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Abstract—We aim at finding the smallest set of genes that can ensure highly accurate classification of cancers from microarray data

by using supervised machine learning algorithms. The significance of finding the minimum gene subsets is three-fold: 1) It greatly

reduces the computational burden and “noise” arising from irrelevant genes. In the examples studied in this paper, finding the minimum

gene subsets even allows for extraction of simple diagnostic rules which lead to accurate diagnosis without the need for any classifiers.

2) It simplifies gene expression tests to include only a very small number of genes rather than thousands of genes, which can bring

down the cost for cancer testing significantly. 3) It calls for further investigation into the possible biological relationship between these

small numbers of genes and cancer development and treatment. Our simple yet very effective method involves two steps. In the first

step, we choose some important genes using a feature importance ranking scheme. In the second step, we test the classification

capability of all simple combinations of those important genes by using a good classifier. For three “small” and “simple” data sets with

two, three, and four cancer (sub)types, our approach obtained very high accuracy with only two or three genes. For a “large” and

“complex” data set with 14 cancer types, we divided the whole problem into a group of binary classification problems and applied the

2-step approach to each of these binary classification problems. Through this “divide-and-conquer” approach, we obtained accuracy

comparable to previously reported results but with only 28 genes rather than 16,063 genes. In general, our method can significantly

reduce the number of genes required for highly reliable diagnosis.

Index Terms—Cancer classification, gene expression, fuzzy, neural networks, support vector machines.
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1 INTRODUCTION

COMPARED with traditional tumor diagnostic methods
based mainly on the morphological appearance of the

tumor, the method using gene expression profiles is more
objective, accurate, and reliable [1]. With the help of gene
expression obtained from microarray technology, hetero-
geneous cancers can be classified into appropriate subtypes.
Recently, different kinds of machine learning and statistical
methods, such as artificial neural network [2], evolutionary
algorithm [3], and nearest shrunken centroids [4], have been
used to analyze gene expression data.

Supervised machine learning can be used for cancer
prediction as follows: First, a classifier is trained with a part
of the samples in the cancer data set. Second, one uses the
trained classifier to predict the samples in the rest of the
data set to evaluate the effectiveness of the classifier. The
challenge of this problem lies in the following two points:

. In a typical gene expression data set, there are only
very few (usually from several to several tens)
samples of each type of cancers. That is, the training
data are scarce.

. A typical gene expression data set usually contains
expression data of a large number of genes, say,

several thousand. In other words, the data are high
dimensional.

In 2003, Tibshirani et al. successfully classified the
lymphoma data set [5] with only 48 genes by using a
statistical method called nearest shrunken centroids with an
accuracy of 100 percent [6]. For the SRBCT data, Khan et al.
classified all 20 testing samples with 96 genes [2]. They used
a two-layered linear neural network. In 2002, Tibshirani
et al. applied nearest shrunken centriods to the SRBCT data
set [4]. They obtained 100 percent accuracy with 43 genes.
For the method of nearest shrunken centroids, it categorizes
each sample to the class whose centriod is nearest to the
sample. The difference between standard nearest centroids
and nearest shrunken centroids is that the latter uses only
some important genes rather than all the genes to calculate
the centroids. In 2003, Deutsch reduced the number of
genes required to correctly classify the four cancer subtypes
in the SRBCT data set to 12 genes [3]. In the same year, Lee
and Lee also obtained 100 percent accuracy in this data set
with an SVM classifier and the separability-based gene
importance ranking [7], [8]. They used at least 20 genes to
obtain this result. At the same time, they generated three
principal components (PCs) from the 20 top genes. Their
SVM also obtained 100 percent accuracy in the space
defined by these three principal components. For the liver
cancer data set, Chen et al. used 3,180 genes (represented by
3,964 cDNA) to classify HCC and the nontumor samples [9].

In [10], Ambroise and McLachlan indicated that testing
results could be overoptimistic, caused by the “selection
bias,” if the testing samples were not excluded from the
gene selection process. In fact, taking advantage of testing
samples in any step of the classifier-building process, e.g.,
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feature selection, parameter tuning, model selection, etc.,
will induce bias. Therefore, to honestly evaluate a classifier
in a given data set, the testing samples must be totally
excluded from the classifier building process. According to
this criterion, almost all of the above reported results are
overoptimistic because all of the above classifiers more or
less used the information of the testing samples in their
training process.

In this paper, we propose a simple yet very effective
method that leads to accurate cancer classification using
expressions of only a very few genes. Furthermore, we
evaluated our methods in an honest way, which excluded
the influence of the bias [10].

