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Abstract—In 2006 Zhang and Zhou proposed a multilabel
classification model based on the MLP network, which was
subsequently improved by Grodzicki et al. This paper further
improves both these approaches by introducing a scaling param-
eter responsible for maintaining a balance between the impacts
of particular components of the MLP’s error function in the
training process. The newly-proposed parameter is autonomously
fine-tuned by the system in the nested cross validation process.
The proposed approach is tested on a set of well-established
benchmarks and demonstrates its superiority over the baseline
methods for 16 different error measures used in the experiments.
Furthermore, the method proves competitive to 12 other state-
of-the-art machine learning approaches which are used for
further comparisons. In the combined score composed of ranking
positions for all benchmarks and all error functions, the proposed
neural network system gains the leading position among all tested
methods.

I. INTRODUCTION

While the baseline formulation of a classification task

consists of assigning each sample to one of the available

categories (classes, labels), its multilabel version assumes that

a given sample may belong to more than one category, or

alternatively, be assigned more than one label from the set of

all available labels. Another layer of difficulty in the multilabel

classification formulation stems from the fact that the size of

the assigned subset of labels is usually not known a priori.
Numerous real-life applications of multilabel classification

(MC) led to development of various approaches to solving this

problem with the used of various machine learning techniques,

e.g. classifier chains [1], k-Nearest Neighbor [2], decision

trees [3], random forests [4], neural networks [5], [6], and

other.

In this paper, we enhance our previous approach [6] (de-

noted CART-M here), which relies on a specifically defined

error function and operates on a Cartesian set of available

labels, by introducing a scaling parameter D in the error

function formulation. Two approaches to selection of the best

value of D using nested cross validation are proposed and

experimentally evaluated. The first one determines the optimal

value of D by a ranking involving 16 different evaluation (loss)

functions. The other one is dedicated to a particular evaluation

function which is used directly to determine the best value of

D.

Both the baseline version of CART-M [6] and its tuned

version TCART-M proposed in this paper are thoroughly

evaluated against 12 other approaches taken from a recent

survey paper [7] based on 5 widely-used benchmark problems

and 16 evaluation functions (leading to 80 evaluation measures

altogether).

The remainder of this paper is arranged as follows. Sec-

tion II presents the definition of MC and discusses its practical

relevance. Section III summarizes the comparative approaches

used in the experimental evaluation of the TCART-M. The

next section provides a description of the TCART-M method.

Section V is devoted to a presentation of the experimental

setup, in particular, the benchmark sets, evaluation measures

and parametrization of the methods used in the experiments.

Experimental results and their comparisons with other solu-

tions are presented in section VI. The last section is devoted

to conclusions.

II. MULTILABEL CLASSIFICATION PROBLEM

The problem of MC is defined as follows. Let X ⊆ R
d

be d-dimensional instance space and Y = {y1, y2, . . . , yQ}
denote the set of Q possible labels. The MC task is to learn

function h : X → 2Y , which to each object from the domain

of instances X assigns a corresponding subset of labels.

In practical situations the above definition is often imple-

mented as the task of finding function f : X × Y → R such

that

∀xp ∈ X, ∀y1 ∈ Yp, y2 /∈ Yp f(xp, y1) > f(xp, y2) (1)

Function f provides greater outputs for the elements belonging

to Yp than for those not belonging to Yp, where Yp ⊆ Y is a

set of labels assigned to object xp.
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MC is widely applicable to various real-life tasks, including

text categorization (e.g. automatic tag suggestions for doc-

uments [8], articles [9] or e-mails [10]), multimedia files

classification (e.g. music [11], video [12] or images [13]

classification or tagging), or biology and bioinformatics (for

instance, in discovering genomic functions [14] or finding

probable diseases based on observed symptoms [15]).

III. STATE-OF-THE-ART APPROACHES

In recent years, a growing interest in MC has been observed

mainly due to its wide applicability in various domains and,

at the same time, an intrinsic complexity which makes the

problem challenging in both theoretical and practical dimen-

sions. In effect, numerous new approaches to MC relying

on various machine learning techniques were proposed and

proved successful in various application domains. This section

presents an overview of some of the relevant MC algorithms.

Please consult [16] and [7] for a more in-depth overview and

the source papers for a detailed description of the respective

methods.

Binary relevance (BR) [13] is one of the simplest algo-

rithms, which relies on splitting the MC learning problem with

Q classes into Q independent binary classification problems.

For each of them the algorithm decides whether or not the

respective label is relevant for the given example.

The Classifier chaining algorithm (CC) [1] also relies on

Q binary classifiers but, unlike in BR, they are not pairwise

independent, but chained (put in a sequence). The feature

space of each classifier in a chain is extended by the results

obtained for all previously lined up classifiers.

Calibrated label ranking (CLR) [17] transforms the MC

learning problem into a label ranking problem. Label ranking

is created by means of pairwise comparison. The method was

further improved by using a more effective Quick Weighted
voting scheme (QWML) [18].

Hierarchy Of Multilabel classifiERs (HOMER) [19] is de-

signed mainly for large multilabel data sets and therefore

carefully optimized for computational efficiency. It first groups

similar labels into sets based on their distribution by means of

a balanced clustering algorithm similar to the k means algo-

rithm. Afterwards, these smaller sets are considered separately.

Multi-Label C4.5 (ML-4.5) [20] is an adaptation of a pop-

ular C4.5 classification tree algorithm with an appropriately

modified entropy formula and multiple labels (sets of labels)

stored in the leaves of a classification tree.

Multilabel k-nearest neighbors (ML-kNN) [2] is another ex-

ample of adaptation of a very popular classification algorithm

to a multilabel version. For each new object, its k nearest

neighbors among objects with known label sets are firstly

identified, and then, based on these label sets, the maximum

a posteriori principle is used to determine the set of labels for

the considered object.

