using artificial neural network, linear discriminant 
analysis and k-Nearest Neighbor (k-NN). The highest 
classification result for two stress states is 72% with k-NN. 
Calibo et al. [27] also explore human response to stress induced 
by the Stroop colour-word test. The theta band power, alpha 
band power, and beta band power are used as features for 
logistic regression and are fed into the k-NN classifier. The 
results show a median accuracy of 73.96% for recognition of 
the relaxed and stressed states. 

III. STRESS RECOGNITION FROM EEG 

A. Experiment 
In our experiment, EEG data are collected from 9 subjects 

between the age 21 and 28 years from Nanyang Technical 
University. All subjects have no history of mental diseases and 
head injuries. A wireless EEG device Emotiv EPOC [28] is 
used to record EEG signals from 14 channels (AF3, F7, F3, 
FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, and AF4), placed on 
the scalp following the international 10-20 system [29], 
sampled at 128 Hz with bandwidth from 0.16 Hz to 43 Hz.  

In our experiment, a Stroop colour-word test implemented 
using psychology experiment building language [30] is applied 
as the stressor to induce different levels of stress. According to 
[31], the Stroop colour-word test reliably induces stress in 
laboratory condition to the subjects. Different targeted stress 
levels are induced individually to each subject. The complete 
Stroop colour-word test based experiment consists of the 
following sections: 

• Introductory Section (IS): This section is to allow the 
subjects get familiar with the experiment environment. 
The experiment procedure is explained and instructions 
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for administration of the Stroop colour-word test are 
given.  

• Resting Section (RS): This section is to let the 
subjects relax for a certain time. In this section, 
subjects are told to relax and remain still with eyes 
open for 3 minutes. The subjects are supposed to have 
the most relaxed state. 

• Congruent Section (CS): This section is to induce a 
low stress state with a simple task. In this section, the 
words’ font color matches with the words’ meaning. 
Subjects are asked to identify the words font color.  

• Incongruent Section 1 (ICS-1): This section is to 
induce a mild stress state. The words’ font color and 
the words’ meaning are different. The subjects are 
required to response to the words’ font color. The 
subjects are supposed to be more stressed than in CS.  

• Incongruent Section 2 (ICS-2): This section is to 
induce a higher stress state. The basic test is the same 
with ICS-1, but the subjects are required to make the 
response to the words’ font color within the limited 
time (1.5 seconds). This is the section where the 
highest stress is elicited in the subjects.  

The protocol of our stress induction experiment is adapted 
from [6, 31].  As shown in Fig. 1 the experiment is designed to 
induce four different stress levels in sections RS, CS, ICS-1, 
and ICS-2. Each section is lasted for 3 minutes and the EEG 
signals are recorded during the whole experiment. At the end of 
each section, subjects are tasked to rate the level of stress they 
felt using a self-assessment questionnaire. In the questionnaire, 
stress is defined as a feeling of strain and pressure, and the 
subjects need to choose 1 rate from scale 1-9 where 1 
represents the most relaxed state and 9 represents the most 
stressed state. For each subject, number of stress levels is 
decided based on the evaluations. 

 
Figure 1.  Protocol for collecting EEG data during our experiment. 

B. Feature Extraction 
According to [11, 25, 26], the EEG power spectrum 

features are correlated with stress levels. In addition, there are 
many similarities between the stressed state and negative 
emotion state [6]. Thus, we propose to apply in stress 
recognition Fractal Dimension (FD) and statistical features 
which were successfully used in emotion recognition 
algorithms [32, 37]. These features are extracted from EEG 
signals using 4 seconds sliding window with 3 seconds 
overlapping.  

1) Power Feature 
Power spectrum features are the most commonly used in 

EEG-based stress recognition algorithms. The power spectrum 
over a time interval is obtained by the Fast Fourier Transform 
(FFT). The EEG power spectrum is subdivided into 
bandwidths known as delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-
12 Hz), beta (12-30 Hz), and gamma (above 30 Hz). In our 
study, the power of theta band, alpha band and beta band are 
used as power features. 

