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Abstract—A new model of cellular neural networks (CNNs) with
transient chaos is proposed by adding negative self-feedbacks into
CNNs after transforming the dynamic equation to discrete time
via Euler’s method. The simulation on the single neuron model
shows stable fix points, bifurcation and chaos. Hence, this new
CNN model has richer and more flexible dynamics, and therefore
may possess better capabilities of solving various problems, com-
pared to the conventional CNN with only stable dynamics.

Index Terms—Bifurcation, cellular neural networks (CNNs),
chaos.

I. INTRODUCTION

CELLULAR neural networks (CNNs) [1] are especially
suitable for very large-scale integration (VLSI) imple-

mentation because of local interconnectivities in CNNs. Some
promising applications of CNNs in image processing, pattern
recognition, and combinatorial optimization problems have
been reported in [2]–[6].

A number of authors have studied nonlinear dynamics in
CNNs [7]–[11]. Chen et al. [8] proposed a discrete-time CNN
(DTCNN) with neuronal input–output described by the logistic
function; however, this type of neurons are rarely used in the
literature. In a CNN with time delays, Lu et al. [9] investigated
complex dynamics by simply adding a piecewise-linear delayed
feedback to the linear system. Zou and Nossek [10] have also
found bifurcation and chaos in small autonomous networks
with only two or three cells. Biey et al. [11] investigated
equilibrium point bifurcation and other complex dynamics in a
first-order autonomous space-invariant CNN.

Analog realizations of CNNs have been widely discussed
[12]–[15]. For example, Harrer and Nossek [12] designed and
implemented a high-density layout for the DTCNN. Chou et al.
[13] proposed a mode chip with hardware annealing as a highly
efficient method of finding globally optimal solutions with
CNNs. Linan et al. [14] presented an analog programmable vi-
sual microprocessor chip, i.e., the ACE4k, which can work as a
CNN universal machine [16] and process complex spatio-tem-
poral images in parallel. Rodriguez-Vazquez et al. improved
ACE chips as they designed and presented an ACE16k [15]
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with better performance, more functionalities, and lower power
consumption.

Many problems in science and technology are combinatorial
optimization problems, with energy or cost functions to be min-
imized under some constraints. Extensive research effort has
gone into developing efficient techniques for finding minimum
values of energy functions. Since Hopfield and Tank’s seminal
work on solving the traveling salesman problem (TSP) with the
Hopfield neural network (HNN) [17], the HNN has been widely
used in optimization problems. However, the fact that the HNN
can often be trapped at a local minimum discouraged attempts
at solving various optimization problems with the HNN.

Several methods, such as stochastic simulated annealing
(SSA) [18] which allows for temporary energy increases,
have been incorporated into the HNN, in order to improve
the solution quality. Chen and Aihara [19] proposed chaotic
simulated annealing (CSA) by adding a negative self-feedback
to a Hopfield-type neural network and gradually removing
this negative self-feedback. This network leads to remarkable
improvements over the HNN in terms of solution quality of
optimization problems. Wang and Smith [20] suggested an
alternative approach to CSA by reducing the time step rather
than the self-feedback and generalized the stability theorems
to less restrictive and more compact forms. Wang et al. [21]
combined the SSA and CSA, and proposed a new approach,
i.e., stochastic CSA (SCSA) for solving optimization problems.
The simulation results on a TSP and a channel assignment
problem demonstrated the effectiveness of SCSA.

When simulated in serial computers, such as a desk-top
personal computer, neural networks are known to be slow and
rather ineffective in solving optimization problems in compar-
isons with classical methods, e.g., branch-and-bound technique
and tabu search. The advantages of neural networks can be truly
realized only when the parallel processing capability of neural
networks is used, e.g., when neural networks are implemented
in hardware.

In order to take advantage of both efficient search with chaos
[22]–[24] and the mature technology of VLSI implementation
of CNNs [25]–[28], we propose a transiently chaotic CNN (TC-
CNN). Compared to existing chaotic CNNs, our model uses
conventional neurons and is relatively easy to analyze mathe-
matically when the network is large (some results were reported
at a recent conference [29]).

This brief is organized as follows. In Section II, the TC-CNN
is proposed by adding negative self-feedback to the Euler ap-
proximation of the continuous CNN. Then the stability analysis
of the network is presented. The simulation result of a single
neuron model is given in Section III. Finally, we conclude this
brief in Section IV.
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II. TC-CNNS

In this section, we first briefly review the continuous CNN
model. The TC-CNN is then proposed. In the last part of this
section, we present the stability condition for the TC-CNN.

A. Continuous CNN

The system equation for an CNN is [1]

(1)

where

internal state of neuron ;
output of neuron ;
input of neuron ;
output feedback parameter;
input control parameter;
neuron ;

The -neighborhood of neuron ;
independent voltage source;
linear capacitor;
linear resistor.

The output function of neuron is

(2)

Constraint conditions are

Any cell in a CNN is connected only to its neighboring cells.
This CNN property of nearest neighbor interactions makes
CNNs much more amenable to VLSI implementation com-
pared to general neural networks.