This paper is organized as follows: We first introduce
our procedure to find the minimum gene combinations.
Then, the numerical results of four data sets demonstrate
the effectiveness of our approach. In the final part, we
discuss the results and related findings.

2 METHOD

Our proposed method is comprised of two steps. In Step 1,
we rank all genes in the training data set using a scoring
scheme. Then, we retain the genes with high scores. In
Step 2, we test the classification capability of all simple
combinations among the genes selected in Step 1 using a
good classifier. We note that this paper proposes neither
new feature ranking measures nor new classifiers. We shall
describe two mechanisms for each of Step 1 and Step 2.

2.1 Step 1: Gene Importance Ranking

In Step 1, we compute the importance ranking of each gene
using a feature ranking measure, two of which are
described below. We then retain only the most important
genes for Step 2.

2.1.1 T-Test

The t-score (TS) [4], [11] of gene i is defined as follows:

TSi ¼ max
xik � xi
mksi
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There are K classes. maxfyk; k ¼ 1; 2; . . .Kg is the max-
imum of all yk. Ck refers to class k that includes nk samples.
xij is the expression value of gene i in sample j. xik is the
mean expression value in class k for gene i. n is the total

number of samples. xi is the general mean expression value
for gene i. si is the pooled within-class standard deviation

for gene i. In fact, the TS used here is a t-statistic between

the centroid of a specific class and the overall centroid of all
the classes [4], [11]. Another possible model for TS could be

a t-statistic between the the centroid of a specific class and
the centroid of all the other classes.

2.1.2 Class Separability

Another frequently used method for gene importance

ranking is the class separability (CS) [8]. The CS of gene i
is defined as:

CSi ¼ SBi=SWi; ð6Þ

where

SBi ¼
XK
k¼1

ðxik � xiÞ2; ð7Þ

SWi ¼
XK
k¼1

X
j2Ck
ðxij � xikÞ2: ð8Þ

For gene i, SBi is the sum of squares of the interclass
distances (the distances between samples of different

classes). SWi is the sum of squares of the intraclass

distances (the distances of samples within the same class).
A larger CS indicates a greater ratio of the interclass

distance to the intraclass distance and, therefore, can be
used to measure the capability of genes to separate different

classes.
In fact, the CS used here is very similar to the F-statistic

that is also widely used for ranking genes in literature (see,
e.g., [12], [13]). The difference between the CS and the

F-statistic F is:

CS ¼ F � ðK � 1Þ=
XK
k¼1

nk �K
 !

: ð9Þ

Because the term ðK � 1Þ=ð
PK

k¼1 nk �KÞ in (9) is a constant

for a specific data set, the CS can be regarded as a
simplification of F-statistic. The two methods will lead to

the same ranking results for the same data set.

2.2 Step 2: Finding the Minimum Gene Subset

After selecting some top genes in the importance ranking

list, we attempt to classify the data set with only one gene.
We input each selected gene into our classifier. If no good

accuracy is obtained, we go on classifying the data set with
all the possible 2-gene combinations within the selected

genes. If still no good accuracy is obtained, we repeat this

procedure with all of the 3-gene combinations and so on
until we obtain a good accuracy. In this paper, we used the

following two classifiers to test gene combinations.

2.2.1 Fuzzy Neural Network (FNN)

We apply an FNN (Fig. 1) [14], [15] which we proposed

earlier. This FNN combines the features of initial fuzzy
model self-generation, partition validation, parameter opti-

mization, and rule-base simplification.
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2.2.2 Support Vector Machines (SVMs)

In addition to the FNN, we also used another classifier, i.e.,
the SVM. SVMs, pioneered by Vapnik [16], are able to find
the optimal hyperplane that maximizes the boundaries
between patterns. This feature makes SVM a powerful tool
for pattern recognition tasks. In fact, SVMs have already
been used in gene expression data analysis [7], [17]. In this
work, we applied a group of C-SVMs with radial basis
kernel functions [16].

For both the FNN and the SVMs, we carried out 5-fold
cross-validation (CV) in the training data set to tune their
parameters. We have included CV accuracy for all of the
data sets. The FNN has one parameter, i.e., the learning rate
ð�Þ that needs to be tuned. At the beginning of the tuning
process, we assign an initial value �0 to � (e.g., 0.1). After
that, we build up an FNN and then test the FNN using
5-fold CV in the training data set. We subsequently adjust �
a little and build, then cross-validate the FNN again. We
select the � value that leads to the smallest CV error. For the
SVMs, the two parameters to be tuned, i.e., C and � [16], are
selected similarly.

