
LibSift: Automated Detection of Third-Party
Libraries in Android Applications

Charlie Soh, Hee Beng Kuan Tan, Yauhen Leanidavich Arnatovich, Annamalai Narayanan and Lipo Wang
School of Electrical and Electronic Engineering

Block S2, Nanyang Technological University

Nanyang Avenue, Singapore 639798

{csoh004, ibktan, yauhen001, annamala002, elpwang}@ntu.edu.sg

Abstract—Android applications typically contain multiple
third-party libraries and recent studies have shown that the
presence of third-party libraries may introduce privacy risks
and security threats. Furthermore, researchers have reported
the importance of considering the third-party libraries for their
program analysis tasks. A reason being that the presence of third-
party libraries may dilute the features and affect the accuracy of
their results. Existing literature typically employs a whitelist to
exclude the third-party libraries from their analysis in order to
achieve accurate results. However, these whitelists are generally
incomplete and weak against the renaming obfuscation technique
that is commonly employed in Android applications. In this
paper, we propose LibSift, a tool to automatically detect third-
party libraries in Android applications. LibSift detects third-
party libraries based on package dependencies that are resilient
to most common obfuscations. The evaluation results not only
indicate that LibSift can detect third-party libraries accurately
and effectively, but also show that LibSift can detect even the
less popular libraries that are not detected by two of the state-
of-the-art approaches.

I. INTRODUCTION

To date, Android is the most widely used smartphone

platform. Due to its popularity, the number of apps developed

for Android platform is also booming at an rapid rate. At

the time of writing this paper, Android’s official app market,

Google Play, hosts up to more than 2 millions apps [1].

Unfortunately, along with its popularity, Android platform is

being increasingly targeted by malware authors, who create

malicious apps. Sophos [2], reported that 2,000 new malware

samples were being discovered everyday in 2014, up from

1,000 in 2013. The security threats caused by the malicious

apps may leak the user’s private data or even cost the user

money [3], [4]. Apart from security threats, Android apps also

suffer from repackaging threats where plagiarists repackage

legitimate apps with additional malicious code or redirected

revenues and publish them as their own [5].

Therefore, in recent years, a substantial amount of research

is being dedicated to analyzing Android apps in attempt to

mitigate these threats. The analysis of Android app poses a

number of challenges. For example, due to the openness of

Android platform, there are multiple Android markets that

any third-party developer can publish their apps on any of

these markets without much scrutiny. This has led to an

overwhelming number of apps to be analyzed. Furthermore,

the flexibility of Android OS allows the developers to easily

incorporate third-party libraries (TPLs) into their apps to

lighten the burden on the developers. As a result, one particular

feature of Android apps is that they generally contain a number

of TPLs. The usage of TPLs escalates the problem further, as

the use of TPLs typically causes the app to include a significant

amount of code that is irrelevant and may hinder the process

of many program analysis tasks. Wang et al. [6] reported that

TPLs generally contribute to more than 60% of the app’s code.

There are generally three more prominent areas of program

analysis tasks that are affected by TPLs. Firstly, in app clone

detection the similarities of the code between the apps need

to be measured. Since TPLs can be easily manipulated, not

considering all the TPLs for the analysis may greatly affect the

results. A recent study [7] has shown that the computation of

code clone similarities in Android app is significantly affected

by the consideration of including or excluding TPLs. Secondly,

static taint analysis is a time consuming and computational

intensive process. However, a significant portion of the re-

sources are spent on analyzing irrelevant code when the TPLs

dominates the app. Researchers have reported that they have

encountered these problems. For instance, using a state-of-

the-art static taint analysis tool, FlowDroid [8], DroidSafe [9]

reported that for some apps the analysis cannot be finished

within 2 hours and AsDroid [10] reported that FlowDroid ran

out of memory on some apps. Since TPLs are typically used

as it is without any modification, the TPLs can be separately

analyzed and have the results be reused in the analysis of

the apps that use them [11]. Lastly, in malware detection,

the presence of TPLs may dilute the features used in the

detection, thus reducing the contrast between benign and ma-

licious samples and affecting the results of the detection. For

example, advertisement libraries are excluded from analysis

in MUDFLOW [12] as advertisement libraries are frequently

used in Android apps and their dataflows become common

and dilute the training data. Furthermore, DroidAPIMiner [13]

reported that filtering out TPLs increases the difference of API

usage between malware and benign apps.