B. TC-CNN

Let us consider the difference equation version of (1) by
Euler’s method [30]

(3)

where we have added a self-feedback for each neuron as indi-
cated by the last term in (3)

In the conventional CNN, there are usually positive self-feed-
backs, i.e., . When the feedback is positive, it
has a stabilizing effects [31] and is equivalent to a hysteresis.
When the feedback is negative, oscillations and chaos can occur,
depending on the magnitude of the negative feedback, similar
to the TCNN investigated by Chen and Aihara [19]. Unstable
dynamic behaviors will occur if the magnitude of the negative
self-feedback is sufficiently large. We may change the chaotic
system to transiently chaotic system by gradually removing the
negative self-feedback. The self-feedback can be reduced in any
schedule, which may be designed for different problems. Here,
we set it to decay exponentially

(4)

where is the damping factor of the time-depen-
dent self-feedback .

Combining (3) with the activation function and the self-feed-
back decaying function, we obtain the definition of the new
model

(5)

(6)

(7)

where

(8)

(9)

To compare with the continuous-time CNN, the new
TC-CNN model in (5)–(7) would correspond to the following
differential equations:

(10)
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(11)

(12)

C. Stability of the TC-CNN

We use the following energy function for the TC-CNN:

(13)

The first three terms are from the energy function for conven-
tional continuous-time CNNs [1]. We modified the last term ac-
cording to [32], [20] for the new discrete-time model.

The difference between two time steps in the energy function
is

(14)

According to the cell circuit (5), (14) can be written as

(15)

From the output function given in (6), we have

when

when

then

(16)

Therefore, according to Lyapunov theorem, if the matrix
is positive-definite, i.e., ,

then the network is stable. Hence, a sufficient stability condition
for the TC-CNN is

(17)

where is the time constant of the dynamics of the circuit
[1]. Substituting the (8) into (17)

(18)

If , based on (17), the system is stable and converges
to a fixed point when

(19)

These facts are verified by the simulation result shown in
Section III.

III. TRANSIENTLY CHAOTIC DYNAMICS OF

SINGLE NEURON MODEL

The single neuron model obtained from (3)–(4) is

(20)

(21)

(22)

Let . The one-dimensional mapping function
from to becomes, with fixed at as shown
in (23), at the bottom of the page.

Fig. 1 presents an example of the one-dimensional mapping
function from to when

; It shows that the slope of the mapping

(23)
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Fig. 1. One-dimensional mapping function from x(t) to x(t + 1) for the
TC-CNN. (a) Zoom out. (b) Zoom in.

function at the intersection is less than , which implies that
the system is unstable [33].

To simulate the single neuron model, we choose parameters
as follows for (20),

is random
number whose element is distributed in the interval (0,1). The
result in the Fig. 2 shows the time evolutions of and
the Lyapunov exponent of . With exponential damping of

, the dynamics of the network transit from chaos to periodic
attractors and then fixed point through reversed discontinuity
induced bifurcations [34]. It is different from the reversed pe-
riod-doubling bifurcations presented by Chen and Aihara [19],
as Chen and Aihara used a nonlinear output function whereas
CNNs have a piece-wise linear output function [35].

Lyapunov exponent [36] is a crucial index to identify deter-
ministic chaos. The definition we used is

(24)

A positive indicates chaos. Fig. 2(c) presents the relationship
between the Lyapunov exponent and the negative self-feedback
parameter . The Lyapunov exponent is positive when
the self-feedback parameter (or when ). In
the meantime, we can see the chaotic behavior clearly in the

Fig. 2. Dynamics of the single neuron model. (a) Output of the neuron. (b) Self-
feedback in network. (c) Relationship between the Lyapunove exponent and the
self-feedback.

Fig. 2(a) in this domain. We have also simulated a two-dimen-
sional 3 3 network, and it shows identical bifurcation dia-
grams with the single neuron model.

IV. CONCLUSION

In this brief, we proposed a discrete-time TC-CNN. We
showed that the Euler approximation of the continuous-time
CNNs may have complex dynamics when we add negative
self-feedbacks, depending on the magnitude of the self-feed-
back. The length of the chaotic dynamic can be determined by the
initial value of the self-feedback and the damping factor .
The network may benefit more from the ergodic nature of chaos
if the chaotic transient last longer, i.e., a larger or a smaller

; However, the network will need more time to converge and
find a solution for an application. More study need to be done to
analyze the relationship between the performance of TC-CNN
model and its chaotic duration. Different applications may re-
quire different lengths of chaotic dynamic and different types of
damping scheme (we used exponential damping in this brief).

An analog circuit structure and a layout for the realization of
DTCNNs were introduced in [12], the algorithm is

(25)
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Contrasting the new model (3) with (25), we see the following
two differences between the TC-CNN model and DTCNNs:
firstly, the new model has a new term ; secondly, there
should be negative self-feedback in the new model, and the value
needs to damp exponentially. As the represents the in-
ternal state of the neuron, the current can be imple-
mented through a buffer and an amplifier with a gain of . Fur-
thermore, is implemented by the current
supply in the analog implementation of DTCNNs, and the pos-
itive or negative of the value is depend on the direction of the
current supply. On the other hand, the damping of the value can
be achieved by adjusting the parameters of the switched-capac-
itor. Therefore, our new model can be easily implemented in
hardware.

The new TC-CNN has two distinctive properties. It has com-
plex dynamics and therefore better ability to search for optimal
solutions. Furthermore, the local connectivity of the TC-CNN
makes it especially suited for large scale circuit implementation.
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