Predictive clustering trees (PCT) [3] take a hierarchical

clustering approach - a root node represents one cluster with all

the data and down the tree the data is partitioned into smaller

clusters. The method constructs a tree using a standard top-

down induction of decision trees by maximizing the cluster’s

variance reduction. The prototype function returns a vector of

probabilities that an instance is labeled with a given label.

RAndom k-labELsets (RAkEL) [21] uses an ensemble ap-

proach. It randomly creates subsets composed of k labels and

uses them to train a label power-set classifier, which considers

each distinct combination of labels that exist in the training

set as a different class. Final prediction for a particular label

is obtained by a simple voting scheme based on decisions of

classifiers that contain this label.

Ensembles of classifier chains (ECC) [1] method uses

multiple instances of the CC algorithm (described above) with

random labels in a chain order and random subsets of training

samples. Predictions from all instances are ultimately summed

up to yield the final result.

Random forest of ML-C4.5 (RFML-C4.5) [4] and Random
forest of predictive clustering trees (RF-PCT) [7] are ensemble

methods that use random forests with ML-C4.5 and PCT

baseline classifiers, respectively. The predictions of baseline

classifiers are combined using one of standard voting schemes.

Generally speaking, all the above-mentioned methods can

be divided into 3 groups: problem transformation methods,

algorithm adaptation methods and ensemble methods. The first

category (which encompasses BR, CC, CLR, QWML and

HOMER methods) refers to algorithms which transform the

problem of MC into another well-studied machine learning

scenario. The algorithm adaptation methods (which include

ML-C4.5, PCT and ML-kNN approaches) adapt one of the

popular machine learning techniques to dealing with MC

data sets and MC problem formulation. The final group

(i.e. RAkEL, ECC, RF-MLC4.5 and RF-PCT methods) are

ensemble approaches which rely on independent running of

multiple instances of simple classifiers belonging to one of

the two previous groups on modified data sets and combining

the results based on some voting scheme. According to [7]

the latter group contains the most powerful approaches which

are generally superb over the single-classifier approaches.

Certainly these ensemble methods are also the most complex

in terms of parametrization and time requirements.

Surprisingly, there are not so many approaches to MC

employing neural networks. Probably the most popular one is

the Backpropagation for Multilabel Learning (BP-MLL) [5]

which relies on using a one-hidden layer perceptron with the

input layer equal to the number of attributes in a considered

data set with an additional bias neuron and the output layer

equal to the number of labels. Training is preformed with the

classic backpropagation algorithm with the error function of

the following form:

EBP−MLL =
m∑

p=1

∑
(r,s)∈Yp×Y p

e−(cpr−cps)

|Yp||Yp|
(2)

where Yp ⊆ Y is a set of labels assigned to the p-th training

sample xp, Yp is a complementary set to Yp (i.e. Yp = Y \Yp),

cpq is current output of the neuron associated with the q-th
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label, m is the number of training instances. The particular

form of the error function (2) is intended to provide greater

outputs of neurons corresponding to the labels belonging to

Yp compared to the remaining ones (not from Yp). The set

of labels assigned to a given input sample xp is defined by

the set of neurons whose outputs exceed a certain pre-defined,

input-dependent threshold t(xp).

The BP-MLL approach was subsequently improved in [6]

by extending the form of the error function in a twofold way.

First of all, the values of (previously pre-defined) threshold

t(xp) were included in the network’s error function and made

independent directly of the input instance (they were assigned

to the output nodes, i.e. particular labels). Second of all, in the

error function comparisons between all cpq values of categories

belonging to Yp (and to Yp, respectively) were taken into

account. These two modifications led to the following form

of the error function [6]:

ECART−M =

m∑
p=1

( ∑
(r,s)∈Yp×Y p

(e−(cp2r−cp2s) + e−(cp2s+1−cp2r+1))

2|Yp||Y p|+ |Yp|2 + |Y p|2

+

∑
r∈Yp

∑
t∈Yp

e−(cp2r−cp2t+1) +
∑

s∈Y p

∑
t∈Y p

e−(cp2t+1−cp2s)

2|Yp||Y p|+ |Yp|2 + |Y p|2
)

(3)

where for each category (each label) i the two neurons indexed

by 2i and 2i + 1, respectively, represent the output of the

neuron corresponding to the ith label and the threshold value

associated with this output neuron (ith label).

IV. PROPOSED MODIFIED APPROACH

The above-described CART-M neural network multilabel

classifier was tested in [6] on the yeast genome data set [14]

(which is one of the standard benchmark problems in MC)

with the use of 3 evaluation (loss) functions. The results

appeared to be statistically significantly better than those of

the original BP-MLL model [5] and slightly better (with no

statistical relevance) than ADTBOOST.HM [22] and RANK-

SVM [14] models, being ones of the strongest approaches at

that time.

In this paper we propose further modification of the BP-

MLL and CART-M methods relying on further tuning of the

global error function of the MLP network. While the CART-

M model with the error function (3) clearly outperforms the

original formulation of BP-MLL, in the recent in-depth testing

of the CART-M statistical properties, it turned out that the

error function of the model is biased towards the newly-

added components at the expense of the baseline formulation

focusing on the e−(cp2r−cp2s) component. For this reason we

investigated the possibility of adding a scaling parameter D
to the error function formulation and its automatic tuning for a

given data set. In this respect, the tuned error function (denoted

by TCART-M) has the following form:

ETCART−M =

m∑
p=1

( ∑
(r,s)∈Yp×Y p

(e−(cp2r−cp2s) + e
−(c

p
2s+1

−c
p
2r+1

)

D )

2|Yp||Y p|+ |Yp|2 + |Y p|2

+

∑
r∈Yp

∑
t∈Yp

e
−(c

p
2r−c

p
2t+1

)

D +
∑

s∈Y p

∑
t∈Y p

e
−(c

p
2t+1

−c
p
2s)

D

2|Yp||Y p|+ |Yp|2 + |Y p|2
)

(4)

Numerical results presented in section VI fully confirmed

the above-mentioned reasoning. In the extensive tests on 5
benchmark sets with 16 independently measured error (loss)

functions our new TCART-M method appears not only to be

stronger than CATR-MC and BP-MLL, but is also comparable

or better (in average) than the competitive state-of-the-art

approaches which use various machine learning techniques as

presented in section III.