Apart from hindering many program analysis tasks, the

usage of TPLs is also associated with more privacy risks

and security threats [14], [15]. For example, popular TPLs

may be masqueraded by malicious libraries to mislead users

into thinking that it is a legitimate TPL. Furthermore, some

TPLs, even the popular ones, are known to be aggressively

2016 23rd Asia-Pacific Software Engineering Conference

1530-1362/16 $31.00 © 2016 IEEE

DOI 10.1109/APSEC.2016.40

41

collecting the users’ private data. By identifying the TPLs

in the apps, we can effectively address these library-centric

threats. Grace et al. [16] reported that most of the existing

advertisement libraries collect private data and some run code

fetched from the Internet. In another recent study, the authors

have demonstrated that TPLs are likely a significant medium

for the propagation of malicious code [17].

Consequently, multiple attempts had been made in the

existing literatures to identify and exclude TPLs from different

program analysis tasks [5], [13], [18], [19]. One of the most

common techniques used to identify TPLs in Android apps

is to use a whitelist and match the names of the pack-

ages in the app to the TPLs package name listed in the

whitelist. However, due to the widespread interest and the

dynamic nature of Android ecosystem, it is difficult to build

a comprehensive whitelist of TPLs as there are too many of

them. Furthermore, it is common for Android apps to employ

obfuscation techniques that may, for instance, rename the

packages, classes and methods. For example, a non-obfuscated

app with a package com.library.example, after obfuscation, the

package may become com.a.a. Thus, this common obfuscation

technique will cause the whitelist approach to fail in detecting

the obfuscated TPL.

Despite the importance of identifying TPLs in Android apps,

there are only a few existing studies focusing on it. LibRadar

[20] uses as feature the frequency of different Android APIs

in each pacakge, and performs feature hashing on a large

number of apps. Following that, strict comparison is enforced

to perform clustering and identify TPLs that are frequently

used. Li et al. [21] put together a large whitelist of popular

TPLs by refining a list of package names that have frequent

appearance in a large number of apps.

In this paper, we propose LibSift, an approach to identify

TPLs in Android apps based on the package dependency

graph (PDG) of the app. We evaluate the effectiveness and

efficiency of LibSift on a real-world dataset of 300 Android

apps. We further compare LibSift with two state-of-the-art

TPLs detection approaches, LibRadar [20] and the whitelist

from Li et al. [21].

Our proposed approach is inspired by PiggyApp [22] that is

the most related study to our work, but it addressed a different

problem. In PiggyApp, its goal was to identify piggybacked

apps1 that share the same primary module. In our approach, we

focus on detecting TPLs in Android apps. Its main idea is that

typically, the code of every Android app can be divided into

primary module and non-primary modules (if any) by using

module decoupling technique. The primary module defines the

app’s core functionalities and the non-primary modules are

contributed by TPLs. The code within each module, primary

or non-primary, is tightly coupled, whereas, the code between

modules is loosely coupled or even standalone. Furthermore,

dependency graph techniques have been proven to be resilient

to multiple types of common obfuscation techniques, such as

1Piggybacked apps refers to a type of repackaged app which involves the
injection of rider code into the original app.

renaming, statement manipulation and program transformation

[18]. Another advantage of our approach is that, on the

contrary to the state-of-the-art TPLs detection approaches, our

approach does not assume that all TPLs will be used by many

apps. Thus, we are able to detect even the non-popular TPLs

that do not appear in many apps. In fact, in our evaluation, we

show that LibSift can effectively detect the less popular TPLs

missed by both of the state-of-the-art approaches. In addition,

for our approach, it is straightforward to update the list of

TPLs when new library versions or new TPLs are detected.

Our main contributions in this paper are as follows:

• We propose a novel approach to automatically detect all

TPLs used in Android apps based on package dependency

graph and without first having to study a large number of

apps.

• We implement a prototype of our approach, LibSift, and

conduct extensive experiments to evaluate the effectiveness

and efficiency of our approach to detect TPLs in Android apps.

• We compare our approach with two state-of-the-art ap-

proaches, LibRadar [20] and whitelist from Li et al. [21],

and show that our approach can detect libraries that are not

detected by them.

II. PROPOSED THIRD-PARTY LIBRARY DETECTION

A. Overview

In the software context, a library is generally coded in

a modular fashion, such that the code within the library is

loosely coupled but highly cohesive. Coupling refers to the

interdependencies between modules, while cohesion describes

the degree of relationship between the functions that are within

a single module. Low cohesion implies that a given module

performs tasks which are not very related to each other and

hence can create problems as the module becomes large. TPLs

written for Android apps follow the same principle. Android

apps are generally written in Java programming language and

thus possess Java’s property of organizing code into packages.

As a result, Android apps can be decoupled into individual

modules, where the code within each module is tightly inter-

woven and the code between each module is independent or

loosely coupled. Based on the above-mentioned observation,

we propose to detect all TPLs used in a given Android app

by making use of the natural partitioning of the Android apps

and perform module decoupling at the package level.