3 RESULTS

3.1 Lymphoma Data

In the lymphoma data set [5] (http://llmpp.nih.gov/
lymphoma), there are 42 samples derived from diffuse
large B-cell lymphoma (DLBCL), nine samples from
follicular lymphoma (FL), and 11 samples from chronic
lymphocytic leukaemia (CLL). The entire data set includes
the expression data of 4,026 genes. In this data set, a small
part of the data is missing. A k-nearest neighbor algorithm
was applied to fill those missing values [18].

In the first step, we randomly divided the 62 samples
into two parts: 31 samples for training, 31 samples for
testing. We ranked the entire set of 4,026 genes according to
their t-scores (TSs) in the training data set. Then, we picked
out the 100 genes with the highest TSs (Table 8 at http://
www.ntu.edu.sg/home5/pg02317674). In this paper, every
gene is labeled after its importance rank. For example,
gene 4 means the gene ranked fourth in Table 8 (http://
www.ntu.edu.sg/home5/pg02317674). Through its ID in
the microarray (for example, GENE1622X), the real name of
each gene can be found on the Web page of the lymphoma
data set.

We applied our FNN to classify the lymphoma micro-
array data set. At first, we added the selected 100 genes one
by one to the network according to their TS ranks, starting
with the gene ranked 1 in Table 8 (http://www.ntu.edu.sg/
home5/pg02317674). That is, we first used only a single
gene that is ranked 1 as the input to the network. We
trained the network with the training data set and,
subsequently, tested the network with the test data set.
We repeated this process with the first two genes in Table 8
(http://www.ntu.edu.sg/home5/pg02317674), then three
genes, and so on. We found that the FNN performed very
well: It reached 100 percent 5-fold CV accuracy for the
training data with only the first eight genes in Table 8
(http://www.ntu.edu.sg/home5/pg02317674). And, its
corresponding testing accuracy was 96.8 percent.

The excellent performance of our FNN motivated us to
search for the smallest gene subsets that can ensure highly
accurate classification for the entire data set. We first
attempted to classify the data set using only one gene. We
fed each of the 4,026 genes in the lymphoma data set into
our FNN. The best 5-fold CV accuracy was 90.32 percent
and the best testing accuracy was 80.65 percent. Second, we
tested all possible combinations of two genes within the
100 genes in Table 8 (http://www.ntu.edu.sg/home5/
pg02317674). Fig. 2 shows the CV procedure used here.
This procedure totally excluded the testing samples from
the classifier building process and, hence, excluded the
influence of bias. Other CVs conducted in this paper also
used a similar scheme. To our pleasant surprise, among all
4,950 such possible 2-gene combinations, the CV accuracy
for the training data reached 100 percent for the FNN in
174 combinations. The corresponding testing accuracies for
these combinations varied from 80.6 percent (six errors in
31 testing samples) to 100 percent. The average accuracy
was 93.85 percent. Table 1 shows the detailed results.

Since only two genes were required for classification, it
became possible for us to visualize the gene profiles with
respect to the distinct lymphoma subtypes. Here, we picked
out some combinations that also reached 100 percent testing
accuracy for visualization. We take note that these
combinations only represent some of the best performing
combinations we found, which are used to visually present
our findings and related discussions. However, the perfor-
mance of the classifier should only be estimated by the
averaged accuracy of all the combinations in Table 1, i.e.,
93.85 percent.

Fig. 3 shows four plots of 2-gene combinations: (78, 52),
(78, 8), (4, 87), (4, 40). In each of the four plots, the clusters of
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Fig. 1. The structure of our FNN proposed in [14], [15]. The FNN
consists of four layers, i.e., the input layer, the input membership
function layer, the rule layer, and the output layer. The input membership
function layer converts numerical values to categorical values. Each rule
node is connected to all input membership function nodes and output
nodes for this rule. Each rule node performs a product of its inputs. The
input membership functions act as fuzzy weights between the input layer
and the rule layer. Links between the rule layer, the output layer, and the
input membership functions are adjusted during the learning process. In
the output layer, each node receives inputs from all the rule nodes
connected to this output node and produces the actual output of the
network.