V. EXPERIMENTAL SETUP

The proposed TCART-M method was compared with 14
different approaches briefly described in Section III: BR [13],

CC [1], CLR [17], QWML [18], HOMER [19], ML-C4.5 [20],

PCT [3], ML-kNN [2], RAkEL [21], ECC [1], FML-C4.5 [4],

RF-PCT [7], BP-MLL [5] and CART-M [6]. The results for

the first 12 methods were obtained from an experimental-based

survey paper [7] and the remaining two approaches (BP-MLL

and CART-M) were implemented by the authors according to

their descriptions presented in [5] and [6], respectively.

A. Parameter selection

In order to make comparison fair, all parameters of the

proposed modified TCART-M method were set according to

the original selection proposed in [6]. In particular, the hidden

layer size was not optimized and contained 40 neurons. The

input layer was equal to the number of attributes, plus an

additional bias neuron, and the output layer was composed

of 2Q neurons, where Q is the number of possible labels.

Following [6], the learning rate was set to 0.05, the weight

decay to 0.5 and the number of training epochs was equal to

100. In all experiments, a 10-fold cross validation (CV) was

applied.

The value of a scaling parameter D in (4) was cho-

sen using a nested CV technique among the following

16 candidate values: Dcand = {0.25, 0.5, . . . , 1.75, 2} ∪
{2.5, 3, 3.5, 4, 5, 6, 8, 10}. Two different measures of efficiency

of a given selection of D in the inner (nested) CV loop

were proposed and tested in the experiment: g-general and

i-individual.

g: the optimal value of D is determined based on the ranking

which involves all 16 evaluation measures. More precisely,

for each error measure, the scores for all 16 candidate

values di ∈ Dcand are calculated and ranked by sorting in

the descending order starting from the best one. Afterwards,
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for each di the positions in all rankings (for all 16 error

measures) are summed up and the one with the lowest result

is selected as D.

i: for a given error measure (one of 16 available) the optimal

value of D is chosen directly based on comparison of

results obtained for this pre-selected evaluation measure.

The former evaluation method (TCART-Mg) is universal and

independent of the choice of an evaluation measure that may

be used in practical situations later on. The latter approach

(TCART-Mi) is dedicated to a particular error measure and

optimized for the subsequent method’s use with that exact

measure (though, “by chance”, may be well tuned for other

measures, as well).

B. Benchmark problems

The method was tested on 5 widely-used multilabel classi-

fication benchmark problems. These data sets have various

characteristics and, in particular, differ in the numbers of

instances, numbers of labels and average labels’ cardinalities.

The data come from three real-life domains: text catego-

rization, multimedia (images and music) categorization and

biology. Table I summarizes the basic parameters of the used

data sets. The Yeast data set [14] is one of the most popular

Name Domain Instances Attributes Labels Card.
yeast biology 2417 103 14 4.24
scene multimedia 2407 294 6 1.07
emotions multimedia 593 72 6 1.87
enron text 1702 1001 53 3.38
medical text 978 1449 45 1.25

TABLE I
BASIC PARAMETERS OF THE USED BENCHMARK DATA SETS: DOMAIN,

NUMBER OF INSTANCES, NUMBER OF ATTRIBUTES, NUMBER OF LABELS

AND AVERAGE CARDINALITY OF THE LABELS.

benchmarks in the MC domain. The data represents genes,

each of which can be associated with a selection of 14
biological functions (labels).

Scene data set [13] instances are images of landscapes which

should be annotated with the subsets of the following set of

labels: {mountain, beach, field, fall-foliage, sunset, urban}.

Emotions [11] is a data set containing music extracts. The

goal is to annotate each of them with a subset of the following

six emotions: {happy-pleased, angry-aggressive, sad-lonely,

amazed-surprised, quiet-still, relaxing-calm}.

The Enron data set [10] is related to e-mail categorization.

Objects are e-mails from Enron Corporation written by 150
people and marked by 53 labels. The labels are grouped into

4 main categories: coarse genre, forwarded messages, primary

subjects, and messages with emotional tone.

Finally, the medical data set [15] is composed of pieces of

text which briefly describe patient’s symptoms history. The

labels that need to assigned are potential diseases listed in the

International Classification of Diseases [23].

All 5 the above-mentioned benchmark problems are very

popular within the multilabel classification research commu-

nity and often used for comparing different MC approaches.

In particular, they were used in [7] which is the source of

comparative results used in this paper to assess the quality of

the proposed TCART-M algorithm.

C. Evaluation measures

In order to make the comparison fair and as thorough as

possible, we partly follow the experimental setup proposed

in [7] and, instead of applying one particular error measure,

propose the use of an ensemble of 16 error functions. These

error measures can be roughly divided into three groups. For

the sake of space limits we will restrict our description to

one example measure per group. Please refer to [7] or any

machine learning book for the definitions and interpretations

of the remaining ones. In the following description, N denotes

the number of test instances, xi is the ith test instance and Yi

is the true set of labels assigned to this sample.

The first group includes example-based measures, which

rely on calculating the difference between the actual and

predicted values separately for each test sample and then

calculating the average value across the whole test set. The

most common example-based measure is precision defined as:

precision(h) =
1

N

n∑
i=1

|h(xi) ∩ Yi|
|Yi| (5)

where h(xi) denotes the set of labels assigned to xi by

the classifier being assessed. Precision can be interpreted as

the average (across the whole test set) fraction of correctly

assigned labels. In the experiments, 6 example-based measures
were used: Hamming loss, accuracy, precision, recall, F1
score and subset accuracy.

Error measures in the second group are calculated by first

evaluating the classifier’s performance separately on each

label, and then returning the mean value across all labels.