In our approach, we use a module decoupling technique

similar to the technique that was introduced in PiggyApp

[22]. PiggyApp performs module decoupling to identify the

primary module of the apps and uses it to detect Piggybacked

apps. Despite addressing different issues, since our technique

is similar in nature, it is notable to highlight the differences

between our techniques. Firstly, package homogeneity2 is

considered as a dependency relationship with high importance

in PiggyApp. Whereas in LibSift, package homogeneity is

not consider as a dependency, but as a criteria to merge the

2We consider two packages as homogeneous if they form a parent-child or
sibling relationship

42

Fig. 1. Overview of LibSift

packages into a module. Secondly, in the module decoupling

process, PiggyApp performs agglomerative clustering to clus-

ter the packages with dependencies weight greater than a

pre-defined threshold, starting from the most tightly coupled

pair and stop when there are no clusters with dependencies

weight greater than threshold left. However, in the case of

LibSift, we perform module decoupling using a different

algorithm. For instance, we check for package homogeneity

before merging the packages and if more than one sibling

packages belong to a module, we assign all sibling packages

sharing the same parent to that module. Finally, the method

we use to identify the primary module is also different. In

PiggyApp, the primary module is identified as the module that

provides the main activity or the module that handles the most

activities of the app. However, LibSift identifies the primary

module based on the app’s package name or as the module

that have dependencies with most number of other modules.

More details on our approach are provided in the following

(Section II-B - II-E).

Figure 1 shows the overall architecture of our approach

to detect TPLs in Android apps. LibSift consists of four

main processes, disassembling, constructing PDG, module

decoupling, and identifying primary module. The disassembly

process is necessary to reveal the information required for

the next process. The construction of the PDG involves the

analysis of the bytecode information to extract dependencies

between different packages. For module decoupling, we cluster

the packages of the given app into separate modules based on

its PDG. Lastly, if the app contains more than one module,

we identify the primary module from the set of modules.

B. Disassemble

The Android operating system uses Android application

package (APK) for distribution and installing. When the app

developer compiles and builds the app, all the app code are

compiled into a single dex file, thus, losing the clear separation

between the TPLs and the core app code. Following that,

the dex file along with the necessary resources are packaged

into an APK. Fortunately, during the building process the

hierarchical information of the packages within the app is

preserved and we can use it along with package dependency

information to detect the TPLs used by the app.

In order to do so, given an APK, we first disassemble

it using apktool [23] to reverse engineer the classes.dex

file to smali files, which also reveals the package hierarchy

information within the app. During the disassembly process,

the bytecode in the dex file is converted into smali [24]

intermediate representation in the form of multiple smali files

which is analogous to the class files of the Java programming

language. Furthermore, these smali files will be placed in their

respective folder based on their package hierarchy. As such,

we can now analyze the smali files and extract the package

dependencies information.

C. Package Dependency Graph

The PDG shows the degree of dependencies between the

packages of an app. Note that our computation of PDG does

not consider control dependencies, but instead focuses on

dependency relationships, such as class inheritance, method

calls, and member field references. With the dependencies

and package hierarchy information, we construct a PDG =
(N,E,W). Where N is a set of nodes and each node n ∈ N
represents a package in the app (note that we only consider

packages with smali files directly under them). E ⊆ (N ×N)
is a set of edges and each edge e(n1, n2) ∈ E, where

n1, n2 ∈ N , connecting any two nodes represents that there

is a dependency between these two nodes. Lastly, W is a

set of labels representing the weights of the edges and each

weight w ∈W is the degree to which the nodes connected by

the edge e(n1, n2) are dependent on each other. As different

relationships represent a different degree of dependencies,

we assign them with different weights. Except for package

homogeneity, we use the weight assignments suggested in

PiggyApp, which are 10, 2, 1 representing class inheritance,

method calls, and member field references, respectively. In the

following section (Section II-D) we will explain that we view

package homogeneity not as a dependency, but as an additional

criteria for the packages to be clustered as a module.

An example of the PDG for a Korean language learning

app is as shown in Figure 2. In this particular app, there are

15 sub-packages that contain smali file directly under them.

Some of the sub-packages that do not have dependencies with

any other sub-package are depicted as nodes without edge.

