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Abstract—Neuroscience-based or neuroscience-informed 
design is a new application area of Brain-Computer Interaction 
(BCI). It takes its roots in study of human well-being in 
architecture, human factors study in engineering and 
manufacturing including neuroergonomics. In traditional human 
factors studies and/or well-being study, mental workload, stress, 
and emotion are obtained through questionnaires that are 
administered upon completion of some task and/or the whole 
experiment. Recent advances in BCI research allow for using 
Electroencephalogram (EEG) based brain state recognition 
algorithms to assess the interaction between brain and human 
performance. We propose and develop an EEG-based system 
CogniMeter to monitor and analyze human factors 
measurements of newly designed software/hardware systems 
and/or working places. Machine learning techniques are applied 
to the EEG data to recognize levels of mental workload, stress 
and emotions during each task. The EEG is used as a tool to 
monitor and record the brain states of subjects during human 
factors study experiments. We describe two applications of 
CogniMeter system: human performance assessment in maritime 
simulator and EEG-based human factors evaluation in Air 
Traffic Control (ATC) workplace. By utilizing the proposed 
EEG-based system, true understanding of subjects working 
patterns can be obtained. Based on the analyses of the objective 
real time EEG-based data together with the subjective feedback 
from the subjects, we are able to reliably evaluate current 
systems/hardware and/or working place design and refine new 
concepts and design of future systems. 

Keywords-Neuroscience-based design; human factors; 
neuroergonomics, EEG; stress; mental workload; emotions 

I.  INTRODUCTION  
Human factors study focuses on understanding of 

interactions among humans and other factors of a system 
including physical, cognitive and organizational/social 
aspects. On the other hand, neuroergonomics study the 
interaction between brain and human performance. 
Neuroscience-based design focuses on application of 
methods used in neuroergonomics and Brain-Computer 
Interaction (BCI) including Electroencephalogram (EEG)-
based tools to design and assess software/hardware 
systems. Human stress, vigilance and mental workload 
levels, emotions during the interaction with 
software/hardware systems and well-being in the working 

place can be assessed. We proposed and developed an 
EEG-based system CogniMeter to monitor and analyze 
human factors measurements of newly designed systems, 
hardware and/or working places [1]. The EEG is used as a 
tool to monitor and record the brain states of subjects 
during human factors study experiments. In traditional 
human factors studies, the data of mental workload, stress, 
and emotion are obtained through questionnaires that are 
administered upon completion of some task or the whole 
experiment. However, this method only offers the 
evaluation of overall feelings of subjects during the task 
performance and/or after the experiment. Real-time EEG-
based human factors evaluation of designed systems 
allows researchers to analyze the changes of subjects’ 
brain states during the performance of various tasks. The 
data can be analyzed during or at any time interval. If we 
use 128Hz EEG Emotiv Epoc device, then the temporal 
resolution is 1/32 sec. Machine learning techniques are 
applied to the EEG data to recognize levels of mental 
workload, stress and emotions during each task. By 
utilizing the proposed EEG-based system, true 
understanding of subjects working pattern can be obtained. 
Based on the analyses of the objective real time data from 
EEG together with the subjective feedback from the 
subjects using traditional questionnaire, we are able to 
reliably evaluate current systems/hardware and/or working 
place design and refine new concepts and design of future 
systems. In this paper, we describe application of 
CogniMeter system to assess workload of the cadets in 
maritime simulator and to evaluate human factors in Air 
Traffic Control (ATC) workplace experiment.  

This paper is structured as follows: Section II 
introduces related works in human factors study, neuro-
ergonomics, and reviews the current state of art in EEG-
based emotion, mental workload and stress recognition 
algorithms. Section III describes proposed EEG-based 
tools integrated in the CogniMeter system. Two 
applications such as human performance assessment in 
maritime simulator and EEG-based human factors 
evaluation in ATC work place are presented in Section IV. 
Section V gives the conclusion. 
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II. RELATED WORK 

A. Human Factors Study 
Human factors research is defined as a discipline that 

focuses on understanding of interactions among humans 
and other factors of a system and the application of these 
understanding to optimize the human well-being and 
system performance [2]. It can be divided to three 
domains, namely physical (mainly related to physical 
activity such as the postures during working, movement, 
workplace layout, etc.), cognitive (mainly relevant with 
mental processing such as workload, stress while working, 
etc.), and organizational human factor (mainly focus on 
sociotechnical system such as team work, management, 
etc.) [2].  