Therefore, these are the label-based measures. One of the

representatives of this category is macro precision defined by

the following formula:

macro precision =
1

Q

Q∑
j=1

tpj
tpj + fpj

(6)

where Q denotes the number of all possible labels, tpj and

fpj are respectively the numbers of true positives and false

positives obtained by the classifier for label j across the whole

test set. Intuitively, macro-precision measures the ability of a

classifier to not assign a label in the cases in which it should

actually not be assigned. There are 6 label-based measures
used in the experiments: micro-precision, micro-recall, micro-
F1, macro-precision, macro-recall and macro-F1.

The third group is composed of ranking-based measures,

which for each tested sample build a ranking of labels which

are presumably the best suited for this sample. This ranking

is compared with a ground-truth ranking and certain aspects

of these comparisons across all test samples are measured and

568



BP-MLL CART-M TCART-
Mg

TCART-
Mi

Hamming Loss 0.203 0.201 0.187 0.186
Accuracy 0.570 0.547 0.579 0.580
Precision 0.652 0.666 0.682 0.683
Recall 0.730 0.663 0.700 0.703

Subset Accuracy 0.299 0.291 0.331 0.332
F1 score 0.660 0.632 0.660 0.663
Micro-precision 0.657 0.685 0.701 0.695

Macro-precision 0.657 0.685 0.700 0.696

Micro-recall 0.728 0.658 0.698 0.706

Macro-recall 0.714 0.650 0.686 0.703

Micro-F1 0.690 0.671 0.699 0.693

Macro-F1 0.676 0.658 0.685 0.690
Ranking Loss 0.160 0.160 0.145 0.142
OneError 0.290 0.275 0.251 0.253

Coverage 1.748 1.766 1.694 1.658
Average Precision 0.799 0.803 0.818 0.812

TABLE II
COMPARISON OF RESULTS FOR THE emotions BENCHMARK SET

(AVERAGED OVER 30 TRIALS). THE BEST RESULTS FOR EACH

EVALUATION MEASURE ARE BOLDED.

evaluated. As an example let’s look at the average precision
measure defined by the following formula:

average precision(f) =
1

N

N∑
i=1

1

|Yi|
∑
q∈Yi

|Li(q)|
rankf (xi, q)

(7)

where f is a prediction function and rankf is the f -

based ranking defined in a way that for any labels q1, q2 if

f(xi, q1) > f(xi, q2) then rankf (xi, q1) < rankf (xi, q2).
Li(q) = {q′ ∈ Yi : rankf (xi, q

′) ≤ rankf (xi, q)} is a set

of labels from Yi that are ranked above a given label q ∈ Yi.

The average precision measures the average fraction of the

labels that are ranked above a given label q ∈ Yi that, in fact,

are in Yi. Four ranking-based measures were applied in the

experiments, namely average precision, one-error, coverage
and ranking loss.

15 measures (all except coverage) yield values within the in-

terval [0, 1]. In the case of Hamming loss, one-error, coverage
and ranking loss, the smaller the value, the better the method’s

performance. For all the remaining metrics, the greater the

value, the better the performance.

VI. EXPERIMENTAL RESULTS

The experiments were arranged along the two main goals:

(1) comparison of the proposed modified method TCART-Mg/i
with the methods that inspired the introduced modifications,

i.e. BP-MLL and CART-M, and (2) comparison of the neural

network-based methods (the ones mentioned in (1) above) with

other machine learning approaches.

For the purpose of neural network models comparisons, 30
independent tests were run for each model, each benchmark

problem, and each of the 16 error functions.

Tables II and III show the results obtained for emotions and

yeast benchmarks, which appeared to be the two extreme cases

from the point of view of the proposed TCART-M method.

BP-MLL CART-M TCART-
Mg

TCART-
Mi

Hamming Loss 0.217 0.197 0.198 0.198

Accuracy 0.535 0.510 0.510 0.509

Precision 0.637 0.700 0.706 0.704

Recall 0.711 0.595 0.596 0.601

Subset Accuracy 0.143 0.168 0.160 0.161
F1 score 0.017 0.600 0.618 0.621
Micro-precision 0.626 0.709 0.709 0.706

Macro-precision 0.464 0.544 0.533 0.541

Micro-recall 0.702 0.592 0.590 0.590

Macro-recall 0.468 0.374 0.359 0.369

Micro-F1 0.661 0.645 0.644 0.643

Macro-F1 0.441 0.405 0.383 0.406

Ranking Loss 0.174 0.164 0.165 0.164
OneError 0.237 0.227 0.225 0.224
Coverage 6.441 6.285 6.305 6.265
Average Precision 0.754 0.767 0.766 0.767

TABLE III
COMPARISON OF RESULTS FOR THE yeast BENCHMARK SET (AVERAGED

OVER 30 TRIALS). THE BEST RESULTS FOR EACH EVALUATION MEASURE

ARE BOLDED.

In case of yeast benchmark (which appeared to be the least

fitted to the proposed modifications) the modified methods

TCART-Mg and TCART-Mi accomplished the results slightly

inferior to the baseline formulation, being in average weaker

than CART-M by 0.78% and 0.06%, respectively.

On the other hand, for the emotions benchmark, for all

16 evaluations measures, the mean results of both modified

approaches outperformed the baseline method by a clear

margin - the average improvement across all measures is

equal to 5.45% and 5.91% for TCART-Mg and TCART-Mi,
respectively. For the remaining 3 data sets (scene, enron,

medical), the improvement of the proposed system is also

clear, though not as striking as in the case of the emotions
data set. The summary of results is presented in Table IV. All

in all, out of 80 tested cases the TCART-Mg and TCART-

Mi appeared to be superior to CART-M in 55 and 60 of

them, respectively. Based on 1-tailed t-test with significance

level equal to 0.05 respectively 42 and 47 of these results are

statistically significant. For the sake of space limits detailed

p-values are not presented. All of them are in the range of

0.0001 to 0.26. Normal distribution of data was checked by

Shapiro-Wilk test.