DLBCL, CLL, FL are very clear and the boundaries can be

easily drawn. Fig. 4 shows the corresponding expression

profiles of the four combinations. We obtain the following

simple prediction rules from Fig. 3d, which allow doctors to

make an accurate diagnosis of the three subtypes of

lymphoma. For a lymphoma patient:

1. the patient has DLBCL if and only if the expression
level of gene 4 (i.e., GENE1622X) is greater than
�0:75;

2. the patient has CLL if and only if the expression
level of gene 40 (i.e., GENE540X) is less than �1;

3. the patient has FL otherwise, i.e., if and only if the
expression level of gene 4 (i.e., GENE1622X) is less
than �0:75 and the expression level of gene 40 (i.e.,
GENE540X ) is greater than �1.

In recent years, the method of honestly evaluating

classifiers in the context of gene expression-based cancer

classification has been discussed in the literature [10], [19],

[20], [21], [22]. A double cross validation or nested cross

validation scheme was applied in [20], [21], [22]. To examine

our results more completely, we also applied the double CV

to the lymphoma data set. Fig. 6 is the flow chart of the

double CV algorithm that we used. Compared to the double

CV in [20], the procedure we used is different in the

following two aspects:

1. Besides the CV in the outer loop, we also conducted
a CV in the inner loop to evaluate the classifier.
However, in [20], Freyhult et al. only used one fold
of the samples to test the classifiers in the inner loop.
Considering the small number of samples in an
inner fold, e.g., only five or six samples for the
lymphoma data set, our scheme is more likely to find
promising gene combinations.

2. Our method used all of the inner CV data for gene
ranking and greatly reduced the computing time.
Otherwise, if we wanted to totally exclude the
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Fig. 2. The procedure of the cross validation (CV) used in this paper.
Here, the classifier building and the parameter tuning are carried out
during the CV using only the training samples. The testing samples are
totally independent from the CV; hence, the testing results obtained are
unbiased.

TABLE 1
Two-Gene Combinations in the Lymphoma Data Set that Lead

to 100 Percent CV Accuracy in the Training Set and
Their Respective Testing Accuracy for the FNN

The complete table can be obtained at http://www.ntu.edu.sg/home5/
pg02317674.



testing samples from gene ranking in the inner CV,

we had to rank genes and search for gene combina-

tions for each fold. The computing time would be

nearly 10 times that of our scheme for a 10-fold inner

CV. Although our inner CV accuracy included the

“selection bias” as indicated in [10], we found such
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Fig. 3. Gene expression levels of 2-gene combinations that perfectly separate the three types of lymphoma subtypes, i.e., DLBCL, FL, and CLL:
(a) (78, 52), (b) (78, 8), (c) (4, 87), and (d) (4, 40). Here, the genes are labeled according to their t-score (TS) ranks, for example, the two genes in (a)
are ranked 78 and 52 according to their TSs. A total of 27 such 2-gene combinations are found by the FNN, which achieved 100 percent CV
accuracy in the training process and also achieved 100 percent testing accuracy. These combinations are the best performing ones in Table 1.
However, the performance of the classifier should only be estimated by the averaged accuracy of all the combinations in Table 1.

Fig. 4. The expression profiles of the 2-gene combinations in the lymphoma data set shown in Fig. 3: (a) (78, 52), (b) (78, 8), (c) (4, 87), and

(d) (4, 40). Here, all of the genes are labeled according to their TS ranks. All four combinations can separate DLBCL, FL, and CLL. For example, in

(d), gene 4 draws a boundary between DLBCL and other types; gene 40 draws a boundary between CLL and other types. Therefore, Gene 4 and

Gene 40 jointly separate the three types.



inner results were accurate enough for picking out
promising gene combinations, as shown in the
following results. More importantly, such a scheme
would never change the independence of the testing
samples in the outer CV.

For the lymphoma data set, we used an SVM as the
classifier and searched for gene combinations among the
top 100 genes (TSs). The double CV achieved 93.55 percent
accuracy, i.e., four errors in 62 samples. To facilitate easy
verification of our double CV process and results, we have
put all of the results on http://www.ntu.edu.sg/home5/
pg02317674. File foldlym describes how the data set was
randomly divided into 10 folds. It also includes the actual
and the predicted labels for each sample. File lymDCV
contains the winmax matrix for each fold. In addition, it
also indicates the gene combination that was randomly
picked out.