2) FD Feature 
Fractal dimension is a measure of complexity and 

irregularity of time series [33]. FD can be used to analyze the 
nonlinear property of the EEG signal. Lower fractal dimension 
value corresponds to more regular signal; conversely, higher 
fractal dimension value corresponds to more irregular one. 
Wang et al. [34] proposed to use Higuchi fractal dimension to 
recognize arithmetic mental task from EEG. It was also used in 
application of EEG-based serious games [35] and emotion 
recognition [36]. In our work, the Higuchi algorithm [33] is 
used to calculate FD feature from the recorded EEG data. 

3) Statistical Feature 
Statistical features are simple yet widely used in 

classification of EEG signals. Statistical features were used in 
EEG-based emotion recognition [37, 38]. Six statistical 
features including mean, standard deviation, mean of absolute 
values of the first differences, mean of absolute values of the 
first differences of normalized signals, mean of absolute values 
of the second differences, and mean of the second differences 
of the normalized signal are extracted from the recorded EEG. 

C. Data Processing and Analysis 
In our experiment, the number of stress levels is defined 

according to the ratings in the self-assessment questionnaire. 
Subjects 1-7 have 4 levels of stress induced during the 
experiment. Subject 8 has 3 levels of stress induced. Subject 9 
has only 2 levels of stress induced.  

Power, statistical and FD features are first extracted from 
the EEG labeled with different stress levels (the labeling was 
done by the analysis of self-assessment questionnaire) and 
then, the features are fed to the classifier.  

In our study, classifiers are implemented in Python based 
on Scikit-learn library [39] which includes a wide range of 
state-of-the-art machine learning algorithms. SVM and k-NN 
classifiers are used in the classification step. For SVM 
classifier, the polynomial kernel is chosen with penalty 
parameter 10C = , degree 3d = , gamma 1g = , and 
coefficient 1r = . For k-NN classifier, the number of neighbor k 
is set to 1. 5-fold cross validation is used to calculate the 
accuracy. First, the data are partitioned to 5 folds in which four 
folds are used as the training data and one fold is used as the 
testing data. Each fold of the data has a chance to be the testing 
data, the entire process runs for 5 times and an average 
accuracy is obtained. 

The mean classification accuracy of SVM and k-NN 
classifiers using combination of FD and statistical features are 
shown in Table I and II. A comparison of average accuracy 
across all subjects is given in Figure 2. It can be seen that the 
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classification accuracy declines when the number of levels of 
stress increases. The classification of two levels of stress has 
the highest accuracy for both SVM and k-NN, while the 
classification of four levels of stress has the lowest accuracy 
(Table I and II). The accuracy of stress recognition using SVM 
is higher than using k-NN for all subjects except for subject 5 
(Table I and II). When we compare the mean accuracies 
obtained by different classifiers, SVM classification results are 
significantly higher than k-NN (Fig. 2): for two levels of stress 
recognition, SVM achieves an average accuracy of 85.17% and 
k-NN achieves an average accuracy of 76.72%; for three levels 
of stress recognition, SVM achieves an average accuracy of 
75.22% and k-NN achieves an average accuracy of 63.24%; for 
four levels of stress recognition, SVM achieves an average 
accuracy of 67.06% and k-NN achieves average accuracy 
54.31%.  

TABLE I.  SVM CLASSIFICATION RESULTS FOR 9 SUBJECTS (%). 

 2 levels 3 levels 4 levels 

Subject 1 74.44 63.27 56.30 

Subject 2 83.70 75.37 69.07 

Subject 3 92.22 85.99 81.30 

Subject 4 92.72 87.90 83.89 

Subject 5 85.12 76.36 70.74 

Subject 6 76.91 66.67 60.74 

Subject 7 70.93 55.86 47.41 

Subject 8 93.46 90.37 — 

Subject 9 97.04 — — 

Mean Accuracy 
(SD)a  

85.17 
(9.39) 

75.22 
(12.53) 

67.06 
(13.20) 

a. SD: Standard Deviation 

 

TABLE II.  K-NN CLASSIFICATION RESULTS FOR 9 SUBJECTS (%). 