Human factors research contributes into various fields 
such as engineering, manufacturing, and biomechanics as 
it considers the interaction between human and machines, 
platforms or workspace, which leads to a more comfort 
and functional design. 

The early application of human factors study can be 
traced back to 1980, when Denton [3] drew lines across 
the motorway to purposely distort the spatial geometry of 
the driver’s perceptual system and successfully reduced 
the speed of motorbike and thus the number of fatal 
accidents. Besides the benefit of the human factors study 
to make the driving experience safer on the road, systems 
in cars are also being improved when human factors are 
investigated. An ongoing research of Intelligent 
Transportation Systems in car manufacturing [4] 
developed a cooperative adaptive cruise control system to 
enable different time gaps for human factors study; a 
workload detection system of driver is proposed in [5]. 
Other examples of human factors study are from medical 
area, where new virtual reality training simulations such as 
palpation of subsurface tumors are implemented and tested 
[6], and the effect of human factors in surgery 
performance are investigated [7]; from consumer products 
design area to meet the target of reducing the chance and 
errors in design and fulfill the end-users requirement [8]; 
from aviation domain where automation system are added 
as an extra help for air traffic controllers to release their 
workload [9]; from maritime area to correlate the mental 
workload, emotion of the crew and their performance 
onboard [10]; even from software engineering field, an 
attempt to include human factor into the software 
engineering lifecycle was made[11]. 

B. Neuroergonomics 
Neuroergonomics study can be seen as one of the 

branches of human factors study. It investigates the 
interaction between the brain and human performance at 
all settings in everyday life [12]. For example, driving is 
one of the areas that neuroergonomics can make an 
impact. It was found in [13] that microsleeps detected 
from electroencephalogram (EEG) correlate with the 
declines in driving performance of drivers with sleep 
disorders. In [14] it was discovered that the parietal lobe 
activity, which is related with spatial processing in driving, 

decreases when the drivers listened to someone when 
driving. The knowledge of such interaction found by 
neuroergonomics can be applied to improve the work 
environments or to implement neuroadaptive interfaces for 
a better performance [15]. For example, an alert can be 
given to the distracted driver [16]. Neuroergonomics can 
also be used in design of new aviation systems where the 
designers may wish to come out with a system that 
balances the attractive information presentation and the 
performance of the primary flight task of the pilot. In such 
case, the neuroergonomic can provide fine details of the 
change in attention, mental workload of the pilot, which 
can be considered as a user feedback towards the new 
system. Moreover, [15] summarizes that brain-computer 
interface (BCI) and virtual reality (VR) are also related to 
neuroergonomics, as BCI can help human to interact with 
the environment via brain activity, e.g., using brain 
activity to trigger certain command in the game [17]. VR 
can simulate different situation where the brain states and 
work performance can be measured and correlated, e.g., 
the effect of neurofeedback on the surgical skill of trainee 
ophthalmic surgeons were verified in VR environment 
[18]. 

Currently, the technology in neuroergonomics research 
can be categorized into two groups. One measures cerebral 
hemodynamics, e.g., fMRI, positron emission tomography 
(PET). The other measures electromagnetic activity of the 
brain, e.g., EEG, ERP [15]. Though there is no ideal 
technique providing the best of spatial resolution, temporal 
resolution, and ease of use in the current stage, the EEG is 
one of the optimal choices since it has high temporal 
resolution, it is very easy to use, and has an acceptable 
spatial resolution. Mobility of EEG devices gives an 
important advantage over other devices in 
neuroergonomics. It is already proved that the spectral 
features from EEG can reflect the change in task difficulty 
and mental effort required [19-21]. Thus, in our work, we 
propose to use EEG-based tools to assess human 
performance and improve design of software/hardware and 
working places. 

C. EEG-based Stress, Mental Workload and Emotion 
Recognition Algorithms  
In the daily life, humans are involved in different 

situations that elicit emotions, stress, and workload. 
Traditionally, to identify these states, we may need self-
reported feedback or physiological measurements that 
commonly are used in human factors study including 
neuroergonomics. However, the self-report comes with 
delay as it can be done only after the task completion. 
Physiological measurement, such as facial expressions, 
can be purposely pretended if the subject wants to hide 
his/her feelings. Bio-signals including Electro-
encephalograms can be used to recognize emotions, stress, 
and workload. EEG-based brain state recognition is one of 
the emerging technologies as it can reflect the true feeling 
of the subjects with a high time resolution. EEG-based 
tools provide better accuracy of measurement than other 
biosignals (heart rate, skin conductivity, etc). EEG-based 
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brain state recognition algorithms consist of two parts: 
feature extraction and classification. First, the EEG data 
are filtered and the features are extracted, then the data are 
classified. The classifier model is trained before brain state 
recognition using calibration for each subject in the case of 
subject dependent algorithms or using EEG databases in 
the case of subject-independent algorithms. Currently, 
subject-independent algorithms are used in applications as 
they have much higher accuracy than subject-independent 
ones. 