However, simply combining genes with high ranks does
not ensure high classification accuracy. The cooperation of
genes is also of great importance. To illustrate this point, we
plot gene combinations (8, 40) and (4, 78) versus the cancer
types in Fig. 5. Fig. 3c and Fig. 5b both show that gene 4 is
very capable of classifying DLBCL because DLBCL can be
picked out according to the X-axis (gene 4) value alone.
Similarly, Figs. 3d and 5a show that gene 40 has good
capacity to classify CLL. Through the cooperation of gene 4
and gene 40, DLBCL, FL, and CLL are totally classified
(Fig. 3d). However, if gene 40 works with a gene that is not
good at separating FL from CLL, for example, gene 8
(Fig. 5a), the cooperation between these two genes will be
poor and the accuracy will be low (only 63.675 percent). The
poor cooperation between gene 4 and gene 78 (both with
high ranks) shown in Fig. 5b also substantiates the
importance of cooperation between genes.

Furthermore, the expression profile in Fig. 4 can also
support this idea of appropriate gene combinations. In Fig. 4,
the expression value of gene 4 shows obvious difference
between DLBCL and the other two types, i.e., FL and CLL.
There is a clear boundary in the figure. This difference tells us
that gene 4 is good at classifying DLBCL. Similarly, it can be
found that gene 40 has a good capability of classifying CLL.
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Fig. 5. Gene expression levels of 2-gene combinations that do not separate the three lymphoma subtypes: (a) (8, 40) and (b) (4, 78). Although these

genes have high TS ranks, their combinations cannot separate the three subtypes because of poor cooperation.

Fig. 6. The procedures of the double cross validation (CV). In the flow,
there are two loops, i.e., the inner loop and the outer loop. In the inner
loop, genes are first ranked according to their TSs. After that, we use all
of the 2-gene combinations to build classifiers and do internal 10-fold
CV. Then, we use the classifier that achieves the best CV accuracy in
the internal loop to classify the testing samples in the outer loop. We
repeat the process until all of the samples are cross validated in the
outer loop. Because the testing samples in the outer loop are totally
isolated from the gene ranking and classifier building process conducted
in the internal loop, the CV results obtained in the outloop are unbiased.



Gene 4 and gene 40 are able to jointly classify the three
lymphoma types with 100 percent accuracy.

3.2 SRBCT Data

The SRBCT data set [2] (http://research.nhgri.nih.gov/
microarray/Supplement) contains the expression data of
2,308 genes. There are, in total, 63 training samples and
25 testing samples already provided in [2]; five of the
testing samples are not SRBCTs. The 63 training samples
contain 23 Ewing family of tumors (EWS), 20 rhabdomyo-
sarcoma (RMS), 12 neuroblastoma (NB), and eight Burkitt
lymphomas (BL). And, the 20 SRBCT testing samples
contain six EWS, five RMS, six NB, and three BL.

In the first step, we ranked the entire set of 2,308 genes
according to their TSs [4], [11] in the training data set. Then,
we picked out the 50 genes with the highest TSs as shown in
Table 9 (http://www.ntu.edu.sg/home5/pg02317674). We
applied our FNN as the classifier to the SRBCT microarray
data set.

We used the expression data of the gene ranked 1 in
Table 9 (http://www.ntu.edu.sg/home5/pg02317674) to
train and then test the FNN. We repeated this process with
the top two genes in Table 9 (http://www.ntu.edu.sg/
home5/pg02317674), then the top three genes, and so on.
The testing error decreased to 0 when the top 16 genes were
input into the FNN.

To further reduce the number of genes required for
accurate classification of the four cancer subtypes, we tested
all possible combinations of one gene and two genes within
the 50 selected genes. None of them can lead to 100 percent
CV accuracy for the training data.

Then, we tested all possible combinations of three genes
within the 50 selected genes. Among all 19,600 such 3-gene
combinations, we found the 5-fold CV accuracy for the
training data reached 100 percent with the combination of
Gene 5, Gene 12, and Gene 30. The testing accuracy of this
combination is 95 percent (one error for the 20 testing
samples). Because this combination only contains three
genes, it is still possible for us to visualize it. Fig. 7 shows

two different views of the 3D plot of this 3-gene combina-
tion. In the view of Fig. 7a, RMS and NB are well separated
from other types. In the view of Fig. 7b, BL and EWS are
well separated with a clear boundary. From these two
views, it is clear that the four SRBCT subtypes are separated
from one another.

Except for (5, 12, 30), no other gene combinations
obtained 100 percent CV accuracy for the training data.
Although some combinations achieved 100 percent testing
accuracy (e.g., the combination (7, 13, 18) in Fig. 8), they
made a few errors for the training data. Such combinations
should be excluded from the evaluation of the classifier.
Otherwise, the result would be biased because it took
advantage of the testing data.