D. Module Decoupling

In our approach, we perform module decoupling using

package level semantic information. Each module consists of

one or more packages, and every package in the module has

43

a parent to child or sibling relationship to at least one other

package in the same module. However, we argue that sharing

the same parent in the package hierarchy does not necessarily

means that they are related. For example, the following two

popular libraries, com.google.ads and com.google.analytics,

they share the same parent com.google and may be both

considered as libraries from Google, but in actual fact, they are

two separate libraries that can be used independently. Hence,

it is more beneficial to report them as separated libraries.
As such, based on the PDG, we cluster the packages into

modules only if the following conditions are met: 1) Package

homogeneity 2) Total weight between the two packages is

greater than the pre-defined threshold and 3) If package p1

and package p2 are sibling nodes from the same module then

all the other sibling nodes of p1 and p2 are from the same

module. As mentioned above, simply sharing the same parent

module does not means that they are related. However, if there

are high dependency between some sibling nodes, then it is

likely that all other sibling nodes belongs to the same module.

The algorithm we use to perform module decoupling is shown

in Algorithm 1.

Algorithm 1: Module Decoupling Algorithm

Input: PDG - Program Dependency graph of the app

threshold - Pre-defined threshold

Output: M - Set of Modules of the app

1 foreach edge e in PDG do
2 if weight w > threshold then
3 (n1, n2) ← get nodes(edge)

4 if package homogenity(n1, n2) == TRUE then
5 M ← merge(n1, n2)

6 foreach node in the PDG do
7 if sibling nodes in a module then
8 M ← merge(node, M)

9 return M

The PDG of the same app in Figure 2 after the module

decoupling process is shown in Figure 3. As evident in Figure

3, the 15 sub-packages of the app are successfully merged into

5 modules. The sibling nodes such as android.support.v4.view
and android.support.v4.widget are merged into the parent node

Fig. 2. Package Dependency Graph Example

android.support.v4. Furthermore, since android.support.v4 is

already declared as a module, all child nodes under an-
droid.support.v4 in the package hierarchy are merged into this

module. As the packages can only be merged when package

homogeneity is true, the TPLs com.facebook.android and

android.support.v4 are not merged with the primary module

com.bravolang.korean.

E. Identify Primary Module

The primary module is named as such because it provides

the primary function of the app and it is where the core

app code resides. For certain Android app security analysis,

especially Android app clone detections, it is important to

identify the primary module for similarity analysis as the other

modules are TPLs that can be easily replaced with other TPLs

of similar functions.

Based on our observation, in most cases, the primary

module can be simply inferred from the app’s package name

or is a subset of the app’s package name. Note that in this

paper, app’s package name refers to the unique package name

declared in the AndroidManifest.xml that uniquely identifies

the app on the device and package name refers to the name

of the packages in the app. Using the same Korean lan-

guage learning app as an example, its app’s package name

is com.bravolang.korean, and the core app code written by

the developer is all enclosed within the com.bravolang.korean
sub-package, therefore the primary module can be correctly

identified as com.bravolang.korean. This common practice is

due to the fact that Android app development following the

Java programming language package naming convention, that

suggest that developers use their reversed Internet domain

name to begin their package name to avoid conflict with other

apps. Moreover, using each period in the package name as a

path separator, all the code by the same developer would be

placed together in the path hierarchy.

However, in some cases, we are unable to infer the primary

module just from the app’s package name. One of the main

reason is due to the use of obfuscation which renamed the

packages. In these cases, we identify the primary module

base on the reasoning that the primary module contains the

core code of the apps that is in charge of communicating

with the TPLs to access their resources. Furthermore, TPLs

are designed to work independently and are not dependent on

other TPLs to function, this means that non-primary module

should not have dependencies on other non-primary modules.

Therefore, the primary module can be identified based on

Fig. 3. Package Dependency Graph After Module Decoupling

44

the highest number of other modules it has dependencies on.

Based on the PDG, for each module, we can identify its

dependencies on other modules and compute the total number

of other modules it has dependencies on.

In summary, to identify the primary module, we first use the

app’s package name and match it with the modules that we

have identified. If a match is found, the matching module will

be the primary module. However, when we fail to identify the

primary module through matching the package name, we will

identify the module that communicates with the most number

of other modules as the primary module. The algorithm we

use to identify the primary module is shown in Algorithm 2.

Algorithm 2: Identify Primary Module

Input: M - Set of Modules of the app

app package name - unique package name of the

app

Output: primary module

1 foreach module m in M do
2 if match pacakgeName(module, app package name)

== TRUE then
3 return module

4 return highest dependent count(M)

III. EVALUATION

We have implemented a prototype of LibSift in Python code

to perform preparations, module decoupling and identification

of primary module for the detection of TPLs in Android

apps. In the preparation step, we first disassemble the APK

of the given app, using apktool [23]. Our python script then

automatically extract the packages from the app. Following

that, we parse the smali code to identify the dependencies

between the packages and build a weighted PDG. Finally,

we cluster the packages into modules based on Algorithm 1

(refer to Section II-D) and identify a primary module using

Algorithm 2 (refer to Section II-E). For the evaluation of

LibSift, we first evaluate the accuracy of LibSift on a set of

real-world Android apps. Next, we evaluate the performance

of LibSift. Finally, we compare LibSift with two state-of-

the-art TPLs detection approaches. The dataset used in our

experiment consists of 300 real-world apps collected from the

top popular apps from different categories in Google Play

store. All evaluation experiments are performed on a Linux

machine with 2.6 GHz Intel core CPU and 32 GB of RAM.