Recently, more and more publications on EEG-based 
emotion recognition algorithms appeared. In [22], Hjorth 
parameters  were extracted and fed into Support Vector 
Machine classifier. The best accuracy was obtained as 
70% happy and sad emotions were recognized. In our 
previous work [23, 24]. The proposed features were fractal 
dimension, statistical, and higher order crossings features. 
In the classification step, the Support Vector Machine is 
used. The algorithm can recognize up to 8 emotions with 
the mean accuracy of 53.7% [23], and if only positive and 
negative emotions are recognized, the best accuracy is 
92.03% [24]. In [25], a number of feature extraction 
methods were compared and different electrodes were 
tried to use. The conclusion was that the most promising 
features were the advanced one such as Higher Order 
Crossings, Fractal Dimensions, Higher Order Spectra, 
Hilbert-Huang Spectrum and the most promising locations 
were parietal and centro-parietal lobes. Unlike the other 
studies using stimuli such as pictures or sound clips to 
evoke emotions, [26] asked the subject to imagine positive 
or negative scene. The power spectrum of EEG rhythms 
was the features and the Filter-Bank Common Spatial 
Pattern method was used for doing the binary 
classification with the accuracy of 71.3%. This work 
confirmed that the EEG-based emotion recognition is not 
limited to certain type of stimuli. 

Emotions and stress are correlated with each other as it 
was shown in a number of works, as stress can be 
categorized according to how it is generated: physical, 
mental and emotional [27]. In the emotional stress 
recognition works, most of them use the stimuli to evoke 
different emotions, e.g., images from International 
Affective Picture System database [27, 28], and videos 
[29]. In these studies, the recognition of emotional stress is 
more equal to the recognition of certain emotion, such as 
calm (considered as relaxed state), negative exciting 
(considered as stressed state). Different features were used 
in these work, including higher order spectra, second order 
spectrum, Fourier transform, normalized bispectrum and 
EEG band power in [27], asymmetry alpha rhythms 
pattern in [28], statistical features, Power Spectral Density 
and High Order Crossings [29], etc. In the classification 
step, well-known classifiers such as Elman classifier [27], 
K-NN [29] are used. An accuracy of 82.7% was obtained 
in [27] and 70.1% in [29] for two levels of emotional 
stress recognition. To recognize mental stress, [30] used 
Stroop test with congruent and incongruent stimulus to 
evoke relaxed and stressed states. The root mean square 
voltage in the beta, alpha, and theta bands were used as 

features while logistic regression classifier was used as a 
classifier. An accuracy of 73.96% was obtained to 
differentiate between relax and stress states. In our 
previous work [31], we employed fractal dimension and 
statistical features and Support Vector Machine. An 
accuracy of 67.06% for four levels of stress recognition 
was achieved. 

Mental workload can be defined as a mental strain 
caused by an action or a task under certain operational 
conditions to respond to certain demand [32]. It is essential 
to measure the workload in order to calculate the mental 
cost of doing tasks so as to predict the performance of 
either the operator or system. For example, [33] attempted 
to use EEG to monitor the mental workload of the pilot 
and suggested this may make it possible to get feedback 
from the pilot towards the aircraft system. In [33], theta 
band power was found to increase when inflight mental 
calculations was needed. Our previous work also 
investigated the EEG-based mental workload recognition 
[34]. Fractal dimension features and statistical features 
were extracted and used as the input to SVM classifier. A 
mean accuracy of 80.09% was obtained for 4 levels of 
mental workload recognition. The proposed and 
implemented emotion, stress and mental workload 
recognition algorithms were integrated in the CogniMeter 
system. 