In Table 2, we compared the numbers of genes required in
different methods for the SRBCT data set. This comparison
clearly points out that our method can significantly reduce
the number genes required for accurate classification.

We did not randomly divide the SRBCT data for
evaluation because the provider of the SRBCT data had
already divided the data into training and testing sets [2] and
this data partition has been used by other authors [3], [4], [7].
Hence, we also followed this partition for comparison.

3.3 Liver Cancer Data

The liver cancer data set [9] (http://genome-www.stanford.
edu/hcc/) has two classes, i.e., the nontumor liver and HCC.
The data set contains 156 samples and the expression data of
1,648 important genes. Among them, 82 are HCCs and the
other 74 are nontumor livers. We randomly divided the data
into 78 training samples and 78 testing samples. In this data
set, there are some missing values. We also used the k-nearest
neighbor method to fill those missing values [18].

In this data set, we followed the same steps as we did in
the lymphoma and the SRBCT data sets. First, we chose
100 important genes in the training data set. Then, we tested
all possible 1-gene and 2-gene combinations within the
100 important genes. Among all of the 5,050 combinations,
we found that combination (1, 7) and (2, 82) reached
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Fig. 7. Three-dimensional views of gene expression levels of 3-gene combination (5, 12, 30) that separates the four SRBCT subtypes, i.e., BL, EWS,

RMS, NB: (a) A view in which RMS and NB can be seen to be separated from other subtypes. (b) A view in which BL can be seen to be separated

from EWS. From the two views, the four subtypes are clearly separable. Here, all of the genes are labeled according to their TS ranks. Our FNN

found only one such 3-gene combination that achieved 100 percent 5-fold CV accuracy.



100 percent CV accuracy for the training data. Their
corresponding test accuracies are 100 percent and 96.2 per-
cent, respectively. The averaged accuracy is 98.1 percent,
which can be used to estimate the performance of the
classifier.

The clone IDs of genes 1 and 7 are IMAGE: 301122 and
IMAGE: 128461, respectively. We plot the gene expression
levels of this combination in Fig. 9. From this plot, we found
that the nontumor liver samples and HCC samples were
separated quite well. Thus, we obtain the following simple
prediction rules, which allow doctors to make an accurate
diagnosis of HCC and nontumor liver:

1. the tissue is from a nontumor liver if the expression
level of gene 1 (i.e., IMAGE: 301122 ) is greater than
0.345 and the expression level of gene 7 (i.e., IMAGE:
128461 ) is greater than -0.65;

2. otherwise, the tissue is from HCC.

We also conducted 10-fold double CV to the whole liver
cancer data set. The double CV accuracy is 96.15 percent,
i.e., six errors in 156 samples. The detailed results are given
in files foldliver and liverDCV that can be obtained at
http://www.ntu.edu.sg/home5/pg02317674.

For the liver cancer data set, Chen et al. [9] used 3,180 genes
(represented by 3,964 cDNA) to classify HCC from the
nontumor samples. In comparison with Chen et al.’s work

[9], our method also greatly reduced the number of genes
required to obtain an accurate result.

3.4 GCM Data

The above three data sets, i.e., the lymphoma, the SRBCT,
and the liver cancer data, are relatively small data sets. They
include three, four, and two (sub)types of cancers,
respectively. In such small data sets, exhaustive searches
for 2-gene or 3-gene subsets are possible because they do
not require much computing time. Let us suppose that one
gene subset needs 0.5 seconds to process. Then, it will cost
22.46 hours to search for all of the possible 3-gene subsets
from the 100 genes obtained by gene ranking and selection.
However, if we search for all possible 5-gene subsets in the
same data, it will cost 435.7 days. Therefore, exhaustive
search is only effective for searching subsets with a small
number of genes.
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Fig. 8. Three-dimensional views of gene expression levels of the 3-gene combination (7, 13, 18) that separates the four SRBCT subtypes, i.e., BL,

EWS, RMS, NB: (a) A view that includes only the training samples. (b) A view that includes only the testing samples. Although (b) is a perfect

separation of the four subtypes, the combination (7, 13, 18) should be excluded from the evaluation of the classifier because it made one error for the

training data and had a lower 5-fold CV accuracy than the combination (5, 12, 30).

TABLE 2
Comparisons of Results for the SRBCT Data Set Obtained by

Different Approaches

Here, the results obtained in [2], [3], [4], and [7] are all biased, whereas
our results for the FNN are unbiased.