In the other set of experiments, a comparison between neural

network approaches and the ones listed in section III was

performed based on average ranking positions. Namely, for

a given benchmark set, for each tested algorithm, separate

rankings for all error measures were constructed and then

positions in these rankings were summed up. The best possible

sum of positions was 16 (i.e. the 1st position for each of 16
evaluation measures), the worst possible outcome was equal

to 256 (the 16th position in each of the 16 measure-related

rankings). The summary of results is presented in Table V. It

can be seen in the table that, for the emotions data set, the

proposed methods are the best ones with more than 30 points

ahead of the remaining methods. Also for the enron bench-
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TCART-Mg TCART-Mi
Benchmark Mean D Mean D

emotions 16 (16) 6.7 16 (16) 6.1
yeast 4 (2) 2.0 7 (4) 2.5
scene 12 (9) 5.1 12 (11) 6.3
enron 11 (8) 4.7 13 (9) 4.5
medical 12 (7) 2.0 12 (7) 2.1

TABLE IV
FOR EACH METHOD, THE LEFT COLUMN PRESENTS A NUMBER OF

EVALUATION MEASURES (OUT OF 16) FOR WHICH PROPOSED

MODIFICATIONS (RESPECTIVELY TCART-Mg AND TCART-Mi) YIELDED

BETTER MEAN RESULTS THAN CART-M. THE VALUE IN PARENTHESES

DENOTES THE NUMBER OF STATISTICALLY SIGNIFICANT RESULTS

(1-TAILED T-TEST WITH SIGNIFICANCE LEVEL EQUAL TO 0.05). FOR

BOTH METHODS, THE RIGHT COLUMN PRESENTS THE AVERAGE VALUE OF

D SELECTED BY NESTED CV (CART-M METHOD CORRESPONDS TO THE

CASE OF D = 1).

mark, both modifications are placed in the top-3 positions. The

worst performance can be observed for the medical data set

where they are located at 10th and 11th position, respectively.

However, in the overall measure obtained by summing the
ranking points over all 5 benchmarks and all 16 error
functions, the proposed algorithms gained the top two
positions. The detailed results regarding the average values

of particular measures of the tested methods are presented

in Tables VI, VII, VIII, IX and X - each devoted to one

benchmark problem.

One of the key aspects of the proposed method is intro-

duction of scaling parameter D and its tuning by means of

a nested CV procedure. The average values assigned to this

parameter and its standard deviations across all 30 runs are

shown in Table IV. Analysis of results suggests that there is

some correlation between the range of achieved improvement

(compared to CART-M) and selection of D. For the two data

sets, yeast and medical which were the least favorable for

our method D values are small, between 1.0 and 3.0. For

the remaining benchmarks D is usually between 4.0 and 6.0
or even above 6.0 for the emotions data set (please note that

this is the set for which the striking improvement in all 16
measures was achieved). Moreover, the situations in which D
was selected lower than 1.0 were not noticed (even though

the values of 0.25, 0.5 and 0.75 were available for selection).

Furthermore, only occasionally D = 1.0 was chosen (in

that case TCART-M becomes equivalent to CART-M). The

above observations confirm our intuition that the impact of

the new components in the error function (in CART-M) is too

strong and should be reduced (divided by D > 1.0). Another

conclusion stemming from the results is the advantage of the

TCART-Mi over TCART-Mg variant, which could be, to a

large extent, expected as unlike the latter approach, which is

optimized for a particular error measure, the former method

takes a much universal approach with no pre-defined error

measure in mind. However, despite its advantage, the TCART-

Mi is not necessarily the best option in practice, in particular,

when the error measure to be used is not known in advance.

In such cases the value of D fine-tuned for a certain error

measure may prove ineffective when the assessment function

is changed.

VII. CONCLUSIONS

In 2006 Zhang and Zhou [5] proposed a neural network-

based approach to the multilabel classification problem. The

proposed model was later improved by Grodzicki et al. [6]

thanks to restructuring the error function form by means of

adding specific cartesian-like (pair-based) components. This

paper further improves the model by introducing a scaling

parameter which is autonomously fine-tuned by the system in

the nested cross validation process. Two ways of measuring

the efficacy of this internal scaling parameters in the inner

(nested) CV loop are proposed, referred to as g (general) and i
(individual). Both variants of the proposed method were tested

on a set of 5 well-established benchmarks and proven for an

ensemble of 16 different error measures. The experimental

results confirmed that both new approaches (TCART-Mg and

TCART-Mi) in most of the cases outperform the previous

versions proposed in [5] and [6].

Except for the above-described tests, the proposed methods

were also experimentally compared with 12 popular multilabel

classification methods based on the results published in a

recent survey [7]. The results are very promising, in several

combinations of a benchmark set and error measure the newly-

proposed neural models are clearly the most efficient, in many

other cases, they are in the top selection. In the combined score

obtained by summing the ranking positions in all 5 bench-

marks and 16 evaluation measures, the proposed algorithms

are located in the first two places. While definitely further

comparisons and more in-depth investigations are necessary

to fully confirm the strength of the proposed models, based

on the hitherto results, it is safe to say that the neural

network based TCART-M method introduced in this paper is

a viable alternative to other state-of-the-art machine learning

approaches.
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objective decision trees,” in European Conference on Machine Learning.
Springer, 2007, pp. 624–631.