III. COGNIMETER 
In this section, the details of the proposed brain states 

monitoring system CogniMeter are described. In the 
hardware part, the system supports EEG devices from 
different companies. For example, the wireless Emotiv 
EPOC device with 14 channels is applied in maritime [35], 
and air traffic control experiments[36] . It is a popular low-
cost EEG device widely used for both research and 
entertainment. Emotiv EPOC has 14 channels located at 
AF3, F7, F3, FC5, T7, P7, O1, O2, P8, T8, FC6, F4, F8, 
and AF4 as shown in Fig. 1. In the software part, the 
workload [34], stress [31] and emotion [23, 24] 
recognition algorithms proposed in our previous work are 
implemented separately. Currently, subject-dependent 
algorithms are used as they give better accuracy than 
subject-independent algorithms. However, subject-
dependent algorithms need calibration for each subject 
before being used in any applications. There are different 
calibration processes for workload, stress and emotion 
before real-time recognition or/and EEG recording for 
offline data processing. After calibration, the results of 
real-time recognition can be visualized on the meters for 
brain states monitoring. 

A. Calibration 
For workload calibration, SIMKAP simultaneous 

capacity test is applied to invoke different workload levels. 
In lower workload level, subjects need to complete a 
single task of matching numbers, letters and shapes. For a 
higher workload level, subjects require to perform 
multitasking like answering arithmetic questions, schedule 
checking and telephone searching. After each test, the 
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subject fills a prompted questionnaire to rate workload 
level from 1 to 9, as shown in Fig. 2(a). 

 

 
Figure 1.  Location of 14 electrodes of Emotiv EEG device. 

For stress calibration, the Stroop color-word test is 
used to induce different levels of workload. The subjects 
perform the Stroop test with different levels, and the self-
assessment for each level is done at the end of each 
section. In the easy level, the word’s meaning is the same 
with the word’s font color. In the medium level, the 
word’s meaning is different with the word’s font color to 
induce moderate stress. In the hard level, Stroop test 
requires the subject to react to the incongruent word within 
a limited time to induce higher stress. Each part of the 
Stroop test lasts for 1 minute, and the prompted 
questionnaire to evaluate the subject’s mental stress level 
on the scale from 1 to 9 and to describe his/her feelings in 
words is as shown in Fig. 2(a).   

For emotion calibration, several sound clips from 
IADS database [37] are selected as stimuli to evoke certain 
emotions. There are 15 seconds silence audio at the 
beginning of each sound clip to help the subject return to a 
neutral state. After playing the sound clip targeted to elicit 
one emotion for 30 seconds, the subject needs to fill a 
prompted questionnaire to evaluate and describe his/her 
experienced emotion when he/she was exposed to the 
sound clips. A 3D emotional model is used to define an 
emotion. The subject enters values on the scale from 1 to 9 
of arousal (from calm to excited), valence (from negative 
to positive), and dominance (from low control to high 
control) dimension and describes the feelings by words as 
well as shown in Fig. 2(b). 

B. Real-time Recognition and Monitoring 
After calibration of a workload, stress and/or emotion, 

three classifier models are trained and applied for the 
corresponding brain state recognition. During real-time 
brain states monitoring, the results of the recognized 
workload, stress and emotions are sent to Node.js server 
which is updated every second. Fig. 3 shows CogniMeter 
interface developed in JavaScript and rendered in a 
Chrome browser. Workload and stress meters display the 
magnitude scale from 0 to max while the emotion meter 
represents emotions from positive to negative. In each 
meter, the color of the bar also represents the magnitude of 

values, which is green on the left, yellow on the middle, 
and red on the right. 

 

 
(a)

 
                                                 (b) 

Figure 2.  Screenshots of calibration questionnaire interfaces: (a) stress 
and workload rating questionnaire; (b) emotion rating questionnaire. 

 

Figure 3. Screenshot of brain states monitoring system CogniMeter.

After a period of time of monitoring, a report can be 
generated to show the distribution of each brain states over 
the period of time. For example, Fig. 4 shows the 
distribution of mental workload (low, medium and high), 
emotion (positive and negative) and stress (low, medium 
low, medium, medium high, and high) during five minutes 
monitoring process. From Fig. 4, we can see that the 
workload is almost equally distributed in three levels (high 
35%, medium 29%, and low 34%). Most of subject’s 
emotions are positive 62% during the experiment. The 
stress level is medium 32% in most time of the 
experiment. 
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Figure 4.  Screenshot of summary of workload, stress levels and 
emotions during 5 minutes monitoring. 