Fig. 9. Expression levels of Gene 1 and Gene 7 in the liver cancer data

set. Here, all of the genes are labeled according to their TS ranks. The

HCCs and the nontumor livers are clearly separable from the plot of (1, 7).



However, this limitation does not mean that exhaustive
search cannot deal with large and complex data sets. In fact,
for data sets with more classes, we can divide the whole
classification problem into a group of binary classification
problems with “one-against-one” or “one-against-all”
schemes [23]. For each binary classification problem, we
then use the proposed 2-step exhaustive search. Using this
“divide-and-conquer” method, we can greatly reduce the
computation time required.

To test the effectiveness of our method for more
complex problems, we applied it to the GCM data set
that includes 14 types of cancers [24] (http://www-
genome.wi.mit.edu/mpr/GCM.html). This data set con-
tains expression data of 16,306 genes and the total of
198 samples has already been divided into two parts, i.e.,
144 for training and the other 54 for testing. Table 3 gives
the general information of the data set.

We used the “one-against-all” scheme [23] to process the
GCM data set. That is, we built 14 binary SVM classifiers
and each binary SVM classifier output a probability that a
sample belonged to a cancer type. Finally, a sample was
categorized to the type of the largest probability. For each
binary SVM classifier, we ranked all of the genes according to
their TSs and then tested all of the 2-gene combinations within
the top 50 genes. After that, we picked out the combination
that achieved the best 5-fold CV accuracy in the training data
for prediction. For each of the binary SVM classifiers, usually
more than one combination achieved the best accuracy. To
honestly evaluate the SVM classifier, we randomly chose a
combination from these candidates and then used the
14 binary classifier to jointly cross-validate and test the
GCM data. We repeated this process 100 times. The best 5-fold
CV accuracy we obtained for the training data was 83.3
percent (24 errors in the 144 samples). Seven groups of binary
SVMs achieved such CV accuracy; their testing accuracies
varied from 64.8 percent to 77.8 percent. The averaged testing
accuracy was 69.8 percent, which could be used to evaluate
the performance of the group of SVMs.

Since all 14 of the binary SVMs used only two genes, we
plotted the 14 2-gene combination that jointly achieved
77.8 percent testing accuracy in Figs. 10 and 11. Table 4
summarizes the genes used by each binary SVM and the
best 5-fold CV accuracy it achieved. The confusion matrices
that describe the training and testing results are shown in
Table 5 and Table 6, respectively. However, we should note
that these results only represent the best performing
combinations. The general performance should be esti-
mated by the averaged testing accuracy, i.e., 69.8 percent.

For the GCM data set, the best CV accuracy reported is
81.25 percent (27 errors in 144 samples) and the best testing
accuracy reported is 77.8 percent (12 errors in 54 samples)
with all 16,063 genes [24]. In [24], Ramaswamy et al.
claimed that the testing samples were independent. How-
ever, it was not confirmed that the classifier building
process was totally independent of the testing samples. For
example, it is unknown how they decided the number of
genes being used by the classifier. In [25], Li et al. obtained
nearly 70 percent testing accuracy using all 16,063 genes.
From their presentation, it was not clear whether their
testing scheme was honest. In [26], Tan et al. honestly tested
the GCM data and obtained 67.39 percent testing accuracy
with 134 genes. Compared with these results, our 14 2-gene
binary SVMs jointly reached comparable accuracy with only
28 genes.

We did not randomly divide the GCM data set for
evaluation because the provider of the GCM data had
already divided the data into training and testing sets [24].
Hence, we also followed this partition for comparison.

3.5 Results with Class Separability Importance
Ranking

To find out how the gene importance ranking scheme
influences the classification result, we also used another
ranking scheme, i.e., the class separability (CS) [8]. In the
SRBCT data set, we tested the combinations within the top
100 genes selected by the new ranking scheme. We also
found the only 3-gene combination that leads to 100 percent
accuracy with TS. However, the three genes rank (23, 40, 22)
in CS rather than (5, 12, 30) in TS ranking [4], [11]. In the
liver cancer data set, we also found the only 2-gene (ranked
(1, 7) in TS but (1, 16) in CS) combination with 100 percent
accuracy. In the lymphoma data set, we found 216 2-gene
combinations within the top 100 genes of the new rank that
reached 100 percent CV accuracy. These 216 combinations
included most of the combinations found with the TS [4],
[11] importance ranking.

4 DISCUSSION

For our purpose of finding the smallest gene subsets for
accurate cancer classifications, both TS and CS are highly
effective ranking schemes, whereas both SVM and FNN are
sufficiently good classifiers. Many other gene importance
ranking schemes and classifiers may also be used in our
approach.