A. Module Decoupling and Validation

Based on our experiments, we empirically determined that a

cut-off threshold = 15 is a suitable value to accurately decouple

the modules in Android apps. A threshold that is too high will

tend to fail to identify and group related packages belonging

to the same module that do not have high dependencies. On

the other hand, a threshold that is too low is prone to falsely

group unrelated packages with low dependencies into the same

module.

TABLE I
MODULE DECOUPLING RESULTS SUMMARY

Description Number of modules
Total number of modules 5,460
Number of obfuscated modules 802
Minimum number of modules in an app 1
Maximum number of modules in an app 76
Average number of modules in an app 18.2
Standard deviation of modules in an app 13.77

A summary of our module decoupling results is presented

in Table 1. The results stated are from the 300 apps dataset and

based on threshold = 15. The total number of modules detected

by LibSift in all 300 apps is 5,460. The breakdown of the

numbers of obfuscated and non-obfuscated modules detected

by LibSift are 802 and 4,658 respectively. The minimum,

maximum and average number of modules per app, detected

by LibSift, are 1, 76 and 18.2 respectively. The standard

deviation for the number of modules per app is 13.77. This

shows that most Android apps do indeed use multiple TPLs.

To evaluate the module decoupling accuracy of LibSift, we

manually analyze the 300 apps and verify that the modules

are correctly decoupled. The results show that our approach

correctly decoupled 296 apps. Therefore, the accuracy of

LibSift is 98.67%. In the rare occasions where the apps are

incorrectly decoupled, we found out that it is due to the

packages in the primary module not having any dependencies

on each other. This causes the primary module to be separated

into multiple modules and thus, falsely identified as TPLs,

when they should be part of the primary module.

B. Primary Module

To evaluate the accuracy of LibSift in identifying the

primary module, we manually verify the primary module

of the 296 apps that are decoupled correctly. Note that if

there are more than one potential primary module, LibSift

reports all of the potential primary modules. In this case,

since LibSift is unable to pin point the primary module,

even though the correct primary module is among the list

of potential primary modules, we consider those apps with

multiple potential primary modules reported as wrong primary

module identification. A summary of the the primary module

identification statistics is presented in Table 2. The results

show that 283 apps have their primary modules identified

correctly. Therefore, the accuracy of LibSift’s primary module

identification is 95.61%. The reason LibSift fails to identify

the primary module is two-fold. Firstly, the name of the

packages for the primary module is obfuscated or different

from the package name and therefore, cannot be identified

by simply matching them. Secondly, in some rare cases, the

TPL represents the core of the app and is used to provide

communications between different TPLs.

Out of the 296 apps that are decoupled correctly, the primary

module of 23 apps cannot be identified from its package name.

Therefore, LibSift attempts to identify the potential primary

module by looking for the module that has dependencies

45

TABLE II
PRIMARY MODULE IDENTIFICATION SUMMARY

Description Number of apps
Identified from app’s package name 273
Unable to to identify from app’s package name 23
Based on dependencies with number of other modules
Only 1 module with highest count 16
Primary module identified correctly 10
More than 1 module with highest count 7
One of the module with highest count is primary 3

Fig. 4. Time Taken by LibSift to Process Each App

with the most number of other modules. For 16 apps out

of the 23 apps, there is only 1 module in each app that has

dependencies with most other modules. Among these 16 apps,

10 of them have their primary module identified correctly.

Whereas for the other 7 apps out of the 23 apps, more than

one potential primary modules are identified in each app as

there are multiple candidates with dependencies on an equal

number of modules. Out of these 7 apps, 3 of them contain

the true primary modules.

C. Performance

After dissembling the APKs, the total time taken for LibSift

to detect TPLs in all 300 apps is less than 27 minutes. Figure 4

shows the breakdown of time taken to detect TPLs in each app,

sorted in ascending order. Only 1 app took more than 1 minute

to process and about 90% of the apps took around 10 seconds

or less. Note that these are achieved without prior studies of

a large number of apps. To further improve the efficiency

of LibSift, since LibSift does not require to cluster a large

number of apps, it can be easily parallelized by distributing

the workload to multiple machines.