[5] M.-L. Zhang and Z.-H. Zhou, “Multilabel neural networks with appli-
cations to functional genomics and text categorization,” IEEE Trans. on
Knowl. and Data Eng., vol. 18, no. 10, pp. 1338–1351, Oct. 2006.
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emotions yeast scene enron medical sum
TCART-Mi (34) CLR (72) BR (78) TCART-Mi (74) QWML (76) TCART-Mi (942)
TCART-Mg (41) BR (99) CC (79) BR (84) HOMER (83) TCART-Mg (1026)

BP-MLL (72) HOMER (110) RAkEL (79) TCART-Mg (86) CLR (90) CLR (1056)
RF-PCT (72) TCART-Mi (115) ECC (90) CLR (89) ML-C4,5 (94) BR (1152)
CART-M (79) CC (115) CLR (92) CART-M (106) RF-PCT (106) HOMER (1166)

RFML-C4,5 (90) CART-M (117) TCART-Mi (103) RF-PCT (110) RAkEL (120) RF-PCT (1166)
ML-C4,5 (102) QWML (123) TCART-Mg (106) HOMER (119) CC (124) CART-M (1176)

PCT (154) TCART-Mg (132) HOMER (107) ECC (127) BR (137) CC (1306)
HOMER (164) ECC (132) CART-M (124) RFML-C4,5 (137) ECC (137) RAkEL (1338)

BR (178) RAkEL (135) QWML (133) CC (146) TCART-Mi (145) ECC (1350)
RAkEL (184) BP-MLL (138) RF-PCT (155) RAkEL (151) TCART-Mg (148) QWML (1380)

CLR (185) RF-PCT (140) ML-k NN (182) QWML (165) ML-k NN (149) RFML-C4,5 (1536)
CC (189) ML-k NN (145) RFML-C4,5 (185) ML-C4,5 (171) CART-M (162) ML-C4,5 (1554)

ECC (189) RFML-C4,5 (180) BP-MLL (208) BP-MLL (174) RFML-C4,5 (176) BP-MLL (1586)
QWML (193) ML-C4,5 (194) ML-C4,5 (216) ML-k NN (195) BP-MLL (201) ML-k NN (1826)

ML-k NN (242) PCT (218) PCT (233) PCT (232) PCT (215) PCT (2104)

TABLE V
METHODS SORTED BY RANKING SUMMED ON EVALUATION MEASURES DIVIDED FOR BENCHMARK PROBLEMS. VALUES IN BRACKETS ARE SUM OF

METHOD’S POSITIONS ACROSS EVALUATION MEASURES. PROPOSED MODIFICATIONS ARE BOLDED.

BP-
MLL

CART-
M

TCART-
Mg

TCART-
Mi

BR CC CLR QWML HOMER ML-
C4.5

PCT ML-k
NN

RAkEL ECC RFML-
C4.5

RF-
PCT

Hamming Loss 0.203 0.201 0.187 0.186 0.257 0.256 0.257 0.254 0.361 0.247 0.267 0.294 0.282 0.281 0.198 0.189

Accuracy 0.570 0.547 0.579 0.580 0.361 0.356 0.361 0.373 0.471 0.536 0.448 0.319 0.419 0.432 0.488 0.519

Precision 0.652 0.666 0.682 0.683 0.550 0.551 0.538 0.548 0.509 0.606 0.577 0.502 0.564 0.580 0.625 0.644

Recall 0.730 0.663 0.700 0.704 0.409 0.397 0.410 0.429 0.775 0.703 0.534 0.377 0.491 0.533 0.545 0.582

Subset Accuracy 0.299 0.291 0.331 0.332 0.129 0.124 0.144 0.149 0.163 0.277 0.223 0.084 0.208 0.168 0.272 0.307

F1 score 0.660 0.632 0.660 0.663 0.469 0.461 0.465 0.481 0.614 0.651 0.554 0.431 0.525 0.556 0.583 0.611

Micro-precision 0.657 0.685 0.701 0.695 0.684 0.698 0.685 0.680 0.471 0.607 0.607 0.584 0.586 0.579 0.783 0.783
Macro-precision 0.657 0.685 0.700 0.697 0.721 0.581 0.677 0.660 0.464 0.602 0.628 0.518 0.547 0.531 0.828 0.802

Micro-recall 0.728 0.658 0.698 0.706 0.406 0.393 0.409 0.431 0.782 0.712 0.539 0.376 0.489 0.531 0.551 0.589

Macro-recall 0.714 0.650 0.686 0.703 0.378 0.364 0.381 0.398 0.775 0.702 0.533 0.334 0.462 0.508 0.532 0.569

Micro-F1 0.690 0.671 0.699 0.693 0.509 0.503 0.512 0.528 0.588 0.655 0.571 0.457 0.533 0.554 0.647 0.672

Macro-F1 0.676 0.658 0.684 0.690 0.440 0.420 0.443 0.458 0.570 0.630 0.568 0.385 0.488 0.500 0.620 0.650

Ranking Loss 0.160 0.160 0.145 0.142 0.246 0.245 0.264 0.331 0.297 0.210 0.270 0.283 0.281 0.310 0.153 0.151

OneError 0.290 0.275 0.251 0.253 0.386 0.376 0.391 0.391 0.411 0.347 0.386 0.406 0.396 0.426 0.277 0.262

Coverage 1.748 1.766 1.694 1.658 2.307 2.317 2.376 2.807 2.634 2.069 2.356 2.490 2.465 2.619 1.801 1.827

Average Precision 0.799 0.803 0.818 0.812 0.721 0.724 0.718 0.679 0.698 0.759 0.713 0.694 0.713 0.687 0.812 0.812

TABLE VI
THE AVERAGE RESULTS FOR THE emotions BENCHMARK SET. BEST RESULTS FOR EACH EVALUATION MEASURE ARE BOLDED.

BP-
MLL

CART-
M

TCART-
Mg

TCART-
Mi

BR CC CLR QWML HOMER ML-
C4.5

PCT ML-k
NN

RAkEL ECC RFML-
C4.5

RF-
PCT

Hamming Loss 0.217 0.197 0.198 0.198 0.190 0.193 0.190 0.191 0.207 0.234 0.219 0.198 0.192 0.207 0.205 0.197

Accuracy 0.535 0.510 0.509 0.508 0.520 0.527 0.524 0.523 0.559 0.480 0.440 0.492 0.531 0.546 0.453 0.478

Precision 0.637 0.700 0.706 0.704 0.722 0.727 0.719 0.718 0.663 0.620 0.705 0.732 0.715 0.667 0.738 0.744
Recall 0.711 0.595 0.596 0.602 0.591 0.600 0.601 0.600 0.714 0.608 0.490 0.549 0.615 0.673 0.491 0.523