The real-time EEG-based emotion, workload and stress 
visualization system CogniMeter is implemented with 
Visual Studio 2010 in C++. The proposed CogniMeter can 
be used to monitor and analyse human well-being and 
human performance related to different tasks in many 
applications. Here, we describe the following examples of 
use of the CogniMeter. First, a case study from the 
experiment in maritime virtual simulator to assess the 
cadet’s performance during the navigation is described. 
Then, an experiment to assess new software in air-traffic 
control management system is given. 

IV. APPLICATION 

A. Human Performance Assessment in Maritime 
In [35], we described a case study from the results of 

stress recognition of crew in a ship’s bridge simulator 
based assessment. In this paper, we present mental 
workload recognition of the crewmembers in the maritime 
virtual simulator. The experiment to collect the EEG data 
is briefly described as follows and more details are 
presented in [35]. 7 cadets were recruited to complete 4 
exercises with increasing difficulty in the maritime 
simulator. A training session was done right before the 
exercise and it was used to calibrate the classifier for 
mental workload recognition. Four levels of workload 
ranging from low to high can be detected using the trained 
classifier. Then, the cadet executed the cruising exercise 
with mechanical emergencies or alarms, changing traffic 
conditions and weather conditions simulated. The cadets 
needed to wear the Emotiv device during the entire 
exercise, as shown in Fig. 5. The whole exercise was also 
recorded by video camera. This video is used to give time 

stamps of the demanding events of the exercise on the 
EEG data.  

 

 
Figure 5.  Cadet with EEG device in the simulator. 

Using the EEG with time labels of the events, it is 
possible to get a complete understanding of the brain states 
changes during the experiment. A case study of one cadet 
is presented in Fig. 6-9. The y-axis denotes the recognized 
workload level, ranging from 1 (the lowest level) to 4 (the 
highest level), and the x-axis is the sample point number 
corresponding to the time. The solid line in the figures is 
the instantaneous workload level recognized from EEG 
and the dash line is the average over 1 minute. Let’s 
consider the case study to see how mental workload 
recognition from EEG is used to assess the cadet 
performance. The following scenario was used in the 
experiment. 

At time 4:17/257 (Hour: Minutes/sample point in the 
figure), a random alarm was given. From the workload 
recognized from EEG signal, a sharp spike was identified 
as shown in Fig. 6, which was a reading of the recognized 
level 3 (the highest workload) when the alarm was given, 
and once the alarm was turned off the workload values 
dropped back to the level 1 (the lowest workload). 

 
Figure 6.  Mental workload level recognized from EEG when the alarm 

was given. 

At time 5:30/330, the cadet altered the course to 
overtake. From the EEG results, an increase of mental 
workload was found, which indicated the recognized 
workload level was the highest when the overtaking was 
being conducted as shown in Fig. 7. 

At 8:49/760, a fake fire alarm was given. The cadet 
went to assess the situation. From the EEG results, a 
continuously increasing workload was detected. The high 
workload was maintained for quite a while and was 
diminished after the cadet assessed the situation. The 
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average workload also showed a steady increase as 
depicted in Fig. 8. 

 

 
 
Figure 7.  Workload level recognized from EEG when the cadet altered 

his course to overtake the ship. 

 
 
Figure 8.  Workload level recognized from EEG when a fake fire alarm 

was given. 

At time 19:30/1050, the cadet had a crossing ship situation 
and needed to watch the ship and to alter the course 
accordingly. Thus, the recognized workload level from 
EEG started to rise again, and as the cadet managed to 
complete the task, a medium-high workload was detected 
as shown in Fig. 9. When the cadet has normal cruise, the 
workload level keeps at the lowest level.  

 
 

 
 
Figure 9.  Workload level recognized from EEG when the cadet altered 

course to overtake. 

From this case study, it can be seen that the EEG based 
mental workload level correlates with the timing of the 
corresponding demanding event in the maritime exercise 
and reflect amount of mental effort needed to attend the 
event. 

B. EEG-based Human Factors Evaluation in ATC Work 
Place 
In our previous work [36], we demostrated that there is 

a significant correlation between the EEG-based workload 
recognition and NASA Task Load Index (TLX) method 
results. Here, we extend this human factors study to 

evaluate the current Air Traffic Control (ATC) work place 
including interactive touch display and reliable/unreliable 
Conflict Resolution Aid (CRA). Fig. 10 shows an ATC 
simulator integrated with the interactive touch display 
(front) and conflict resolution aid (left).  