D. LibSift vs. LibRadar and Whitelist

In this section, we compare our approach with two state-

of-the-art approaches. One of them is the LibRadar [20] TPLs

detection tool which is based on API features of packages

in the apps. It uses a clustering based approach to cluster

the hashes of the packages in a large dataset of apps and

the packages that are clustered into large clusters, greater

than a pre-defined threshold, are identified as TPLs. Another

approach is by far the largest set of TPLs whitelist collected by

Li et al. [21]. The list of TPLs is harvested from a large dataset

of Android apps by extracting the names of the packages and

clustering them based on the frequency of occurrence and

followed by a series of refinements.

Figure 5 presents the results of TPLs detection for LibSift,

LibRadar, and whitelist from Li et al. [21] on the same set

of 300 real-world Android apps. The Y-axis represents the

total number of libraries detected by each approach for the

corresponding apps along the X-axis. As shown in the Figure

5, LibSift is capable of detecting more TPLs in most cases.

For the 300 apps, the average numbers of TPLs detected by

LibSift, LibRadar and whitelist from Li et al. are 17.17, 7.68

and 7.93 respectively.

In general, the TPLs not detected by LibRadar are the less

popular ones. In addition, we also observed that in some

apps the popular TPLs are detected by LibRadar, but the

same TPLs are not detected in some other apps. Upon further

investigation, we found out that it is due to different versions of

the TPLs using slightly different APIs. As mentioned in their

paper, LibRadar [20] enforces strict comparison, such that,

two packages can only be cluster together when they share

the exact same features (APIs). This results in the detection

of multiple versions of the same TPL. However, in the case

where the particular version of the TPL is not used frequent

enough, possibly due to reason such as short update intervals,

despite being a popular TPLs, this version of the TPL will

not be detected. On the other hand, the TPLs not detected by

using the whitelist from Li et al. are generally the less popular

TPLs and those that have their package names obfuscated.

Furthermore, Li et al. [21] stated in their paper that they do

not list libraries starting with the name ”android.support”. It

is worth noting that when using the whitelist, unlike semantic

based approach, all versions of the popular TPLs will always

be detected as long as the package name remains the same

and non-obfuscated.

With the APKs disassembled, the total time taken for each

approach, LibSift, LibRadar and whitelist to detect TPLs from

the 300 apps are 1,617, 1,875, and 76 seconds, respectively.

As expected, the usage of whitelist is significantly faster as

compared to other approaches. However, as mentioned above,

the whitelist approach is vulnerable to package renaming

obfuscation technique, which is commonly used in the Android

apps. Furthermore, despite their attempt to overcome the

incompleteness of whitelist by studying a large number of

apps, many of the less popular libraries are still not listed.

Since the study is based on a large number of apps, it may be

expensive to keep the whitelist up to date. Similarly, LibRadar

requires a time-consuming pre-processing step of extracting

unique features from a large number of apps and clustering

them, which can be expensive to update their database. This

can be a problem because the Android ecosystem is fast

paced and dynamic, new libraries will be emerging at a fast

pace. For LibSift, the total time taken to TPLs in all 300

apps is slightly shorter than LibRadar (after the database is

established). Currently, LibRadar is able to provide the users

with more details, such as meaningful package name for those

obfuscated TPLs. However, there are no obvious challenges

that prevent LibSift from including these features in the future

46

Fig. 5. Number of TPLs Detected by LibSift, LibRadar [20] and Whitelist [21] for 300 apps

and it is part of our plans for future work.

IV. THREATS TO VALIDITY

As there are currently no conventions to determine whether

a part of a software program is actually a TPL, the validity of

our assumption that each module is a TPL could be threatened.

This can happen when a library contains separated modules

that are independent of each other. However, we believe that

the negative consequences of missing a library are much

greater than splitting up a library. Note that this is also an issue

for both the state-of-the-art approaches. Furthermore, it is pos-

sible that our reported module contains more than one library

that have high dependencies on each other. However, TPLs

are designed to work individually and this situation should

rarely occur. In addition, our approach checks for package

homogeneity before merging the packages into module, thus

reducing the possibility this error.

Our analysis is limited to free Android apps and could

threaten the validity of the generalization of our findings. For

instance, it is very likely that commercial apps have more

obfuscated modules to protect their interests. Furthermore,

the size of our dataset is a very small amount compared to

the millions of apps available across the Android markets.

However, to mitigate the threat, we use real-world dataset

which covers the top popular apps from different categories.

V. RELATED WORK

In this section, we discuss the related work in the existing

literature and we divide this section into three parts. We first

discuss the related work that involves the detection of TPLs in

Android apps to achieve their goals. Secondly, we discuss the

work that employs module decoupling technique. Lastly, we

discuss the related work that aims to identify TPLs in Android

apps.