Subset Accuracy 0.143 0.168 0.160 0.161 0.190 0.239 0.195 0.192 0.213 0.158 0.152 0.159 0.201 0.215 0.129 0.152

F1 score 0.017 0.600 0.618 0.621 0.650 0.657 0.655 0.654 0.687 0.614 0.578 0.628 0.661 0.670 0.589 0.614

Micro-precision 0.626 0.709 0.709 0.707 0.733 0.726 0.729 0.727 0.647 0.618 0.698 0.736 0.720 0.662 0.747 0.755
Macro-precision 0.464 0.544 0.533 0.541 0.628 0.602 0.614 0.614 0.471 0.377 0.479 0.600 0.480 0.391 0.533 0.674
Micro-recall 0.702 0.592 0.590 0.590 0.587 0.588 0.595 0.595 0.702 0.603 0.492 0.543 0.602 0.655 0.491 0.521

Macro-recall 0.468 0.374 0.359 0.369 0.355 0.357 0.361 0.361 0.466 0.375 0.269 0.308 0.352 0.388 0.257 0.286

Micro-F1 0.661 0.645 0.644 0.643 0.652 0.650 0.655 0.654 0.673 0.610 0.577 0.625 0.656 0.658 0.593 0.617

Macro-F1 0.441 0.405 0.383 0.406 0.392 0.390 0.392 0.394 0.447 0.370 0.293 0.336 0.359 0.350 0.283 0.322

Ranking Loss 0.174 0.164 0.165 0.164 0.164 0.170 0.163 0.296 0.205 0.225 0.199 0.172 0.259 0.224 0.173 0.167

OneError 0.237 0.227 0.225 0.224 0.236 0.268 0.229 0.233 0.248 0.312 0.264 0.234 0.254 0.249 0.250 0.248

Coverage 6.441 6.285 6.305 6.272 6.330 6.439 6.286 8.659 7.285 7.105 6.705 6.414 7.983 7.153 6.276 6.179
Average Precision 0.754 0.767 0.766 0.767 0.768 0.755 0.768 0.698 0.740 0.706 0.724 0.758 0.715 0.734 0.749 0.757

TABLE VII
THE AVERAGE RESULTS FOR THE yeast BENCHMARK SET. BEST RESULTS FOR EACH EVALUATION MEASURE ARE BOLDED.
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BP-
MLL

CART-
M

TCART-
Mg

TCART-
Mi

BR CC CLR QWML HOMER ML-
C4.5

PCT ML-k
NN

RAkEL ECC RFML-
C4.5

RF-
PCT

Hamming Loss 0.272 0.090 0.090 0.089 0.079 0.082 0.080 0.081 0.082 0.141 0.129 0.099 0.077 0.085 0.116 0.094

Accuracy 0.357 0.695 0.705 0.695 0.689 0.723 0.686 0.683 0.717 0.569 0.538 0.629 0.734 0.735 0.388 0.541

Precision 0.361 0.715 0.724 0.728 0.718 0.758 0.714 0.711 0.746 0.592 0.565 0.661 0.768 0.770 0.403 0.565

Recall 0.799 0.735 0.768 0.774 0.711 0.726 0.712 0.709 0.744 0.582 0.539 0.655 0.740 0.771 0.388 0.541

Subset Accuracy 0.058 0.636 0.625 0.627 0.639 0.685 0.633 0.630 0.661 0.533 0.509 0.573 0.694 0.665 0.372 0.518

F1 score 0.479 0.715 0.732 0.730 0.639 0.685 0.633 0.630 0.661 0.533 0.509 0.573 0.694 0.665 0.372 0.518

Micro-precision 0.387 0.762 0.744 0.759 0.843 0.814 0.835 0.832 0.804 0.619 0.512 0.691 0.831 0.773 0.960 0.930

Macro-precision 0.437 0.780 0.770 0.780 0.844 0.817 0.835 0.832 0.807 0.635 0.682 0.784 0.835 0.785 0.963 0.919

Micro-recall 0.796 0.725 0.758 0.771 0.694 0.708 0.695 0.692 0.727 0.570 0.521 0.634 0.721 0.751 0.572 0.523

Macro-recall 0.796 0.734 0.765 0.777 0.703 0.716 0.704 0.701 0.734 0.573 0.529 0.647 0.727 0.757 0.381 0.533

Micro-F1 0.516 0.742 0.750 0.748 0.761 0.757 0.758 0.756 0.764 0.593 0.516 0.661 0.772 0.762 0.717 0.669

Macro-F1 0.539 0.749 0.760 0.750 0.765 0.762 0.762 0.759 0.768 0.596 0.593 0.692 0.777 0.770 0.514 0.658

Ranking Loss 0.180 0.076 0.072 0.074 0.060 0.064 0.065 0.103 0.119 0.169 0.174 0.093 0.104 0.103 0.079 0.072

OneError 0.560 0.231 0.229 0.229 0.180 0.204 0.190 0.193 0.216 0.394 0.389 0.242 0.197 0.213 0.232 0.210

Coverage 0.982 0.464 0.442 0.430 0.399 0.417 0.423 0.631 0.739 0.945 0.964 0.569 0.635 0.625 0.495 0.461

Average Precision 0.675 0.864 0.867 0.866 0.893 0.881 0.886 0.864 0.848 0.751 0.745 0.851 0.862 0.856 0.862 0.874

TABLE VIII
THE AVERAGE RESULTS FOR THE scene BENCHMARK SET. BEST RESULTS FOR EACH EVALUATION MEASURE ARE BOLDED.