 

 
Figure 10.  The air traffic control work place integrated with EEG-based 

brain states monitoring system. 

Meanwhile, an Emotiv EEG device was used to collect 
brain signals. In this work place, a CRA display is 
integrated to support ATCOs in resolving conflict. The 
CRA is an automation aid that could advise air traffic 
controllers (ATCOs) on the resolution of a potential 
conflict about 2 minutes in advance. In addition, an 
interactive touch display is used to help ATCOs to 
understand the airspace situation. This display provides 
ATCOs with the information of aircraft speed profile, 
climb and descend rate along the time axes.  

Three scenarios are designed in this experiment. EEG 
data are recorded throughout the whole experiment. Upon 
completion of each experiment scenario, the NASA-TLX 
questionnaire is used to measure mental workload of 
ATCOs. The results of the study will help to inspect the 
current workplace and propose further development 
design. 

The data collected in the ATC work place is based on 
three groups (Non-Display, Display, and Trajectory 
Prediction) in the three CRA conditions (Manual, Reliable 
and Unreliable). In workload rating analysis, both NASA-
TLX method and EEG-based recognition method were 
administered. We analyzed the relationship between 
mental workload calculated using traditional NASA-TLX 
method and the method used to label EEG data with 
different workload levels. It was found that the data are 
highly correlated in most of the simulations [36]. Thus, the 
EEG-based system can be used to recognize workload 
during each task performance at any time.   

To get a deeper understanding of the workload 
experienced by ATCOs from different group and under 
different conditions, three-levels of EEG-based recognized 
workload were used for analysis. Each of the one-hour 
session was split into intervals of 5 minutes and the 
recognized workload level is defined as an average 
recognition results for each 5-minute interval. 
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To analyze the effects of automation aids on workload, 
the mean and standard error of the workload measured for 
different time intervals, all display modes and time 
intervals, and all CRA settings and time intervals are 
plotted in Fig. 11-13 respectively. In Fig. 11, it can be 
observed that the mean workload is relatively high at the 
start of the session and from the 20th minute to the 45th 
minute when all data are used regardless of the CRA and 
display settings. The significance value obtained from the 
mixed ANOVA test for time factor is 0.025, which means 
that ignoring the CRA setting and display mode, the 
workloads measured through the 12 time intervals are 
significantly different.  

 
Figure 11.  Measure of workload ignoring the CRA setting and display 

mode in 12 time intervals. 

In Fig. 12, the mean workload measured is the highest 
under the trajectory prediction and similar for the display 
and non-display mode.  In Fig. 13, the mean workload 
obtained from the interaction between CRA setting and 
time intervals is similar to the trend observed in Fig. 11 
except that the mean workload at the start of the 
unreliable CRA setting is relatively low. 

 
Figure 12.  Measure of workload based on display mode Non-Display 

(ND), Display (D), and Trajectory Prediction (TP) in 12 time intervals. 

EEG-based workload evaluation method enables the 
continuous measurement of the subject’s workload, which 
allows for a more detailed analysis of experiment results 
obtained. From this ATC study, we conclude that the 
complexity of trajectory prediction has resulted in a 
higher workload compared to other display aids in all 
time points and the reliability of CRA has minimal effect 

on workload. Therefore, the trajectory prediction aid may 
need to be redesigned to meet the aim of reducing 
workload experienced by air traffic controllers. 

 
Figure 13.  Measure of workload based on the CRA settings Manual, 

Reliable and Unreliable in 12 time intervals. 

V. CONCLUSION 
In this paper, we discuss application of EEG-based 

mental workload, stress and emotion recognition 
algorithms in human factors study and neuroergonomics. 
Neuroscience-based design is a new application area of 
human BCI. The implemented CogniMeter system allows 
for monitoring and analyzing EEG recordings to recognize 
mental workload, stress levels and emotions and assess 
design of software/hardware and/or working place based 
on human performance. Currently, subject-dependent 
algorithms are used, and calibration of each algorithm for 
each subject is needed that requires additional time before 
the algorithms application. Two applications of 
CogniMeter system are described: human performance 
assessment in maritime simulator and EEG-based human 
factors evaluation in ATC work place. The results of 
workload recognition from EEG comply with traditional 
method such as NASA Task Load Index (TLX) workload 
assessment results using the questionnaire. The advantage 
of EEG application is the possibility to recognize emotion, 
stress, and mental workload at any time during the task 
performance or experiment. 
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