A number of Android security work requires them to

detect TPLs in Android apps. Most of the existing studies

do so using a whitelist. For example, Chen et al. [19] use a

whitelist to remove apps that use same framework or common

libraries from their app clone detection. Aafer et al. [13] use

a whitelist to remove any APIs exclusively invoked by TPLs

and improve the accuracy of their Android malware detection.

DroidMOSS [5] reduces false positives in their app clone

detection by removing features from advertisement libraries

using a whitelist. Instead of whitelist, Wukong [6] uses the

frequency of different Android APIs calls in each sub-package

as a feature and performs strict comparison to cluster identical

package for identifying and filtering TPLs, before detecting

Android app clones. DNADroid [18] identifies TPLs by com-

paring the SHA-1 hashes of known libraries and excluding

them from their Android app clone detection. Andarwin [25]

uses program dependency graph and clustering techniques to

eliminate TPLs and detect semantically similar Android apps.

We believe that the results of these studies can be further

improved by using our approach to identify TPLs.

The following studies employ module decoupling technique

on Android apps to address different challenges and prove that

module decoupling technique works well on Android apps.

PiggyApp [22] aims to detect piggybacked apps (legitimate

apps with malicious code attached), by first separating the app

code into primary and non-primary modules and comparing

apps with similar primary modules to identify repacked app

with rider code. Addetect [26] decouples Android app into

individual modules, they then extract features from these mod-

ules and use machine learning technique to identify advertise-

ment libraries. Droidlegacy [27] partitions Android apps into

loosely coupled modules and comparing the signature of each

module to known malware families to identify piggybacked

malicious apps. These studies perform module decoupling at

different granularity levels. In the module decoupling per-

formed by PiggyApp, each node in the graph represents a Java

package that includes all the Java class files declared within it.

However, AdDetect only considers the packages that represent

the root of the package subtrees. Whereas in DroidLegacy,

each node in the graph presents a Java class. In LibSift we

perform module decoupling at the same granularity level as

PiggyApp.

The following studies focus on detecting TPLs in Android

apps. Li et al. [21] identify TPLs in Android apps from a

47

large dataset of 1.5 million apps. Their approach is based on

the appearance frequency of the package name in the large

dataset and subsequent refinements to refine the list. LibRadar

[20] extends Wukong’s [6] clustering-based technique by

performing feature hashing on the features to effectively detect

TPLs used in Android apps. Both techniques are based on the

assumption that TPLs are used in a large number of apps.

Therefore, unlike LibSift they may not be able to identify less

popular or new TPLs.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented our approach to detect

third-party libraries in Android apps. Our approach is based

on the observation that libraries in software program are

highly cohesive but loosely coupled. Therefore, for a given

Android app, we perform module decoupling based on its PDG

and identify its primary and non-primary modules. We have

implemented a prototype of LibSift and evaluated it on a set

of real-world Android apps. Our result shows that LibSift is

able to effectively identify TPLs in Android apps. We have

also compared our approach with two other state-of-the-art

approaches, LibRadar [20] and whitelist from Li et al. [21].

The results show that our approach can detect libraries not

detected by them.

Despite the good results, LibSift can still be improved

in multiple ways. For our future work, we plan to extend

our current work by improving on the current algorithm and

providing additional useful features. For example, it may

be useful to recognize and identify the obfuscated TPLs.

Furthermore, additional information such as the type of library

and the maliciousness of the library are also important for

certain program analysis tasks. All these can be achieved by

performing static analysis on the code of each of the modules

identified by LibSift.

REFERENCES

[1] Appbrain: Google play stats. [Online]. Available:
http://www.appbrain.com/stats

[2] Sophos: Sophos mobile security threat report. [Online]. Avail-
able: https://www.sophos.com/en-us/medialibrary/PDFs/other/sophos-
mobile-security-threat-report.pdf

[3] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox,
J. Jung, P. McDaniel, and A. N. Sheth, “Taintdroid: an information-
flow tracking system for realtime privacy monitoring on smartphones,”
ACM Transactions on Computer Systems (TOCS), vol. 32, no. 2, p. 5,
2014.

[4] C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Androidleaks: auto-
matically detecting potential privacy leaks in android applications on
a large scale,” in International Conference on Trust and Trustworthy
Computing. Springer, 2012, pp. 291–307.

[5] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smart-
phone applications in third-party android marketplaces,” in Proceedings
of the second ACM conference on Data and Application Security and
Privacy. ACM, 2012, pp. 317–326.

[6] H. Wang, Y. Guo, Z. Ma, and X. Chen, “Wukong: A scalable and accu-
rate two-phase approach to android app clone detection,” in Proceedings
of the 2015 International Symposium on Software Testing and Analysis.
ACM, 2015, pp. 71–82.