BP-
MLL

CART-
M

TCART-
Mg

TCART-
Mi

BR CC CLR QWML HOMER ML-
C4.5

PCT ML-k
NN

RAkEL ECC RFML-
C4.5

RF-
PCT

Hamming Loss 0.250 0.047 0.047 0.046 0.045 0.064 0.048 0.048 0.051 0.053 0.058 0.051 0.045 0.049 0.047 0.046

Accuracy 0.202 0.430 0.459 0.459 0.446 0.334 0.459 0.388 0.478 0.418 0.196 0.319 0.428 0.462 0.374 0.416

Precision 0.214 0.680 0.678 0.679 0.703 0.464 0.650 0.624 0.616 0.623 0.415 0.587 0.708 0.652 0.690 0.709
Recall 0.849 0.484 0.535 0.539 0.497 0.507 0.557 0.453 0.610 0.487 0.229 0.358 0.469 0.560 0.398 0.452

Subset Accuracy 0.002 0.133 0.134 0.137 0.149 0.000 0.117 0.097 0.145 0.140 0.002 0.062 0.136 0.131 0.124 0.131

F1 score 0.315 0.536 0.571 0.572 0.582 0.484 0.600 0.525 0.613 0.546 0.295 0.445 0.564 0.602 0.505 0.552

Micro-precision 0.187 0.713 0.680 0.694 0.721 0.492 0.652 0.687 0.597 0.613 0.601 0.684 0.743 0.642 0.768 0.738

Macro-precision 0.255 0.294 0.277 0.289 0.258 0.260 0.205 0.242 0.241 0.142 0.023 0.170 0.222 0.249 0.245 0.233

Micro-recall 0.821 0.450 0.506 0.510 0.464 0.472 0.532 0.438 0.585 0.440 0.246 0.353 0.435 0.532 0.366 0.422

Macro-recall 0.505 0.267 0.274 0.272 0.120 0.146 0.139 0.120 0.163 0.107 0.030 0.075 0.097 0.129 0.082 0.100

Micro-F1 0.302 0.551 0.580 0.578 0.564 0.482 0.585 0.535 0.591 0.512 0.349 0.466 0.548 0.582 0.496 0.537

Macro-F1 0.274 0.273 0.272 0.274 0.143 0.153 0.149 0.143 0.167 0.115 0.026 0.087 0.115 0.140 0.102 0.122

Ranking Loss 0.165 0.109 0.091 0.089 0.084 0.083 0.078 0.177 0.183 0.120 0.114 0.093 0.283 0.238 0.083 0.079

OneError 0.793 0.235 0.225 0.227 0.237 0.238 0.231 0.269 0.314 0.309 0.392 0.280 0.290 0.247 0.219 0.221

Coverage 16.845 15.824 13.684 13.248 12.530 12.437 11.763 22.746 24.190 17.010 14.920 13.181 30.509 27.760 12.485 12.074

Average Precision 0.335 0.667 0.685 0.686 0.693 0.695 0.699 0.604 0.604 0.629 0.546 0.635 0.522 0.576 0.680 0.698

TABLE IX
THE AVERAGE RESULTS FOR THE enron BENCHMARK SET. BEST RESULTS FOR EACH EVALUATION MEASURE ARE BOLDED.

BP-
MLL

CART-
M

TCART-
Mg

TCART-
Mi

BR CC CLR QWML HOMER ML-
C4.5

PCT ML-k
NN

RAkEL ECC RFML-
C4.5

RF-
PCT

Hamming Loss 0.651 0.020 0.020 0.022 0.077 0.077 0.017 0.012 0.012 0.013 0.023 0.016 0.012 0.014 0.022 0.014

Accuracy 0.029 0.340 0.354 0.374 0.206 0.211 0.656 0.658 0.713 0.730 0.228 0.528 0.673 0.611 0.250 0.591

Precision 0.029 0.382 0.403 0.340 0.211 0.217 0.695 0.697 0.762 0.797 0.285 0.575 0.730 0.662 0.284 0.635

Recall 0.829 0.345 0.360 0.351 0.735 0.754 0.795 0.801 0.760 0.740 0.227 0.547 0.679 0.642 0.251 0.599

Subset Accuracy 0.000 0.293 0.300 0.302 0.000 0.000 0.486 0.480 0.610 0.646 0.177 0.462 0.607 0.526 0.216 0.538

F1 score 0.056 0.356 0.372 0.362 0.328 0.337 0.742 0.745 0.761 0.768 0.253 0.560 0.704 0.652 0.267 0.616

Micro-precision 0.031 0.841 0.833 0.823 0.225 0.229 0.669 0.667 0.807 0.796 0.826 0.807 0.881 0.834 0.884 0.885
Macro-precision 0.226 0.519 0.515 0.521 0.399 0.391 0.288 0.285 0.287 0.263 0.018 0.267 0.269 0.266 0.190 0.269

Micro-recall 0.825 0.353 0.359 0.384 0.725 0.739 0.782 0.787 0.742 0.720 0.227 0.522 0.600 0.624 0.237 0.569

Macro-recall 0.622 0.516 0.509 0.519 0.423 0.428 0.307 0.324 0.282 0.249 0.022 0.163 0.183 0.179 0.040 0.176

Micro-F1 0.058 0.491 0.495 0.521 0.343 0.350 0.721 0.722 0.773 0.756 0.356 0.634 0.714 0.714 0.374 0.693

Macro-F1 0.244 0.516 0.510 0.515 0.361 0.371 0.281 0.286 0.282 0.250 0.020 0.192 0.210 0.203 0.058 0.207

Ranking Loss 0.451 0.182 0.153 0.146 0.021 0.019 0.028 0.027 0.090 0.048 0.104 0.045 0.159 0.152 0.028 0.024

OneError 0.963 0.521 0.422 0.455 0.135 0.123 0.168 0.165 0.216 0.198 0.612 0.279 0.312 0.315 0.243 0.174

Coverage 21.143 9.404 8.247 7.814 1.610 1.471 2.036 1.832 5.324 3.033 5.813 2.844 8.520 7.994 1.889 1.619

Average Precision 0.106 0.520 0.609 0.590 0.896 0.901 0.864 0.862 0.786 0.823 0.522 0.784 0.676 0.684 0.817 0.868

TABLE X
THE AVERAGE RESULTS FOR THE medical BENCHMARK SET. BEST RESULTS FOR EACH EVALUATION MEASURE ARE BOLDED.
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