As we have known from the results in the lymphoma
data set, the gene combination that gives good separation
may not be unique. Furthermore, it is found that highly
correlated genes may undertake very similar tasks in a
combination. Therefore, if a gene in a combination is
replaced by another highly correlated gene, the newly
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TABLE 3
General Information for the GCM Data Set

The cancer types included the number of training and testing samples
for each type.



obtained combination may still lead to good classification.
Clustering important genes selected in Step 1 will help us
discover such important correlations.

In the lymphoma data set, we clustered the 100 selected
genes into 20 groups using the K-means method [27]. The
clustering result is summarized in Table 7. As we men-
tioned above, (4, 40) is a good combination for the
lymphoma data set. We also note that genes 71 and 36 are
in the same clusters with genes 4 and 40, respectively, and
the two clusters are very small. Therefore, we replaced
genes 4 and 40 with genes 71 and 36, respectively (another
result using hierarchical clustering is available at http://
www.ntu.edu.sg/home5/pg02317674, which also con-
firmed the high correlation between genes 4, 40 and genes
71, 36, respectively). From the plot of (71, 36) (Fig. 12), we
find it is also a good combination.

This work is the first attempt to test the classification
ability of gene combinations in similar applications.
Following this idea, we solved this problem with much
smaller numbers of genes compared with the previously
published methods. In fact, after finding the optimal gene
combinations, this problem becomes a comparably easy
pattern recognition problem, which can be seen from the
plots of gene combinations.

In the SRBCT data set, the three genes, 5, 12, 30, are the

genes IGF2, AF1q, and CD99, respectively. It has been

reported that CD99 is a marker for EWS [28], [29]. In

addition, IGF2 is also reported to be indispensable for the

formation of medulloblastoma and RMS [30], [31]. As for

the genes where no relations between them and the related

cancers were reported, our work calls for the further

investigation of such relations.
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Fig. 10. Plots of gene combinations for binary classifiers 1-7. In each plot, the horizontal axis stands for gene 1 in Table 4 and the vertical axis stands
for gene 2 in Table 4 for the corresponding classifier. We used 14 such binary classifiers, each responsible for classifying one of the 14 classes from
all the rest. As shown in Figs. 10 and 11, we found a 2-gene combination for each of the 14 classifiers to best separate a given class from the rest.
We then combined the 14 binary classifiers into one 14-class classifier, which leads to a slightly better cross-validation accuracy and the same
testing accuracy compared to the best reported result, but with only 28 genes rather than all 16,063 genes required by the existing approach.
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Fig. 11. The same as Fig. 10, for binary classifiers 8-14.

TABLE 4
The Best 5-Fold Cross-Validation Accuracy and

the Genes Used by the 14 Binary Classifiers

TABLE 5
The Confusion Matrix for the 5-Fold Cross-Validation Results

of the GCM Data Set

Rows delineate the actual types and columns delineate the predicted
types.



To sum up, we proposed a simple yet very effective 2-step

method for gene selection and gene expression data

classification. We applied our method to four well-known
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TABLE 6
The Confusion Matrix for the Testing Results

of the GCM Data Set

Rows delineate the actual types and columns delineate the predicted
types.

TABLE 7
The K-Means Clustering Result for the 100 Selected Genes in the Lymphoma Data Set:

The 20 Clusters and the Genes Included in Each Cluster

The genes in each cluster may be highly correlated.

Fig. 12. Expression levels of gene 71 and gene 36 in the lymphoma data
set. Here, all of the genes are labeled according to their TS ranks.
Genes 71 and 36 are highly correlated with genes 4 and 40,
respectively. The combination (4, 40) separates the three lymphoma
subtypes very well, as shown in Fig. 3b. This plot shows that its
correlated combination (71, 36) also separates the three subtypes well.



microarray data sets, i.e., the lymphoma, the SRBCT, the liver
cancer, and the GCM data sets. The results in all of the data
sets indicate that our method can find minimum gene subsets
that can ensure very high prediction accuracy. In addition,
although the TS [4], [11] and the CS [8] based approaches have
been proven to be effective in selecting important genes for
reliable prediction, they are not perfect. To find minimum
gene subsets that ensure accurate predictions, we must also
consider the cooperation between genes.

5 SUPPLEMENTAL INFORMATION

The supplemental information, such as full gene lists, figures,

and results that are not included in this paper, can be

obtained at http://www.ntu.edu.sg/home5/pg02317674.
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