[7] M. Linares-Vásquez, A. Holtzhauer, C. Bernal-Cárdenas, and D. Poshy-
vanyk, “Revisiting android reuse studies in the context of code obfusca-
tion and library usages,” in Proceedings of the 11th Working Conference
on Mining Software Repositories. ACM, 2014, pp. 242–251.

[8] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps,” ACM SIGPLAN Notices, vol. 49, no. 6, pp. 259–269, 2014.

[9] M. I. Gordon, D. Kim, J. H. Perkins, L. Gilham, N. Nguyen, and M. C.
Rinard, “Information flow analysis of android applications in droidsafe.”
in NDSS. Citeseer, 2015.

[10] J. Huang, X. Zhang, L. Tan, P. Wang, and B. Liang, “Asdroid: detecting
stealthy behaviors in android applications by user interface and pro-
gram behavior contradiction,” in Proceedings of the 36th International
Conference on Software Engineering. ACM, 2014, pp. 1036–1046.

[11] F. Wei, S. Roy, X. Ou et al., “Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of
android apps,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2014, pp. 1329–1341.

[12] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer,
and E. Bodden, “Mining apps for abnormal usage of sensitive data,”
in 2015 IEEE/ACM 37th IEEE International Conference on Software
Engineering, vol. 1. IEEE, 2015, pp. 426–436.

[13] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining api-level features
for robust malware detection in android,” in International Conference
on Security and Privacy in Communication Systems. Springer, 2013,
pp. 86–103.

[14] R. Stevens, C. Gibler, J. Crussell, J. Erickson, and H. Chen, “Inves-
tigating user privacy in android ad libraries,” in Workshop on Mobile
Security Technologies (MoST). Citeseer, 2012, p. 10.

[15] W. Hu, D. Octeau, P. D. McDaniel, and P. Liu, “Duet: library integrity
verification for android applications,” in Proceedings of the 2014 ACM
conference on Security and privacy in wireless & mobile networks.
ACM, 2014, pp. 141–152.

[16] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in Proceedings of the fifth
ACM conference on Security and Privacy in Wireless and Mobile
Networks. ACM, 2012, pp. 101–112.

[17] K. Chen, X. Wang, Y. Chen, P. Wang, Y. Lee, X. Wang, B. Ma, A. Wang,
Y. Zhang, and W. Zou, “Following devils footprints: Cross-platform
analysis of potentially harmful libraries on android and ios,” in IEEE
Symposium on Security and Privacy. in press, 2016.

[18] J. Crussell, C. Gibler, and H. Chen, “Attack of the clones: Detecting
cloned applications on android markets,” in European Symposium on
Research in Computer Security. Springer, 2012, pp. 37–54.

[19] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on android markets,” in
Proceedings of the 36th International Conference on Software Engineer-
ing. ACM, 2014, pp. 175–186.

[20] Z. Ma, H. Wang, Y. Guo, and X. Chen, “Libradar: fast and accurate
detection of third-party libraries in android apps,” in Proceedings of
the 38th International Conference on Software Engineering Companion.
ACM, 2016, pp. 653–656.

[21] L. Li, J. Klein, Y. Le Traon et al., “An investigation into the use
of common libraries in android apps,” in 2016 IEEE 23rd Interna-
tional Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1. IEEE, 2016, pp. 403–414.

[22] W. Zhou, Y. Zhou, M. Grace, X. Jiang, and S. Zou, “Fast, scalable
detection of piggybacked mobile applications,” in Proceedings of the
third ACM conference on Data and application security and privacy.
ACM, 2013, pp. 185–196.

[23] Apktool: A tool for reverse engineering android apk files. [Online].
Available: http://ibotpeaches.github.io/Apktool/

[24] Smali: An assembler/disassembler for androids dex format. [Online].
Available: https://github.com/JesusFreke/smali

[25] J. Crussell, C. Gibler, and H. Chen, “Andarwin: Scalable detection of
semantically similar android applications,” in European Symposium on
Research in Computer Security. Springer, 2013, pp. 182–199.

[26] A. Narayanan, L. Chen, and C. K. Chan, “Addetect: Automated detection
of android ad libraries using semantic analysis,” in Intelligent Sensors,
Sensor Networks and Information Processing (ISSNIP), 2014 IEEE
Ninth International Conference on. IEEE, 2014, pp. 1–6.

[27] L. Deshotels, V. Notani, and A. Lakhotia, “Droidlegacy: Automated
familial classification of android malware,” in Proceedings of ACM
SIGPLAN on Program Protection and Reverse Engineering Workshop
2014. ACM, 2014, p. 3.

48