 2 levels 3 levels 4 levels 

Subject 1 66.67 50.43 40.00 

Subject 2 72.47 60.86 53.89 

Subject 3 84.51 75.00 68.15 

Subject 4 82.41 72.65 65.56 

Subject 5 86.60 79.01 73.52 

Subject 6 62.96 50.43 43.89 

Subject 7 62.47 44.94 35.19 

Subject 8 82.35 72.59 — 

Subject 9 90.00 — — 

Mean Accuracy  
(SD)a 

76.72 
(10.67) 

63.24 
(13.26) 

54.31 
(10.74) 

a. SD: Standard Deviation 

 
Figure 2.  Average accuracies of stress recognition across all subjects using 

SVM and k-NN.  

The traditional power features, combination of FD and 
statistical features, and the combination of power, fractal 
dimension and statistical features are evaluated and compared 
using SVM and k-NN classifiers for 2, 3, and 4 levels of stress 
recognition as shown in Table III. It can be seen that the 
combination of FD and statistical features gives the best 
accuracy in all cases. In Table I and II, it is shown that SVM 
outperforms k-NN in 8 of 9 subjects. In Table III, the 
recognition accuracy of SVM is also higher than k-NN in 
cases. Thus SVM is finally chosen as the classifier in the stress 
recognition algorithm. 

TABLE III.  FEATURE ANALYSIS (%). 

Classifier Features 2 levels 3 levels 4 levels 

SVM 

Power (SD)a 73.18 
(10.20) 

58.39 
(11.32) 

49.66 
(12.20) 

FD+Statistical 
(SD)a 

85.71 
(9.39) 

75.22 
(12.53) 

67.06 
(13.20) 

Power+FD+ 
Statistical (SD)a 

80.96 
(8.86) 

69.82 
(11.88) 

60.71 
(11.50) 

k-NN 

Power (SD)a 66.36 
(8.96) 

50.98 
(10.99) 

41.35 
(9.64) 

FD+Statistical 
(SD)a 

76.72 
(10.67) 

63.24 
(13.26) 

54.31 
(10.74) 

Power+FD+ 
Statistical (SD)a 

69.93 
(9.44) 

54.44 
(10.63) 

44.97 
(11.42) 

a. SD: Standard Deviation 

IV. STRESS MONITORING 

A. Implementations 
A real-time stress recognition application is implemented 

with Visual Studio 2010 in C++. By using the Emotiv API 
[28], the application receives the EEG signals at 128 Hz. The 
FD and six statistical features are calculated using a 4 seconds 
sliding window with 3 seconds overlapping.  

B. User Interface 
This application is used to monitor the individual's real-

time stress state. As the algorithm is subject-dependent, it 
includes a training/calibration module and a real-time stress 
recognition module. The screenshot of the interface of the 
training module is shown in Fig. 3. When "Start Training" 
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button is clicked, the subject needs to complete a series of 
Stroop colour-word tests which can induce different levels 
of stress. At the same time, the EEG data are recoded. After 
each test, the subject needs to fill a prompted questionnaire 
to evaluate and describe his/her current state. After all 
recordings, the "Train SVM" button is clicked. By doing 
this, the SVM model is trained with the labeled recorded 
EEG data. This model is saved and can be loaded again for 
the future use. When "Start Recognition" button is clicked, 
the software starts real-time stress recognition. The real-time 
stress levels are recognized and visualized in CogniMeter, as 
shown in Fig. 4. The current level of stress is shown on the 
meter with a pointer changing its position, the color (green, 
yellow, red), and the corresponding word description is 
given at the bottom of the meter. 

 
Figure 3.  Screenshot of the training interface. 

 
Figure 4.  Screenshots of CogniMeter for real-time stress monitoring. Left 

meter shows the low stress level. Right meter shows the high stress level. 

V. CONCLUSION 

In this work, we proposed a real-time EEG-based stress 
recognition algorithm. To validate the proposed stress 
recognition algorithm, we designed an experiment to induce 4 
levels of stress and recorded EEG data. We analysed different 
combinations of features (power, FD and statistical) using 
SVM and k-NN classifiers. By combining FD and statistical 
features and using the SVM classifier, four levels of stress can 
be recognized with the average accuracy of 67.07%, three 
levels of stress can be recognized with the accuracy of 75.22%, 
and two levels of stress can be recognized with the accuracy of 
85.17%. In addition, the CogniMeter system to monitor stress 
in real time is implemented based on the proposed algorithm. 
In future, we plan to acquire EEG data from more subjects and 
set up a database for EEG-based stress recognition. 
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